Current Search: Blair, Richard (x)
View All Items
- Title
- Catalytic Properties of Defect-Laden 2D Material from First-Principles.
- Creator
-
Jiang, Tao, Rahman, Talat, Stolbov, Sergey, Blair, Richard, Tetard, Laurene, University of Central Florida
- Abstract / Description
-
Two dimensional (2D) materials offer excellent opportunities for application as catalysts for energy needs. Their catalytic activity depends on the nature of defects, their geometry and their electronic structure. It thus important that the characteristics of defect-laden 2D materials be understood at the microscopic level. My dissertation focuses on theoretical and computational studies of several novel nanoscale materials using state-of-the-art techniques based on density functional theory ...
Show moreTwo dimensional (2D) materials offer excellent opportunities for application as catalysts for energy needs. Their catalytic activity depends on the nature of defects, their geometry and their electronic structure. It thus important that the characteristics of defect-laden 2D materials be understood at the microscopic level. My dissertation focuses on theoretical and computational studies of several novel nanoscale materials using state-of-the-art techniques based on density functional theory (DFT) with the objective of understanding the microscopic factors that control material functionality.My work has helped establish defect-laden hexagonal boron nitride (dh-BN) as a promising metal-free catalyst for CO2 hydrogenation. Firstly, I showed how small molecules (H2, CO, CO2) interacting with several kinds of defects in dh-BN (with nitrogen or boron vacancy, boron substituted for nitrogen, Stone-Wales defect). I analyzed binding energies and electronic structures of adsorption of molecules on dh-BN to predict their catalytic activities. Then by computational efforts on reaction pathways and activation energy barriers, I found that vacancies induced in dh-BN can effectively activate the CO2 molecule for hydrogenation, where activation occurs through back-donation to the ?* orbitals of CO2 from frontier orbitals (defect state) of the h-BN sheet localized near a nitrogen vacancy (VN). Subsequent hydrogenation to formic acid (HCOOH) and methanol (CH3OH), indicating dh-BN (VN) an excellent metal-free catalyst for CO2 reduction, which may serve as a solution for global energy and sustainability.At the same time, I studied critical steps of the catalytic processes from carbon monoxide and methanol to higher alcohol on single-layer MoS2 functionalized with small Au nanoparticle, indicating C-C coupling feasible on MoS2-Au13, which led to production of acetaldehyde (CH3CHO). Whereas a bilayer 31-atom cluster of gold on MoS2 show excellent catalytic performance on CO hydrogenation to methanol through two effective pathways
Show less - Date Issued
- 2019
- Identifier
- CFE0007823, ucf:52822
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007823
- Title
- Thermal Stability Characteristics of Fisher-Tropsch and Hydroprocessed Alternative Aviation Fuels in a Fixed Bed Reactor.
- Creator
-
Arias Quintero, Sergio, Kapat, Jayanta, Chen, Ruey-Hung, Blair, Richard, University of Central Florida
- Abstract / Description
-
Growing prices, limited supply, and public concern about greenhouse gases associated with crude-derived jet fuels have led to development of renewable alternatives which must be compatible with the worldwide civilian and military aviation infrastructure, which were designed for operation with Jet-A/JP-8. Any alternative fuel should not have negative effects on the aircraft engines and fuel systems, especially from a thermal stability perspective, since any adverse effect of the physical...
Show moreGrowing prices, limited supply, and public concern about greenhouse gases associated with crude-derived jet fuels have led to development of renewable alternatives which must be compatible with the worldwide civilian and military aviation infrastructure, which were designed for operation with Jet-A/JP-8. Any alternative fuel should not have negative effects on the aircraft engines and fuel systems, especially from a thermal stability perspective, since any adverse effect of the physical properties, and chemical composition, including existence of trace elements, of those fuels may only be revealed after extensive operation, resulting in higher life-cycle maintenance and operation costs.This study considered four types of alternative fuels: two derived by Fischer-Tropsch (FT) process, and two types of Hydro-processing Esters and Fatty acids (HEFA). For each of these types, both raw and 50:50 blends in volume with Jet-A samples have been prepared, thus resulting in eight different fuel blends. Fit-for-purpose ability of these alternative fuels is first investigated by studying the effects of the fuel properties and composition effects on elastomer materials, and micro-turbine performance. When elastomer o-rings, similar to those used in aircraft fuel systems were immersed in renewable fuels, smaller volume change or swelling was detected (lower than 2%), contrary to a 14% swelling observed for baseline Jet-A. Lower swelling may result into leaks during aircraft operation. This trend was reversed when renewable fuels were blended with aromatics containing Jet-A.Lower energetic content per unit volume of the renewable fuels, resulted in a thrust reduction around 10% when compared to baseline Jet-A at full throttle settings, but other than this, no other significant effect on the engine combustion temperature or other parameters were found for short duration testing. On the other hand at the end of the alternative fuel testing an injector issue was detected, which caused a localized heat zone at the turbine stator, and subsequent damage. The investigation of the causes of this nozzle fouling, which may be related to fuel contamination, turbine manufacture defects, or operation conditions is left for future studies.Primary focus of this study is coking behavior of 8 different alternative fuel blends over 4 different metallic surfaces, as compared against baseline Jet-A. A specialized single tube heat exchanger apparatus was used where each fuel sample was allowed to flow through a metal tube placed inside a tube furnace. Thermal stresses caused by the break-down of hydrocarbon molecules and the catalytic effects of the tube surfaces affect thermal stability of the fuel, leading to coking deposits under the auto-oxidation and pyrolysis mechanisms.In the results reported in this study, physical methods such as gravimetric measurements were used to obtain the deposits, while UV/VIS absorption, and GC/MS were used to study chemical changes in fuel composition and their relation with coking deposits. Thermal depositions between 16 and 46 ?g/cm2 were measured at the tubes after 3 hours of testing, finding no significant differences between the baseline Jet-A and the renewable fuels blends, even when sulfur levels, which are linked to deposits formation, were lower for the renewable fuels. Fuel bulk constituents, such as paraffins and cycloalkanes, under thermal stressing and catalytic influence of the tube metals cracked into reactive intermediates leading to surface deposits formation, like aromatic compounds. These compounds were identified by the shift towards longer excitation wavelengths of the UV-Vis absorption measurements on stressed fuels.
