Current Search: Chang, Zenghu (x)
View All Items
- Title
- Development of a Tabletop Coherent Soft X-ray Source.
- Creator
-
Kong, Hanfu, Chang, Zenghu, Yu, Xiaoming, Neupane, Madhab, University of Central Florida
- Abstract / Description
-
The goal of this thesis is to design a tabletop coherent soft X-ray source for attosecond high resolution imaging. We collect signals from gas cells with different length and lens with different focal length. A spectrometer with a grating and a CCD camera is applied to observe and measure the spectrum of the X-ray attosecond pulses. This thesis first introduces the theory background of ultrafast lasers, then mainly explains high harmonic generation, which is the key method for attosecond...
Show moreThe goal of this thesis is to design a tabletop coherent soft X-ray source for attosecond high resolution imaging. We collect signals from gas cells with different length and lens with different focal length. A spectrometer with a grating and a CCD camera is applied to observe and measure the spectrum of the X-ray attosecond pulses. This thesis first introduces the theory background of ultrafast lasers, then mainly explains high harmonic generation, which is the key method for attosecond pulses generation, subsequently presents the experiment system and analyzes the results from the experiment, also compares different combinations of parameters of the devices.
Show less - Date Issued
- 2018
- Identifier
- CFE0007407, ucf:52732
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007407
- Title
- Generation and Characterization of Isolated Attosecond Pulse in the Soft X-ray Regime.
- Creator
-
Li, Jie, Chang, Zenghu, Delfyett, Peter, Vanstryland, Eric, Chen, Bo, University of Central Florida
- Abstract / Description
-
The observation of any atomic and molecular dynamics requires a probe that has a timescale comparable to the dynamics itself. Ever since the invention of laser, the temporal duration of the laser pulse has been incrementally reduced from several nanoseconds to just attoseconds. Picosecond and femtosecond laser pulses have been widely used to study molecular rotation and vibration. In 2001, the first single isolated attosecond pulse (1 attosecond = 10^-18 seconds.) was demonstrated. Since this...
Show moreThe observation of any atomic and molecular dynamics requires a probe that has a timescale comparable to the dynamics itself. Ever since the invention of laser, the temporal duration of the laser pulse has been incrementally reduced from several nanoseconds to just attoseconds. Picosecond and femtosecond laser pulses have been widely used to study molecular rotation and vibration. In 2001, the first single isolated attosecond pulse (1 attosecond = 10^-18 seconds.) was demonstrated. Since this breakthrough, (")attoscience(") has become a hot topic in ultrafast physics. Attosecond pulses typically have span between EUV to X-ray photon energies and sub-femtosecond pulse duration. It becomes an ideal tool for experimentalists to study ultrafast electron dynamics in atoms, molecules and condensed matter. The conventional scheme for generating attosecond pulses is focusing an intense femtosecond laser pulse into inert gases. The bound electrons are ionized into continuum through tunneling ionization under the strong electrical field. After ionization, the free electron will be accelerated by the laser field away from the parent ion and then recombined with its parent ion and releases its kinetic energy as a photon burst that lasts for a few hundred attoseconds. According to the classical (")three-step model("), high order harmonic will have a higher cutoff photon energy when driven by a longer wavelength laser field. Compared to Ti:sapphire lasers center at a wavelength of 800 nm, an optical parametric amplifier could offer a broad bandwidth at infrared range, which could support few cycle pulses for driving high harmonic generation in the X-ray spectrum range. In this work, an optical parametric chirped-pulse amplification system was developed to deliver CEP-stable 3-mJ, 12-fs pulses centered at 1.7 micron. We implement a chirped-pump technique to phase match the board parametric amplification bandwidth with high conversion efficiency. Using such a laser source, isolated attosecond pulses with photon exceeding 300 eV are achieved by applying the polarization gating technique at 1.7 micron. The intrinsic positive chirp of the attosecond pulses is measured by the attosecond streak camera and retrieved with our PROOF technique. Sn metal filters with negative dispersion were chosen to compensate the intrinsic attochirp. As a result, isolated 53-attosecond soft x-ray pulses are achieved. Such water window attosecond source will be a powerful tool for studying charge distribution/migration in bio-molecules and will bring opportunities to study high field physics or attochemistry.
Show less - Date Issued
- 2018
- Identifier
- CFE0007040, ucf:52007
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007040
- Title
- Towards High-Flux Isolated Attosecond Pulses with a 200 TW CPA.