Show less - Date Issued
- 2012
- Identifier
- CFE0004513, ucf:49271
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004513
- Title
- Nanoscale Spectroscopy in Energy and Catalytic Applications.
- Creator
-
Ding, Yi, Tetard, Laurene, Challapalli, Suryanarayana, Zhai, Lei, Thomas, Jayan, Lyakh, Arkadiy, Blair, Richard, University of Central Florida
- Abstract / Description
-
Emerging societal challenges such as the need for more sustainable energy and catalysis are requiring more sensitive and versatile measurements at the nanoscale. This is the case in the design and optimization of new materials for energy harvesting (solar cells) and energy storage devices (batteries and capacitors), or for the development of new catalysts for carbon sequestration or other reactions of interest. Hence, the ability to advance spectroscopy with nanoscale spatial resolution and...
Show moreEmerging societal challenges such as the need for more sustainable energy and catalysis are requiring more sensitive and versatile measurements at the nanoscale. This is the case in the design and optimization of new materials for energy harvesting (solar cells) and energy storage devices (batteries and capacitors), or for the development of new catalysts for carbon sequestration or other reactions of interest. Hence, the ability to advance spectroscopy with nanoscale spatial resolution and high sensitivity holds great promises to meet the demands of deeper fundamental understanding to boost the development and deployment of nano-based devices for real applications. In this dissertation, the impact of nanoscale characterization on energy-related and catalytic materials is considered. Firstly an introduction of the current energy and environmental challenges and our motivations are presented. We discuss how revealing nanoscale properties of solar cell active layers and supercapacitor electrodes can greatly benefit the performance of devices, and ponder on the advantages over conventional characterization techniques. Next, we focus on two dimensional materials as promising alternative catalysts to replace conventional noble metals for carbon sequestration and its conversion to added-value products. Defect-laden hexagonal boron nitride (h-BN) has been identified as a good catalyst candidate for carbon sequestration. Theoretically, defects exhibit favorable properties as reaction sites. However, the detailed mechanism pathways cannot be readily probed experimentally, due to the lack of tools with sufficient sensitivity and time resolution. A comprehensive study of the design and material processes used to introduce defects in h-BN in view of improving the catalytic properties is presented. The processing-structure-property relationships are investigated using a combination of conventional characterization and advanced nanoscale techniques. In addition to identifying favorable conditions for defect creation, we also report on the first signs of local reactions at defect sites obtained with nanoscale spectroscopy. Next, we explore avenues to improve the sensitivity and time-resolution of nanoscale measurements using light-assisted AFM-based nanomechanical spectroscopy. For each configuration, we evaluate the new system by comparing its performance to the commercial capabilities.Lastly, we provide a perspective on the opportunities for state-of-the-art characterization to impact the fields of catalysis and sustainable energy, as well as the urge for highly sensitive functional capabilities and time-resolution for nanoscale studies.
Show less - Date Issued
- 2018
- Identifier
- CFE0007751, ucf:52387
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007751
- Title
- Novel Fuel-producing Fungi and Methodologies for Increasing Fuel Production.
- Creator
-
Wang, Yuemin, Harper, James, Bridge, Candice, Frazer, Andrew, Beazley, Melanie, Blair, Richard, University of Central Florida
- Abstract / Description
-
An endophytic fungus Hypoxylon sp. (BS15) has recently been isolated and found to produce volatile organic compounds (VOCs) that have potential relevance as hydrocarbon fuels. In the work described here, the traditional refined carbohydrate (e.g., sucrose) diet source was replaced by simple sugars produced using a solvent free green chemistry mechanocatalytic method involving ball milling in the solid. BS15 is able to grow on this degraded cellulose as well as the more traditional potato...
Show moreAn endophytic fungus Hypoxylon sp. (BS15) has recently been isolated and found to produce volatile organic compounds (VOCs) that have potential relevance as hydrocarbon fuels. In the work described here, the traditional refined carbohydrate (e.g., sucrose) diet source was replaced by simple sugars produced using a solvent free green chemistry mechanocatalytic method involving ball milling in the solid. BS15 is able to grow on this degraded cellulose as well as the more traditional potato dextrose broth. The volatile compounds produced from both media were largely the same. Unfortunately, it is observed that long term in vitro growth of BS15 results in diminished VOC production. The VOC production was partially restored by cultivating BS15 in growth media containing finely ground woody tissue from the original host plant (Taxodium distichum). Extracts from this woody tissue were made by sequentially extracting with dichloromethane, methanol, and water with a goal of isolating VOC production modulators. Both the dichloromethane and water extracts place on bio-mimicking filter paper were found to modulate VOC production, while the methanol extract had no significant impact. Surprisingly, the woody tissue remaining after exhaustive extraction also acted as a VOC production modulator when combined with the growth media, with noticeable changes in the production of four compounds. This woody tissue also induced production of two compounds not observed in the original BS15 extract, and their changes are inheritable. Remarkably filter paper had the same modulating effect as exhaustively extracted woody tissue, suggesting the modulation was partially due to cellulose degradation products. Extraction of the maximum amounts of VOCs is desirable and here a comparison of solid phase extraction (SPE) and solid phase micro-extraction (SPME) techniques is made. This comparison involves two endophytes, BS15C and Streptomyces ambofaciens (SA 40053). The SPE technique is more effective in retaining compounds having lower vapor pressures and higher boiling points with nearly three to five times more VOC mass obtained versus SPME.
Show less - Date Issued
- 2019
- Identifier
- CFE0007552, ucf:52598
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007552
- Title
- Nitrogen-Containing Materials for Mechanochemical Synthesis, Luminescence Analysis, and Heterogeneous Catalysis.
- Creator
-
Nash, David, Zhai, Lei, Hampton, Michael, Harper, James, Rex, Matthew, Blair, Richard, University of Central Florida
- Abstract / Description
-
Various inorganic nitrogen-containing materials have been exploited for their different properties. Several nitride materials are commercially attractive due to their mechanical properties making them suitable for ceramic industries and wide bandgaps fitting for use as semiconductor and insulator materials, as well as optoelectronics. Nitride materials can exhibit versatility in applications such as the use of gallium nitride to make blue LEDs, nitrides of titanium and silicon being utilized...
Show moreVarious inorganic nitrogen-containing materials have been exploited for their different properties. Several nitride materials are commercially attractive due to their mechanical properties making them suitable for ceramic industries and wide bandgaps fitting for use as semiconductor and insulator materials, as well as optoelectronics. Nitride materials can exhibit versatility in applications such as the use of gallium nitride to make blue LEDs, nitrides of titanium and silicon being utilized as medical implants for their chemical inertness and hardness, and the heavy use of boron nitride as a solid lubricant in the cosmetic industry. Amines have been used as nitrogen-containing organic ligands in organometallic complexes that exhibit phenomenal photophysical properties. These complexes have been heavily studied for potential applications in optoelectronics and chemical sensing. This dissertation will focus on two nitrogen-containing materials that have yet to be explored for the potential applications to be discussed. The first is hexagonal-boron nitride (h-BN), which was previously mentioned to have a substantial use in the cosmetic industry, giving products such as lipstick, foundation, and blush their slick feeling. Computational models have shown the possibility of altered electronic properties of defect sites in the h-BN sheets. These defect sites will be explored experimentally to determine any catalytic activity. Specifically, the hydrogenation reaction using defect-laden hexagonal-boron nitride will be investigated. Successful catalysis would add to the short list of non-metal catalyst, and provide an alternative catalyst that costs significantly less than the traditional metal catalysts commonly used in commercial industries. The second of the two nitrogen-containing materials is a class of metal complexes based on organometallic clusters of copper(I) iodide. Copper(I) iodide clusters formed with amine ligands have been studied for around four decades and the photophysics behind their photoluminescent properties are well understood. Much of the work has been done for use as a potential emissive material in the optoelectronics field. They have also been studied for applications in the sensing of environmental compounds. Here, research will display its use as a novel sensor for narcotic substances. This forensic application will be further explored to develop and eventually commercialize a complete field drug testing system for law enforcement and crime lab use, with the goal to equip law enforcement personnel with a presumptive drug testing method that is accurate, easy-to-use, safe, adaptable, and affordable. This system will consist of a narcotic drug-indicating test strip, a handheld fluorescence spectrometer manufactured in-house using relatively inexpensive parts, and a mobile app that will leverage photoemission data of the tested drug samples collected by multiple crime labs to provide the ability for sample-to-reference data matching. Law enforcement users would have the ability to rapidly identify an unknown substance by applying it to a test strip, testing it using the spectrometer, and capturing an image of the resulting photoemission and analyzing the spectral profile in search of a match with the support of a cloud database.
Show less - Date Issued
- 2017
- Identifier
- CFE0007129, ucf:52297
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007129
- Title
- Characterization, Morphology, Oxidation, and Recession of Silicon Nanowires Grown by Electroless Process.
- Creator
-
Mertens, Robert, Sundaram, Kalpathy, Yuan, Jiann-Shiun, Chow, Louis, Wahid, Parveen, Blair, Richard, University of Central Florida
- Abstract / Description
-
This dissertation presents heretofore undiscovered properties of Silicon Nanowires (SiNWs) grown by electroless process and presents mathematical solutions to the special problems of the oxidation and diffusion of dopants for SiNWs. Also presented here is a mathematical description of morphology of oxidized SiNWs. This dissertation is comprised of several discussions relating to SiNWs growth, oxidation, morphology and doping.In here is presented work derived from a long-term study of SiNWs....
Show moreThis dissertation presents heretofore undiscovered properties of Silicon Nanowires (SiNWs) grown by electroless process and presents mathematical solutions to the special problems of the oxidation and diffusion of dopants for SiNWs. Also presented here is a mathematical description of morphology of oxidized SiNWs. This dissertation is comprised of several discussions relating to SiNWs growth, oxidation, morphology and doping.In here is presented work derived from a long-term study of SiNWs. Several important aspects of SiNWs were investigated and the results published in journals and conference papers. The recession of SiNWs was heretofore unreported by other research groups. In our investigations, this began as a question, (")How far into the substrate does the etching process go when this method is used to make SiNWs?(") Our investigations showed that recession did take place, was controllable and that a number of variables were responsible. The growth mechanism of SiNWs grown by electroless process is discussed at length. The relation of exposed area to volume of solution is shown, derived from experimentation. A relation of Silver used to Si removed is presented, derived from experimentation. The agglomeration of SiNWs grown by the electroless process is presented.The oxidation of SiNWs is a subject of interest to many groups, although most other groups work with SiNWs grown by the VLS process, which is more difficult, time-consuming and expensive to do. The oxidation of planar Silicon (Si) is still a subject of study, even today, after many years of working with and refining our formulae, because of the changing needs of this science and industry. SiNWs oxidation formulae are more complicated than those for planar Si, partly because of their morphology and partly because of their scale. While planar Si only presents one orientation for oxidation, SiNWs present a range of orientations, usually everything between (<)100(>) and (<)110(>) ( the (<)111(>) orientation is usually not presented during oxidation). This complicates the post-oxidation morphology to the extent that, subsequent to oxidation, SiNWs are more rectangular than cylindrical in shape. After etching to remove an oxidation layer from the SiNWs, the rectangular shape shifts 90(&)deg; in orientation.In traditional oxidation, the Deal-Grove formulae are used, but when the oxidation must take place in very small layers, such as with nanoscale devices, the Massoud formulae have to be used. However, even with Massoud, these formulae are not as good because of the morphology. Deal-Grove and Massoud formulae are intended for use with planar Si. We present some formulae that show the change in shape of SiNWs during oxidation, due to their morphology.The diffusion of dopants in SiNWs is a subject few research groups have taken up. Most of the groups who have, use SiNWs grown by the VLS method to make measurements and report findings. In order to measure the diffusion of dopants in SiNWs, a controllable diameter is needed. There are a number of ways to measure diffusion in SiNWs, but none of the ones used so far apply well to SiNWs grown by electroless process. Usually these groups present some mathematical formulae to predict diffusion in SiNWs, but these seem to lack mathematical rigor. Diffusion is a process that is best understood using Fick's Laws, which are applied to the problem of SiNWs in this dissertation.Diffusion is a science with a long history, going back at least 150 years. There are many formulae that can be used in the most common diffusion processes, but the processes involved with the diffusion of dopants in SiNWs is more complex than the simple diffusion processes that are fairly well-understood. Diffusion doping of SiNWs is a multiphase process that is more complex, first because it is multiphase and second because the second step involves a multiplicity of diffusing elements, plus oxidation, which brings on the problems of moving boundaries.In this dissertation, we present solutions to these problems, and the two-step diffusion process for SiNWs.