- Creator
-
Cunningham, Eric, Chang, Zenghu, Saleh, Bahaa, Soileau, MJ, Saha, Haripada, University of Central Florida
- Abstract / Description
-
Attosecond pulses have been developed as a means for investigating phenomena that proceed on the order of the atomic unit of time (24 as). Unfortunately, these extreme ultraviolet (XUV) pulses by themselves contain too few photons to initiate nonlinear dynamics or dress states in an attosecond pump--attosecond probe scheme. As a result, most attosecond experiments thus far have featured complementary near infrared (NIR) femtosecond lasers for instigating electron dynamics. In order to access...
Show moreAttosecond pulses have been developed as a means for investigating phenomena that proceed on the order of the atomic unit of time (24 as). Unfortunately, these extreme ultraviolet (XUV) pulses by themselves contain too few photons to initiate nonlinear dynamics or dress states in an attosecond pump--attosecond probe scheme. As a result, most attosecond experiments thus far have featured complementary near infrared (NIR) femtosecond lasers for instigating electron dynamics. In order to access the benefits of all-attosecond measurements and open attosecond physics to new fields of exploration, the photon flux of these pulses must be increased.One way to boost the attosecond pulse energy is to scale up the energy of the NIR pulse responsible for driving high-harmonic generation (HHG). With generalized double optical gating (GDOG), isolated attosecond pulses can be generated with multi-cycle laser systems, wherein the pulse energy can be boosted more easily than in the few-cycle laser systems required by other gating methods. At the Institute for the Frontier of Attosecond Science and Technology (IFAST), this scalability was demonstrated using a 350 mJ, 15 fs (10 TW) Ti:sapphire laser, which was used to generate a 100 nJ XUV continuum. This represented an order-of-magnitude improvement over typical attosecond pulse energies achievable by millijoule-level few-cycle lasers.To obtain the microjoule-level attosecond pulse energy required for performing all-attosecond experiments, the attosecond flux generated by the IFAST 10 TW system was still deficient by an order of magnitude. To this end, the laser system was upgraded to provide joule-level output energies while maintaining pulse compression to 15 fs, with a targeted peak power of 200 TW. This was accomplished by adding an additional Ti:sapphire amplifier to the existing 10 TW system and implementing a new pulse compression system to accommodate the higher pulse energy.Because this system operated at a 10 Hz repetition rate, stabilization of the carrier-envelope phase (CEP) -- important for controlling attosecond pulse production -- could not be achieved using traditional methods. Therefore, a new scheme was developed, demonstrating the first-ever control of CEP in a chirped-pulse amplifier (CPA) at low repetition rates.Finally, a new variation of optical gating was proposed as a way to improve the efficiency of the attosecond pulse generation process. This method was also predicted to allow for the generation of isolated attosecond pulses with longer driving laser pulses, as well as the extension of the high-energy photon cut-off of the XUV continuum.
Show less - Date Issued
- 2015
- Identifier
- CFE0005938, ucf:50804
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005938
- Title
- Generation of high-flux attosecond pulses and towards attosecond-attosecond pump-probe experiments.
- Creator
-
Wang, Yang, Chang, Zenghu, Hagan, David, Wu, Shintson, Saha, Haripada, University of Central Florida
- Abstract / Description
-
At present, the energy of a single isolated attosecond pulse is limited to nanojoule levels. As a result, an intense femtosecond pulse has always been used in combination with a weak attosecond pulse in time-resolved experiments. To reach the goal of conducting true attosecond pump-attosecond probe experiments, a high flux laser source has been developed that can potentially deliver microjoule level isolated attosecond pulses in the 50 eV range, and a unique experimental end station has been...