Show less - Date Issued
- 2012
- Identifier
- CFE0004412, ucf:49366
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004412
- Title
- Electrochemical Studies of Nanoscale Composite Materials as Electrodes in PEM Fuel Cells.
- Creator
-
Anderson, Jordan, Zhai, Lei, Blair, Richard, Hampton, Michael, Zou, Shengli, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Polymer electrolyte membrane fuel cells (PEMFCs) have recently acquired much attention as alternatives to combustion engines for power conversion. The primary interest in fuel cell technology is the possibility of 60% power conversion efficiency as compared to the 30% maximum theoretical efficiency limited to combustion engines and turbines. Although originally conceived to work with hydrogen as a fuel, difficulties relating to hydrogen storage have prompted much effort in using other fuels....
Show morePolymer electrolyte membrane fuel cells (PEMFCs) have recently acquired much attention as alternatives to combustion engines for power conversion. The primary interest in fuel cell technology is the possibility of 60% power conversion efficiency as compared to the 30% maximum theoretical efficiency limited to combustion engines and turbines. Although originally conceived to work with hydrogen as a fuel, difficulties relating to hydrogen storage have prompted much effort in using other fuels. Small organic molecules such as alcohols and formic acid have shown promise as alternatives to hydrogen in PEMFCs due to their higher stability at ambient conditions. The drawbacks for using these fuels in PEMFCs are related to their incomplete oxidation mechanisms, which lead to the production of carbon monoxide (CO). When carbon monoxide is released in fuel cells it binds strongly to the platinum anode thus limiting the adsorption and subsequent oxidation of more fuel. In order to promote the complete oxidation of fuels and limit poisoning due to CO, various metal and metal oxide catalysts have been used.Motivated by promising results seen in fuel cell catalysis, this research project is focused on the design and fabrication of novel platinum-composite catalysts for the electrooxidation of methanol, ethanol and formic acid. Various Pt-composites were fabricated including Pt-Au, Pt-Ru, Pt-Pd and Pt-CeO2 catalysts. Electrochemical techniques were used to determine the catalytic ability of each novel composite toward the electrooxidation of methanol, ethanol and formic acid. This study indicates that the novel composites all have higher catalytic ability than bare Pt electrodes. The increase in catalytic ability is mostly attributed to the increase in CO poison tolerance and promotion of the complete oxidation mechanism of methanol, ethanol and formic acid. Formulations including bi- and tri-composite catalysts were fabricated and in many cases show the highest catalytic oxidation, suggesting tertiary catalytic effects. The combination of bi-metallic composites with ceria also showed highly increased catalytic oxidation ability. The following dissertation expounds on the relationship between composite material and the electrooxidation of methanol, ethanol and formic acid. The full electrochemical and material characterization of each composite electrode is provided.
Show less - Date Issued
- 2012
- Identifier
- CFE0004510, ucf:49264
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004510
- Title
- Re, Os, Al and Mg boron rich ceramic compounds for structural application.
- Creator
-
Xie, Zhilin, Orlovskaya, Nina, Blair, Richard, Gou, Jihua, Raghavan, Seetha, University of Central Florida
- Abstract / Description
-
Hard and ultra-incompressible materials are of great interest due to their important applications in industry. A common route to design hard materials is combining transition metals with light and small covalent elements. Light elements such as carbon, oxygen, nitrogen and boron have been considered as good candidates. This study includes the synthesis of ReB2, OsB2 and another higher boride AlMgB14.Most of the techniques used for ReB2 synthesis reported 1:2.5 Re to B ratio because of the...
Show moreHard and ultra-incompressible materials are of great interest due to their important applications in industry. A common route to design hard materials is combining transition metals with light and small covalent elements. Light elements such as carbon, oxygen, nitrogen and boron have been considered as good candidates. This study includes the synthesis of ReB2, OsB2 and another higher boride AlMgB14.Most of the techniques used for ReB2 synthesis reported 1:2.5 Re to B ratio because of the loss of the B during high temperature synthesis. However, as a result of B excess, the amorphous boron, located along the grain boundaries of polycrystalline ReB2, would degrade the ReB2 properties. Therefore, techniques which could allow synthesizing the stoichiometric ReB2 preferably at room temperature are in high demand. This thesis reported the synthesis of ReB2 powders using mechanochemical route by milling elemental crystalline Re and amorphous B powders in the SPEX 8000 high energy ball mill for 80 hours. The formation of boron and perrhenic acids are also reported after ReB2 powder was exposed to the moist air environment for a twelve months period of time. The synthesized ReB2 powder was characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and Raman spectroscopy. OsB2 also shows its attractive properties. The hardness of orthorhombic OsB2 was reported to be 37 GPa, when the applied load is lowered to 0.245N. However, only one of the three predicted phases has been synthesized. In this study, the hexagonal OsB2 has been synthesized by the mechanochemical method. The lattice parameters of the Hex-OsB2 are ?=?=90(&)deg;, ?=120(&)deg;; a=b=2.9047 (&)#197;, c=7.4500 (&)#197;. The synthesized OsB2 powder was annealed at 1050(&)deg;C for 6 days, but no phase change was found. This shows that the Hex-OsB2 is very stable. Another promising hard material, AlMgB14, was also studied in this thesis. The AlMgB14 was synthesized at 1050 (&)deg;C under normal pressure. Several different routes were tried and compared. It shows AlMgB14 cannot be synthesized merely by ball milling, which can bring the risk of oxidization. Magnesium metal is preferred to use as one of the raw materials.
Show less - Date Issued
- 2012
- Identifier
- CFE0004261, ucf:49500
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004261
- Title
- Rhenium, osmium and iridium diborides by mechanochemistry: Synthesis, structure, thermal stability and mechanical properties.
- Creator
-
Xie, Zhilin, Orlovskaya, Nina, Blair, Richard, Gou, Jihua, Raghavan, Seetha, An, Linan, University of Central Florida
- Abstract / Description
-
Borides are implemented in a range of industrial applications due to their unique mechanical, electrical, thermal and catalytic properties. In particular, transition metal diborides are of special interest. In the recent years, borides of rhenium (Re), osmium (Os) and iridium (Ir) have been studied as for their ultra-hardness and superior stiffness. In this dissertation, a mechanochemical method is introduced to produce rhenium diboride (ReB2) powder, a novel hexagonal osmium diboride (h-OsB2...
Show moreBorides are implemented in a range of industrial applications due to their unique mechanical, electrical, thermal and catalytic properties. In particular, transition metal diborides are of special interest. In the recent years, borides of rhenium (Re), osmium (Os) and iridium (Ir) have been studied as for their ultra-hardness and superior stiffness. In this dissertation, a mechanochemical method is introduced to produce rhenium diboride (ReB2) powder, a novel hexagonal osmium diboride (h-OsB2), and iridium boride powders. Densification by Spark Plasma Sintering (SPS), thermal stability and mechanical properties of h-OsB2 were also studied. ReB2 was recently reported to exhibit high hardness and low compressibility, which both are strong functions of its stoichiometry, namely Re to B ratio. Most of the techniques used for ReB2 synthesis reported 1:2.5 Re to B ratio because of the loss of the B during high temperature synthesis. However, as a result of B excess, the amorphous boron, located along the grain boundaries of polycrystalline ReB2, would degrade the ReB2 properties. Therefore, techniques which could allow synthesizing the stoichiometric ReB2 preferably at room temperature are in high demand. ReB2 powder was synthesized at low temperature using mechanochemical route by milling elemental crystalline Re and amorphous B powders in the SPEX 8000 high energy ball mill for 80 hours. The formation of boron and perrhenic acids are also reported after ReB2 powder was exposed to the moist air environment for a twelve month period of time.Hexagonal osmium diboride (h-OsB2), a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction (XRD) indicated the formation of h-OsB2 after 2.5 hours of milling, and the reaction reaches equilibrium after 18 hours of milling. The lattice parameters of the h-OsB2 are a=2.916(&)#197; and c=7.376 (&)#197;, with a P63/mmc space group. Transmission electron microscopy confirmed the appearance of the h-OsB2 phase. The thermal stability of h-OsB2 powder was studied by heating under argon up to 876 (&)deg;C and cooling in vacuo down to -225 (&)deg;C. The oxidation mechanism of h-OsB2 has also been proposed. The hexagonal phase partially converted to the orthorhombic phase (20 wt.%) after spark plasma sintering of h-OsB2 at 1500(&)deg;C and 50MPa for 5 minutes. Hardness and Young's modulus of the h-OsB2 were measured to be 31 (&)#177; 9 GPa and 574 (&)#177; 112 GPa, respectively by nanoindentation method.Prior to this research a number of compounds have been prepared in Ir-B system with lower than 2 boron stoichiometry, and no IrB2 phases have been synthesized experimentally. In this dissertation, three new iridium boride phases, ReB2-type IrB2, AlB2-type IrB2 and IrB have been synthesized with a similar mechanochemical method. The formation of these three phases has been confirmed by both X-ray diffraction (XRD) and transmission electron microscope (TEM) after 30 hours of ball milling and 48 hours of annealing. The IrB2 phases have hexagonal crystal structures and the new IrB phase has an orthorhombic crystal structure. The segregation of iridium from iridium borides' lattices has also been studied by high resolution TEM.
Show less - Date Issued
- 2014
- Identifier
- CFE0005911, ucf:50832
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005911
- Title
- Mechanochemical Synthesis of Fuels from Sustainable Sources Utilizing Solid Catalysts.
- Creator
-
Todd, Jacob, Zhai, Lei, Blair, Richard, Hampton, Michael, Harper, James, Rahman, Talat, University of Central Florida
- Abstract / Description
-
The transition to biofuels as a means of curbing the emissions of greenhouse gases has given rise to several questions such as what to use as the feedstock and how to cost effectively process them.(&)nbsp; The production of bio-derived chemicals presents challenges in synthesis and in use as a drop-in fuel replacement.(&)nbsp; Through the use of mechanochemistry reaction pathways can be utilized that allow the efficient production of biofuels and bioderived chemicals.(&)nbsp; To this end...
Show moreThe transition to biofuels as a means of curbing the emissions of greenhouse gases has given rise to several questions such as what to use as the feedstock and how to cost effectively process them.(&)nbsp; The production of bio-derived chemicals presents challenges in synthesis and in use as a drop-in fuel replacement.(&)nbsp; Through the use of mechanochemistry reaction pathways can be utilized that allow the efficient production of biofuels and bioderived chemicals.(&)nbsp; To this end mechanically driven esterification and transesterification reactions were studied.(&)nbsp; It was found that the acid base properties of solid catalysts was critical to efficient reactions.(&)nbsp; Further investigation into mechanocatalytic reaction resulted in a reaction scheme where glucose can be used as a feedstock for the production of propane from glucose through a retro aldol reaction followed by hydrodeoxygenation.(&)nbsp; The use of mechanochemistry facilitates the efficient synthesis of important energy molecules and allows new reaction pathways to be exploited.(&)nbsp; The efficient production of bio-derived chemicals will reduce our impact on the environment.(&)nbsp;(&)nbsp;
Show less - Date Issued
- 2017
- Identifier
- CFE0006809, ucf:51805
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006809
- Title
- Measuring and Modeling NMR and Emission Spectra to Gain New Insight into Challenging Organic Compounds.
- Creator
-
Powell, Jacob, Harper, James, Campiglia, Andres, Beazley, Melanie, Richardson, David, Blair, Richard, University of Central Florida
- Abstract / Description
-
The advancement of theoretical methods in recent years has allowed the calculation of highly accurate spectroscopic parameters. Comparing these values to the corresponding experimental data can allow molecular structures to be elucidated. This dissertation details the use of experimental and theoretical data from nuclear magnetic resonance (NMR) and fluorescence spectroscopy to determine structure. Herein the NMR focus is on measuring (&) modeling chemical shift anisotropy and one-bond carbon...