Show moreAt present, the energy of a single isolated attosecond pulse is limited to nanojoule levels. As a result, an intense femtosecond pulse has always been used in combination with a weak attosecond pulse in time-resolved experiments. To reach the goal of conducting true attosecond pump-attosecond probe experiments, a high flux laser source has been developed that can potentially deliver microjoule level isolated attosecond pulses in the 50 eV range, and a unique experimental end station has been fabricated and implemented that can provide precision control of the attosecond-attosecond pump-probe pulses. In order to scale up the attosecond flux, a unique Ti:-Sapphire laser system with a three-stage amplifier that delivers pulses with a 2 J energy at a 10 Hz repetition rate was designed and built. The broadband pulse spectrum covering from 700 nm to 900 nm was generated, supporting a pulse duration of 12 fs. The high flux high-order harmonics were generated in a gas tube filled with argon by a loosely focused geometry under a phase-matching condition. The wavefront distortions for the driving laser were corrected by a deformable mirror with a Shack-Hartmann sensor to significantly improve the extreme ultraviolet radiation conversion efficiency due to the excellent beam profile at focus. A high-damage-threshold beam splitter is demonstrated to eliminate energetic driving laser pulses from high-order harmonics. The extreme ultraviolet pulse energy is measured to be 0.3 microjoule at the exit of the argon gas target. The experimental facilities developed will lead to the generation of microjoule level isolated attosecond pulses and the demonstration of true atto pump-atto probe experiments in near future. Finally, in experiment, we show the first demonstration of carrier-envelope phase controlled filamentation in air using millijoule-level few-cycle mid-infrared laser pulses.
Show less - Date Issued
- 2017
- Identifier
- CFE0006926, ucf:51688
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006926
- Title
- Predictive Modeling of Functional Materials for Catalytic and Sensor Applications.
- Creator
-
Rawal, Takat, Rahman, Talat, Chang, Zenghu, Leuenberger, Michael, Zou, Shengli, University of Central Florida
- Abstract / Description
-
The research conducted in my dissertation focuses on theoretical and computational studies of the electronic and geometrical structures, and the catalytic and optical properties of functional materials in the form of nano-structures, extended surfaces, two-dimensional systems and hybrid structures. The fundamental aspect of my research is to predict nanomaterial properties through ab-initio calculations using methods such as quantum mechanical density functional theory (DFT) and kinetic Monte...
Show moreThe research conducted in my dissertation focuses on theoretical and computational studies of the electronic and geometrical structures, and the catalytic and optical properties of functional materials in the form of nano-structures, extended surfaces, two-dimensional systems and hybrid structures. The fundamental aspect of my research is to predict nanomaterial properties through ab-initio calculations using methods such as quantum mechanical density functional theory (DFT) and kinetic Monte Carlo simulation, which help rationalize experimental observations, and ultimately lead to the rational design of materials for the electronic and energy-related applications. Focusing on the popular single-layer MoS2, I first show how its hybrid structure with 29-atom transition metal nanoparticles (M29 where M=Cu, Ag, and Au) can lead to composite catalysts suitable for oxidation reactions. Interestingly, the effect is found to be most pronounced for Au29 when MoS2 is defect-laden (S vacancy row). Second, I show that defect-laden MoS2 can be functionalized either by deposited Au nanoparticles or when supported on Cu(111) to serve as a cost-effective catalyst for methanol synthesis via CO hydrogenation reactions. The charge transfer and electronic structural changes in these sub systems lead to the presence of 'frontier' states near the Fermi level, making the systems catalytically active. Next, in the emerging area of single metal atom catalysis, I provide rationale for the viability of single Pd sites stabilized on ZnO(101 ?0) as the active sites for methanol partial oxidation, an important reaction for the production of H2. We trace its excellent activity to the modified electronic structure of the single Pd site as well as neighboring Zn cationic sites. With the DFT-calculated activation energy barriers for a large set of reactions, we perform ab-initio kMC simulations to determine the selectivity of the products (CO2 and H2). These findings offer an opportunity for maximizing the efficiency of precious metal atoms, and optimizing their activity and selectivity (for desired products). In related work on extended surfaces while trying to explain the Scanning Tunneling Microscopy images observed by our experimental collaborators, I discovered a new mechanism involved in the process of Ag vacancy formation on Ag(110), in the presence of O atoms which leads to the reconstruction and eventually oxidation of the Ag surface. In a similar vein, I was able to propose a mechanism for the orange photoluminescence (PL), observed by our experimental collaborators, of a coupled system of benzylpiperazine (BZP) molecule and iodine on a copper surface. Our results show that the adsorbed BZP and iodine play complimentary roles in producing the PL in the visible range. Upon photo-excitation of the BZP-I/CuI(111) system, excited electrons are transferred into the conduction band (CB) of CuI, and holes are trapped by the adatoms. The relaxation of holes into BZP HOMO is facilitated by its realignment. Relaxed holes subsequently recombine with excited electrons in the CB of the CuI film, thus producing a luminescence peak at ~2.1 eV. These results can be useful for forensic applications in detecting illicit substances.