Show moreThe advancement of theoretical methods in recent years has allowed the calculation of highly accurate spectroscopic parameters. Comparing these values to the corresponding experimental data can allow molecular structures to be elucidated. This dissertation details the use of experimental and theoretical data from nuclear magnetic resonance (NMR) and fluorescence spectroscopy to determine structure. Herein the NMR focus is on measuring (&) modeling chemical shift anisotropy and one-bond carbon-carbon J-coupling constants (1JCC). The fluorescence analysis models vibrationally resolved fluorescence spectra.Chemical shift anisotropy techniques were used to study two conflicting crystal structures of the n-alkyl fatty acid, lauric acid. These two crystal structures differ only in their COOH conformation. Lattice-including density functional theory (DFT) refinements of each crystal structure failed to match experimental data leading to the proposal of a third crystal structure with a hydrogen disordered COOH moiety. This disorder strengthens the hydrogen bond providing a new rationalization to the long observed non-monotonic melting behavior of fatty acids having even and odd numbers of carbons.The INADEQUATE is a NMR experiment that directly establishes the skeleton of organic compounds by measuring the 1JCC throughout a molecule. The low occurrence of 13C-13C pairs (1 in 10,000) and breaks in connectivity due to the presence of heteroatoms causes challenges to INADEQUATE analysis. Here, the insensitivity problem is overcome using analysis software that automatically processes data and identifies signals, even when they are comparable in magnitude to noise. When combined with DFT 1JCC predictions,configuration and confirmations of the natural products 5-methylmellein and hydroheptelidic acid are elucidated.Vibrationally resolved fluorescence spectra of high molecular weight PAHs can be accurately calculated through time-dependent density functional theory (TD-DFT) methods. Here, the theoretical spectral profiles of certain PAHs are shown to match experimental high- resolution fluorescence spectra acquired at cryogenic temperatures. However, in all cases, theoretical spectra were systematically offset from experimental spectra. To decrease these uncertainties spectra were empirically corrected and an automated scheme employed to match theoretical spectra with all possible experimental spectra. In all cases the theoretical spectra were correctly matched to the experimental spectra.
Show less - Date Issued
- 2017
- Identifier
- CFE0006953, ucf:51680
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006953
- Title
- Fabrication and Study of Graphene-Based Nanocomposites for Sensing and Energy Applications.
- Creator
-
McInnis, Matthew, Zhai, Lei, Yestrebsky, Cherie, Zou, Shengli, Blair, Richard, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
Graphite is an allotrope of carbon made up of atomically thin sheets, each covalently bound together, forming a ?-conjugated network. An individual layer, called graphene, has extraordinary electrical, thermal and physical properties that provide the opportunity for innovating new functional composites. Graphene can be produced directly on a metallic substrate by chemical vapor deposition or by chemical oxidation of graphite, forming a stable aqueous suspension of graphene oxide (GO), which...
Show moreGraphite is an allotrope of carbon made up of atomically thin sheets, each covalently bound together, forming a ?-conjugated network. An individual layer, called graphene, has extraordinary electrical, thermal and physical properties that provide the opportunity for innovating new functional composites. Graphene can be produced directly on a metallic substrate by chemical vapor deposition or by chemical oxidation of graphite, forming a stable aqueous suspension of graphene oxide (GO), which allows for convenient solution processing techniques. For the latter, after thermal or chemical reduction, much of the properties of the starting graphene re-emerge due to the reestablishment of ?-conjugation. The ?-conjugated basal plane of graphene has been shown to influence the crystallization of ?-conjugated polymers, providing thermodynamically strong nucleation sites through the relatively strong ?-? interactions. These polymers can homocrystallize into 1-D filaments, but when nucleated from graphene, the orientation and geometry can be controlled producing hierarchical structures containing an electrical conductor decorated with wires of semi-conducting polymer. The resulting structures and crystallization kinetics of the conjugated polymer, poly(3-hexylthiophene-2,5-diyl) (P3HT) nucleated by graphene was studied. Further, field-effect transistors were developed using graphene as both the electrodes and the polymer crystallization surface to directly grow P3HT nanowires as the active material. This direct crystallization technique lead to higher charge mobility and higher on-off ratios, and this result was interpreted in terms of the morphology and polymer-graphene interface.Besides these thin-film technologies, neat GO suspensions can be lyophilized to produce monolithic, free-standing aerogels and then reduced to produce an electrically conductive porous material with a surface area greater than 1000 m2/g. The present research focuses on functionalizing the aerogel surfaces with metal nanoparticles to increase electrical conductivity and to impart functionality. Functionalization was carried out by adding a metal salt as a precursor and a chelating agent to inhibit GO flocculation. The GO and metal salt were simultaneously reduced to form rGO aerogels homogeneously loaded with metal nanoparticles. The size and distribution of these nanoparticles was controlled by concentration and chelating agent identity and abundance. Optimum aerogel formulations were used as a functioning and reversible conductometric hydrogen gas sensor and as an anode in an asymmetric supercapacitor with excellent properties.
Show less - Date Issued
- 2015
- Identifier
- CFE0006227, ucf:51066
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006227
- Title
- Mechanochemistry for Solid-State Syntheses and Catalysis.
- Creator
-
Restrepo, David, Blair, Richard, Kuebler, Stephen, Miles, Delbert, Clausen, Christian, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Traditional methods of synthesizing inorganic materials, such as hydrothermal, sol-gel, calcination and grinding steps, can typically require use of high temperatures, expensive precursors or use of solvents. Because of the energy-intensive nature or environmental impact these techniques, there is a push, especially from an industrial perspective, to move towards greener approaches. Mechanochemistry is a solvent-free alternative technique that can be used to synthesize a variety of materials...