Show less - Date Issued
- 2017
- Identifier
- CFE0006783, ucf:51813
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006783
- Title
- Attosecond Transient Absorption Spectroscopy of Atoms and Molecules.
- Creator
-
Cheng, Yan, Chang, Zenghu, Saha, Haripada, Chow, Lee, Vanstryland, Eric, University of Central Florida
- Abstract / Description
-
One of the most fundamental goals of attosecond science is to observe and to control the dynamic evolutions of electrons in matter. The attosecond transient absorption spectroscopy is a powerful tool to utilize attosecond pulse to measure electron dynamics in quantum systems directly. In this work, isolated single attosecond pulses are used to probe electron dynamics in atoms and to study dynamics in hydrogen molecules using the attosecond transient absorption spectroscopy technique. The...
Show moreOne of the most fundamental goals of attosecond science is to observe and to control the dynamic evolutions of electrons in matter. The attosecond transient absorption spectroscopy is a powerful tool to utilize attosecond pulse to measure electron dynamics in quantum systems directly. In this work, isolated single attosecond pulses are used to probe electron dynamics in atoms and to study dynamics in hydrogen molecules using the attosecond transient absorption spectroscopy technique. The target atom/molecule is first pumped to excited states and then probed by a subsequent attosecond extreme ultraviolet (XUV) pulse or by a near infrared (NIR) laser pulse. By measuring the absorbed attosecond XUV pulse spectrum, the ultrafast electron correlation dynamics can be studied in real time. The quantum processes that can be studied using the attosecond transient absorption spectroscopy include the AC stark shift, multi-photon absorption, intermediate states of atoms, autoionizing states, and transitions of vibrational states in molecules. In all experiments, the absorption changes as a function of the time delay between the attosecond XUV probe pulse and the dressing NIR laser pulse, on a time scale of sub-cycle laser period, which reveals attosecond electron dynamics. These experiments demonstrate that the attosecond transient absorption spectroscopy can be performed to study and control electronic and nuclear dynamics in quantum systems with high temporal and spectral resolution, and it opens door for the study of electron dynamics in large molecules and other more complex systems.
Show less - Date Issued
- 2015
- Identifier
- CFE0006284, ucf:51595
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006284
- Title
- Characterization and Application of Isolated Attosecond Pulses.
- Creator
-
Chini, Michael, Chang, Zenghu, Saha, Haripada, Chow, Lee, Schulzgen, Axel, University of Central Florida
- Abstract / Description
-
Tracking and controlling the dynamic evolution of matter under the influence of external fields is among the most fundamental goals of physics. In the microcosm, the motion of electrons follows the laws of quantum mechanics and evolves on the timescale set by the atomic unit of time, 24 attoseconds. While only a few time-dependent quantum mechanical systems can be solved theoretically, recent advances in the generation, characterization, and application of isolated attosecond pulses and few...
Show moreTracking and controlling the dynamic evolution of matter under the influence of external fields is among the most fundamental goals of physics. In the microcosm, the motion of electrons follows the laws of quantum mechanics and evolves on the timescale set by the atomic unit of time, 24 attoseconds. While only a few time-dependent quantum mechanical systems can be solved theoretically, recent advances in the generation, characterization, and application of isolated attosecond pulses and few-cycle femtosecond lasers have given experimentalists the necessary tools for dynamic measurements on these systems. However, pioneering studies in attosecond science have so far been limited to the measurement of free electron dynamics, which can in most cases be described approximately using classical mechanics. Novel tools and techniques for studying bound states of matter are therefore desired to test the available theoretical models and to enrich our understanding of the quantum world on as-yet unprecedented timescales.In this work, attosecond transient absorption spectroscopy with ultrabroadband attosecond pulses is presented as a technique for direct measurement of electron dynamics in quantum systems, demonstrating for the first time that the attosecond transient absorption technique allows for state-resolved and simultaneous measurement of bound and continuum state dynamics. The helium atom is the primary target of the presented studies, owing to its accessibility to theoretical modeling with both ab initio simulations and to model systems with reduced dimensionality. In these studies, ultrafast dynamics (-) on timescales shorter than the laser cycle (-) are observed in prototypical quantum mechanical processes such as the AC Stark and ponderomotive energy level shifts, Rabi oscillations and electromagnetically-induced absorption and transparency, and two-color multi-photon absorption to (")dark(") states of the atom. These features are observed in both bound states and quasi-bound autoionizing states of the atom. Furthermore, dynamic interference oscillations, corresponding to quantum path interferences involving bound and free electronic states of the atom, are observed for the first time in an optical measurement. These first experiments demonstrate the applicability of attosecond transient absorption spectroscopy with ultrabroadband attosecond pulses to the study and control of electron dynamics in quantum mechanical systems with high fidelity and state selectivity. The technique is therefore ideally suited for the study of charge transfer and collective electron motion in more complex systems.The transient absorption studies on atomic bound states require ultrabroadband attosecond pulses ? attosecond pulses with large spectral bandwidth compared to their central frequency. This is due to the fact that the bound states in which we are interested lie only 15-25 eV above the ground state, so the central frequency of the pulse should lie in this range. On the other hand, the bandwidth needed to generate an isolated 100 as pulse exceeds 18 eV (-) comparable to or even larger than the central frequency. However, current methods for characterizing attosecond pulses require that the attosecond pulse spectrum bandwidth is small compared to its central frequency, known as the central momentum approximation. We therefore explore the limits of attosecond pulse characterization using the current technology and propose a novel method for characterizing ultrabroadband attosecond pules, which we term PROOF (phase retrieval by omega oscillation filtering). We demonstrate the PROOF technique with both simulated and experimental data, culminating in the characterization of a world-record-breaking 67 as pulse.