Show moreTraditional methods of synthesizing inorganic materials, such as hydrothermal, sol-gel, calcination and grinding steps, can typically require use of high temperatures, expensive precursors or use of solvents. Because of the energy-intensive nature or environmental impact these techniques, there is a push, especially from an industrial perspective, to move towards greener approaches. Mechanochemistry is a solvent-free alternative technique that can be used to synthesize a variety of materials under ambient conditions. Due to this, there is an increase in attention towards the use of this approach in both solid-state inorganic and organic chemistry.This dissertation reports the mechanochemical synthesis of a few inorganic materials without the need of using high temperatures or solvents. Additionally, examples are presented in which mechanochemistry is used in conjunction with a secondary technique. This mechanical activation of the precursors lead to a decrease in calcination temperature and reactions times, as well as alteration of properties or unique reaction products. The synthesis of kaolinite, vanadia nanostructures, and spinels were carried out in this fashion. Mechanical activation of the precursors allowed for reduced hydrothermal treatment times in case of both kaolinite and vanadia nanostructures and the spinels are calcined at lower temperature for shorter periods of time. In addition, we report alternative template agents than previously reported for the formation of vanadia nanotubes, and report the formation of nanorods. Choosing the appropriate amine template can alter the structure and size of the material.Isomorphously substituted mixed oxides, kaolinite and spinels (MgAl2O4 and ZnAl2O4) were synthesized through a mechanically assisted process. Kaolinites are treated hydrothermally for 1 week at 250 (&)#186;C to produce an X-ray pure crystalline material. The spinels undergo calcination as low as 500 (&)#186;C to produce a nanocrystalline material. Rare-earth metals and transition metals were used as the substitutional atom. The substituted kaolinites exhibit strong order along the c axis, but less ordering along the a and b axes. Trivalent chromium and trivalent rare-earth metals, such as La, Ce, Pr, Nd, Eu, Gd, Ho, and Er, are used to replace aluminum in the structure. Likewise, divalent and trivalent transition, such as Mn, Ni, Cu and Cr, are used as the substitutional atoms in MgAl2O4 and ZnAl2O4. Cathodoluminescence studies on the substituted Spinel structure show that Mn2+ ions can occupy both the tetrahedral or octahedral holes to give a green and red emission, respectively. On the other hand, Cr3+ ions only occupy the octahedral holes to yield a red emission, similar to that in ruby. These isomorphously substituted materials may have potential applications in catalysis or glaze materials in ceramics.Oxidized graphite, an alternative to graphite oxide and graphene, can be synthesized rapidly by mechanochemical means. Grinding urea hydrogen peroxide adduct with graphite without the need of a solvent produces a product with an oxygen content of 5-15 wt%. The byproducts of this reaction are urea and water. This material is oxidized along the edges of the sheets, allowing it to be hydrophilic while retaining the conductivity. The material can suspend in water and processing allows for films of resistivities between 50 ? cm-2 and 10 k? cm-2. It was determined that the edges are fully oxidized to yield (-)COOH groups. This process offers a scalable, environmentally benign route to large quantities of oxidized graphite.An alternative method for the synthesis of nanostructured vanadia is reported. This process involves mechanical grinding of vanadium pentoxide, V2O5, with an amine template, such as diphenylamine, theophylline, rhodamine 6G and rhodamine, prior to hydrothermal treatment. This allows for the synthesis of VOx nanotubes and nanorods dependent on which template is used. Diphenylamine, theophylline, and rhodamine B produce nanorods. Use of rhodamine 6G produces asymmetric VOx nanorods.In addition to the mixed metals oxides mentioned above, sodium and calcium tantalates are synthesized mechanically. This route does not require the need of elevated temperatures or expensive and hazardous materials. X-ray diffraction analysis of NaTaO3, Ca2Ta2O7, Ca4Ta2O9 and CaTa2O6 shows that these are the only phases detected after 4 h, 10 h, 27 h and 10 h of milling, respectively. During the synthesis of Ca2Ta2O7, an intermediate phase, Ca4Ta2O9, forms within 1 h, which reacts after 5 h to form the desired product. Reference Intensity Ratio analysis shows that the material synthesized mechanically is nanocrystalline Ca2Ta2O7.Nanocrystalline ZrSi2 can also be obtained through mechanochemical synthesis. This method allows for size control and results in crystallites ranging from 9 to 30 nm. Dilution with CaCl2 enables the size control process. A linear relationship exists between the concentration of CaCl2 and the crystallite size. Contrary to a typical self-propagating metathesis reaction, this process does not allow for self-propagation and requires continuous input of mechanical energy to continue. However, this method allows for non-passivated nanoparticles of ZrSi2, which can be incorporated into composites as a reinforcement material for several applications.Hard and ultra-compressible borides, such as ReB2 and OsB2, can be synthesized mechanically. The traditional synthesis of ReB2 requires excess boron due to treatment at high temperatures. This can lead to amorphous boron aggregating at the grain boundaries, which in turn, this would degrade the properties of the material. The mechanochemical approach requires mechanical treatment of Re and B powders in stoichiometric quantities for 80 h. Mechanical synthesis of OsB2 powders requires a 1:3 ratio of Os and B powders. After 12 h of milling time, h-OsB2 begins to form, and is the major phase present after 18 h. The lattice parameters corresponding to the hexagonal OsB2 were determined to be a = b = 2.9047 (&)#197;, c = 7.4500 (&)#197;, ? = ? = 90(&)#186;, ? = 120(&)#186;. Treatment of the OsB2 powder at 1050 (&)#186;C under vacuum for 6 days did not induce a phase change, suggesting the hexagonal phase is very stable.Mechanocatalysis of the depolymerization of cellulose and hydrogenation of olefins over BN are reported as well. Heterogeneous catalysis is difficult to apply to solids, such as cellulose. However, mechanical grinding of kaolin and cellulose allows for the catalysis to occur in the solid state. This process allows for a variety of different biomasses to be used as feedstock without inhibition. Kaolinite was found to be the best acid catalyst due to high surface acidity and its layered structure, allowing for up to 84% conversion of the cellulose to water-soluble compounds. This process allows for reduction of waste, insensitivity of feedstock, multiple product pathways and scalability.Hydrogenation reactions are carried out using transition-metals catalysts. These metals have desirable catalytic properties not seen in main group elements, but there is growing concern over their use. A metal-free heterogeneous hydrogenation catalyst based on frustrated Lewis pairs would significantly reduce the health, environmental, and economic concerns associated with these metal-based catalysts. We report the first metal-free heterogeneous hydrogenation catalyst. Hydrogenation of trans-cinnamic acid is carried out over defect-laden h-BN. The reactor we use is designed to maximize the defects produced in BN sheets. The introduction of defects in BN creates frustrated Lewis pairs. DFT calculations show that the carbon double bond is weakened over boron substitution for nitrogen sites, vacancies of both boron and nitrogen, and Stone-Wales defects.A new method for crystalline germanium deposition occurring at lower temperatures (210-260 (&)#186;C) is reported. This method involves mechanical treatment of the precursors to reduce the particle size. A ground mixture of Ge and CuI are heated under vacuum to synthesize GeI2. In situ disproportionation of this compound at 210 (&)#186;C allows for the deposition of polycrystalline Ge films onto a both glass and polymer substrates. The rate of deposition is found to be 25 ng min-1. The byproducts of this process are GeI2, GeI4 and Cu3Ge, which are valuable precursors for the synthesis of germanium nanostructures and organogermanium compounds.Mechanochemistry is also utilized for the synthesis of trisubstituted pnictides. Mechanochemical treatment of bromobenzene with either Na3Sb or Na3Bi allows for the formation of triphenylstibine or triphenylbismuthine, respectively. The synthesis of the alkali metals pnictide precursors is reported as well. The synthesis of triphenylstibine produces SbPh3 as the major product from the reaction. The synthesis of triphenylbismuthine produces more Wurtz-type coupling products, which are due to the BiPh3 acting as a catalyst. Tributyl and triphenyl analogues are reported as well. The trialkylated analogues for both Sb and Bi produce more Wurtz type coupling products. This would allow for a more cost effective and scalable, alternative methods than what is currently in use today.