Show less - Date Issued
- 2012
- Identifier
- CFE0004781, ucf:49802
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004781
- Title
- High flux isolated attosecond pulse generation.
- Creator
-
Wu, Yi, Chang, Zenghu, Richardson, Martin, Christodoulides, Demetrios, Rahman, Talat, University of Central Florida
- Abstract / Description
-
This thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory.First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light...
Show moreThis thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory.First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light pulses from a gas filled hollow core fiber. It is the highest energy level ever achieved by a broadband pulse in a chirped pulse amplifier up to the current date.Second, using this laser as a driving laser source, the generalized double optical gating method is employed to generate isolated attosecond pulses. Detailed gate width analysis of the ellipticity dependent pulse were performed. Calculation of electron light interaction dynamics on the atomic level was carried out to demonstrate the mechanism of isolated pulse generation.Third, a complete diagnostic apparatus was built to extract and analyze the generated attosecond pulse in spectral domain. The result confirms that an extreme ultraviolet super continuum supporting 230 as isolated attosecond pulses at 35 eV was generated using the generalized double optical gating technique. The extreme ultraviolet pulse energy was ~100 nJ at the exit of the argon gas target.
Show less - Date Issued
- 2013
- Identifier
- CFE0005075, ucf:49949
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005075
- Title
- Femtosecond Filament Interaction as a Probe for Molecular Alignment.
- Creator
-
McKee, Erik, Richardson, Martin, Baudelet, Matthieu, Chang, Zenghu, University of Central Florida
- Abstract / Description
-
Femtosecond laser filamentation is a highly nonlinear propagation mode. When a laser pulse propagates with a peak power exceeding a critical value Pcr (5 GW at 800 nm in air), the Kerr effect tends to collapse the beam until the intensity is high enough to ionize the medium, giving rise to plasma defocusing. A dynamic competition between these two effects takes place leaving a thin and weakly ionized plasma channel in the trail of the pulse. When an ultrafast laser pulse interacts with...
Show moreFemtosecond laser filamentation is a highly nonlinear propagation mode. When a laser pulse propagates with a peak power exceeding a critical value Pcr (5 GW at 800 nm in air), the Kerr effect tends to collapse the beam until the intensity is high enough to ionize the medium, giving rise to plasma defocusing. A dynamic competition between these two effects takes place leaving a thin and weakly ionized plasma channel in the trail of the pulse. When an ultrafast laser pulse interacts with molecules, it will align them, spinning them about their axis of polarization. As the quantum rotational wave packet relaxes, the molecules will experience periodic field-free alignment. Recent work has demonstrated the effect of molecular alignment on laser filamentation of ultra-short pulses. Revival of the molecular alignment can modify filamentation parameters as it can locally modify the refractive index and the ionization rate. In this thesis, we demonstrate with simulations and experiments that these changes in the filament parameters (collapse distance and filament plasma length) can be used to probe molecular alignment in CO2.
Show less - Date Issued
- 2013
- Identifier
- CFE0005033, ucf:50000
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005033
- Title
- Generation and characterization of sub-70 isolated attosecond pulses.
- Creator
-
Zhang, Qi, Chang, Zenghu, Delfyett, Peter, Gaume, Romain, Saha, Haripada, University of Central Florida
- Abstract / Description
-
Dynamics occurring on microscopic scales, such as electronic motion inside atoms and molecules, are governed by quantum mechanics. However, the Schr(&)#246;dinger equation is usually too complicated to solve analytically for systems other than the hydrogen atom. Even for some simple atoms such as helium, it still takes months to do a full numerical analysis. Therefore, practical problems are often solved only after simplification. The results are then compared with the experimental outcome in...
Show moreDynamics occurring on microscopic scales, such as electronic motion inside atoms and molecules, are governed by quantum mechanics. However, the Schr(&)#246;dinger equation is usually too complicated to solve analytically for systems other than the hydrogen atom. Even for some simple atoms such as helium, it still takes months to do a full numerical analysis. Therefore, practical problems are often solved only after simplification. The results are then compared with the experimental outcome in both the spectral and temporal domain. For accurate experimental comparison, temporal resolution on the attosecond scale is required. This had not been achieved until the first demonstration of the single attosecond pulse in 2001. After this breakthrough, (")attophysics(") immediately became a hot field in the physics and optics community. While the attosecond pulse has served as an irreplaceable tool in many fundamental research studies of ultrafast dynamics, the pulse generation process itself is an interesting topic in the ultrafast field. When an intense femtosecond laser is tightly focused on a gaseous target, electrons inside the neutral atoms are ripped away through tunneling ionization. Under certain circumstances, the electrons are able to reunite with the parent ions and release photon bursts lasting only tens to hundreds of attoseconds. This process repeats itself every half cycle of the driving pulse, generating a train of single attosecond pulses which lasts longer than one femtosecond. To achieve true temporal resolution on the attosecond time scale, single isolated attosecond pulses are required, meaning only one attosecond pulse can be produced per driving pulse.Up to now, there are only a few methods which have been demonstrated experimentally to generate isolated attosecond pulses. Pioneering work generated single attosecond pulse using a carrier-envelope phase-stabilized 3.3 fs laser pulse, which is out of reach for most research groups. An alternative method termed as polarization gating generated single attosecond pulses with 5 fs driving pulses, which is still difficult to achieve experimentally. Most recently, a new technique termed as Double Optical Gating (DOG) was developed in our group to allow the generation of single attosecond pulse with longer driving pulse durations. For example, isolated 150 as pulses were demonstrated with a 25 fs driving laser directly from a commercially-available Ti:Sapphire amplifier. Isolated attosecond pulses as short as 107 as have been demonstrated with the DOG scheme before this work. Here, we employ this method to shorten the pulse duration even further, demonstrating world-record isolated 67 as pulses. Optical pulses with attosecond duration are the shortest controllable process up to now and are much faster than the electron response times in any electronic devices. In consequence, it is also a challenge to characterize attosecond pulses experimentally, especially when they feature a broadband spectrum. Similar challenges have previously been met in characterizing femtosecond laser pulses, with many schemes already proposed and well-demonstrated experimentally. Similar schemes can be applied in characterizing attosecond pulses with narrow bandwidth. The limitation of these techniques is presented here, and a method recently developed to overcome those limitations is discussed. At last, several experimental advances toward the characterization of the isolated 25 as pulses, which is one atomic unit time, are discussed briefly.
Show less - Date Issued
- 2014
- Identifier
- CFE0005450, ucf:50375
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005450
- Title
- THEORETICAL AND NUMERICAL STUDIES OF PHASE TRANSITIONS AND ERROR THRESHOLDS IN TOPOLOGICAL QUANTUM MEMORIES.
- Creator
-
Jouzdani, Pejman, Mucciolo, Eduardo, Chang, Zenghu, Leuenberger, Michael, Abouraddy, Ayman, University of Central Florida
- Abstract / Description
-
This dissertation is the collection of a progressive research on the topic of topological quantum computation and information with the focus on the error threshold of the well-known models such as the unpaired Majorana, the toric code, and the planar code.We study the basics of quantum computation and quantum information, and in particular quantum error correction. Quantum error correction provides a tool for enhancing the quantum computation fidelity in the noisy environment of a real world....