Show less - Date Issued
- 2013
- Identifier
- CFE0004741, ucf:49785
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004741
- Title
- Theoretical Studies of Nanostructure Formation and Transport on Surfaces.
- Creator
-
Aminpour, Maral, Rahman, Talat, Stolbov, Sergey, Roldan Cuenya, Beatriz, Blair, Richard, University of Central Florida
- Abstract / Description
-
This dissertation undertakes theoretical and computational research to characterize and understand in detail atomic configurations and electronic structural properties of surfaces and interfaces at the nano-scale, with particular emphasis on identifying the factors that control atomic-scale diffusion and transport properties. The overarching goal is to outline, with examples, a predictive modeling procedure of stable structures of novel materials that, on the one hand, facilitates a better...
Show moreThis dissertation undertakes theoretical and computational research to characterize and understand in detail atomic configurations and electronic structural properties of surfaces and interfaces at the nano-scale, with particular emphasis on identifying the factors that control atomic-scale diffusion and transport properties. The overarching goal is to outline, with examples, a predictive modeling procedure of stable structures of novel materials that, on the one hand, facilitates a better understanding of experimental results, and on the other hand, provide guidelines for future experimental work. The results of this dissertation are useful in future miniaturization of electronic devices, predicting and engineering functional novel nanostructures. A variety of theoretical and computational tools with different degrees of accuracy is used to study problems in different time and length scales. Interactions between the atoms are derived using both ab-initio methods based on Density Functional Theory (DFT), as well as semi-empirical approaches such as those embodied in the Embedded Atom Method (EAM), depending on the scale of the problem at hand. The energetics for a variety of surface phenomena (adsorption, desorption, diffusion, and reactions) are calculated using either DFT or EAM, as feasible. For simulating dynamic processes such as diffusion of ad-atoms on surfaces with dislocations the Molecular Dynamics (MD) method is applied. To calculate vibrational mode frequencies, the infinitesimal displacement method is employed. The combination of non-equilibrium Green's function (NEGF) and DFT is used to calculate electronic transport properties of molecular devices as well as interfaces and junctions.
Show less - Date Issued
- 2013
- Identifier
- CFE0005298, ucf:50504
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005298
- Title
- The Behavior of Cerium Oxide Nanoparticles in Polymer Electrolyte Membranes in Ex-Situ and In-Situ Fuel Cell Durability Tests.
- Creator
-
Pearman, Benjamin, Hampton, Michael, Blair, Richard, Clausen, Christian, Seal, Sudipta, Campiglia, Andres, Yestrebsky, Cherie, Mohajeri, Nahid, University of Central Florida
- Abstract / Description
-
Fuel cells are known for their high efficiency and have the potential to become a major technology for producing clean energy, especially when the fuel, e.g. hydrogen, is produced from renewable energy sources such as wind or solar. Currently, the two main obstacles to wide-spread commercialization are their high cost and the short operational lifetime of certain components.Polymer electrolyte membrane (PEM) fuel cells have been a focus of attention in recent years, due to their use of...
Show moreFuel cells are known for their high efficiency and have the potential to become a major technology for producing clean energy, especially when the fuel, e.g. hydrogen, is produced from renewable energy sources such as wind or solar. Currently, the two main obstacles to wide-spread commercialization are their high cost and the short operational lifetime of certain components.Polymer electrolyte membrane (PEM) fuel cells have been a focus of attention in recent years, due to their use of hydrogen as a fuel, their comparatively low operating temperature and flexibility for use in both stationary and portable (automotive) applications.Perfluorosulfonic acid membranes are the leading ionomers for use in PEM hydrogen fuel cells. They combine essential qualities, such as high mechanical and thermal stability, with high proton conductivity. However, they are expensive and currently show insufficient chemical stability towards radicals formed during fuel cell operation, resulting in degradation that leads to premature failure. The incorporation of durability improving additives into perfluorosulfonic acid membranes is discussed in this work.Cerium oxide (ceria) is a well-known radical scavenger that has been used in the biological and medical field. It is able to quench radicals by facilely switching between its Ce(III) and Ce(IV) oxidation states.In this work, cerium oxide nanoparticles were added to perfluorosulfonic acid membranes and subjected to ex-situ and in-situ accelerated durability tests.The two ceria formulations, an in-house synthesized and commercially available material, were found to consist of crystalline particles of 2 (-) 5 nm and 20 (-) 150 nm size, respectively, that did not change size or shape when incorporated into the membranes.At higher temperature and relative humidity in gas flowing conditions, ceria in membranes is found to be reduced to its ionic form by virtue of the acidic environment. In ex-situ Fenton testing, the inclusion of ceria into membranes reduced the emission of fluoride, a strong indicator of degradation, by an order of magnitude with both liquid and gaseous hydrogen peroxide. In open-circuit voltage (OCV) hold fuel cell testing, ceria improved durability, as measured by several parameters such as OCV decay rate, fluoride emission and cell performance, over several hundred hours and influenced the formation of the platinum band typically found after durability testing.
Show less - Date Issued
- 2012
- Identifier
- CFE0004789, ucf:49731
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004789