Show moreThis dissertation is the collection of a progressive research on the topic of topological quantum computation and information with the focus on the error threshold of the well-known models such as the unpaired Majorana, the toric code, and the planar code.We study the basics of quantum computation and quantum information, and in particular quantum error correction. Quantum error correction provides a tool for enhancing the quantum computation fidelity in the noisy environment of a real world. We begin with a brief introduction to stabilizer codes. The stabilizer formalism of the theory of quantum error correction gives a well-defined description of quantum codes that is used throughout this dissertation. Then, we turn our attention to a quite new subject, namely, topological quantum codes. Topological quantum codes take advantage of the topological characteristics of a physical many-body system. The physical many-body systems studied in the context of topological quantum codes are of two essential natures: they either have intrinsic interaction that self-corrects errors, or are actively corrected to be maintainedin a desired quantum state. Examples of the former are the toric code and the unpaired Majorana, while an example for the latter is the surface code.A brief introduction and history of topological phenomena in condensed matter is provided. The unpaired Majorana and the Kitaev toy model are briefly explained. Later we introduce a spin model that maps onto the Kitaev toy model through a sequence of transformations. We show how this model is robust and tolerates local perturbations. The research on this topic, at the time of writing this dissertation, is still incomplete and only preliminary results are represented.As another example of passive error correcting codes with intrinsic Hamiltonian, the toric code is introduced. We also analyze the dynamics of the errors in the toric code known as anyons. We show numerically how the addition of disorder to the physical system underlying the toric code slows down the dynamics of the anyons. We go further and numerically analyze the presence of time-dependent noise and the consequent delocalization of localized errors.The main portion of this dissertation is dedicated to the surface code. We study the surface code coupled to a non-interacting bosonic bath. We show how the interaction between the code and the bosonic bath can effectively induce correlated errors. These correlated errors may be corrected up to some extend. The extension beyond which quantum error correction seems impossible is the error threshold of the code. This threshold is analyzed by mapping the effective correlated error model onto a statistical model. We then study the phase transition in the statistical model. The analysis is in two parts. First, we carry out derivation of the effective correlated model, its mapping onto a statistical model, and perform an exact numerical analysis. Second, we employ a Monte Carlo method to extend the numerical analysis to large system size.We also tackle the problem of surface code with correlated and single-qubit errors by an exact mapping onto a two-dimensional Ising model with boundary fields. We show how the phase transition point in one model, the Ising model, coincides with the intrinsic error threshold of the other model, the surface code.
Show less - Date Issued
- 2014
- Identifier
- CFE0005512, ucf:50314
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005512
- Title
- Phase-locking Stability of a Quasi-single-cycle Pulse.
- Creator
-
Bodnar, Nathan, Richardson, Martin, Chang, Zenghu, Delfyett, Peter, University of Central Florida
- Abstract / Description
-
There is increasing interest in the generation of very short laser pulses, even down to attosecond (10-18 s) durations. Laser systems with femtosecond pulse durations are needed for these applications. For many of these applications, positioning of the maximum electric field within the pulse envelope can affect the outcome. The peak of the electric field relative to the peak of the pulse is called the Carrier Envelope Phase (CEP). Controlling the position of the electric field becomes more...
Show moreThere is increasing interest in the generation of very short laser pulses, even down to attosecond (10-18 s) durations. Laser systems with femtosecond pulse durations are needed for these applications. For many of these applications, positioning of the maximum electric field within the pulse envelope can affect the outcome. The peak of the electric field relative to the peak of the pulse is called the Carrier Envelope Phase (CEP). Controlling the position of the electric field becomes more important when pulse duration approaches single-cycle.This thesis focuses on the stabilization of a quasi-single-cycle laser facility. Improvements to this already-established laser facility, HERACLES (High Energy, Repetition rate Adjustable, Carrier-Locked-to-Envelope System) described in this thesis include a stabilized pump line and the improvement in CEP stabilization electronics. HERACLES is built upon an Optical Parametric Chirped Pulse Amplification (OPCPA) architecture. This architecture uses Optical Parametric Amplification (OPA) as the gain material to increase the output energy of the system. OPA relies on a nonlinear process to generate high gain (106) with ultra-wide bandwidth. Instabilities in the OPA driving pump energy can create dynamically fluctuations in the final OPCPA output energy. To reduce these fluctuations two key upgrades were implemented on the pump beam. Both were major improvements in the stability. Firstly, an improved regenerative amplifier design reduced beam pointing fluctuations. Secondly, the addition of a pump monitoring system with feedback-control eliminated long-term power drifts. Both enhanced the OPA pulse-to-pulse and long-term stability.To improve the stability in measuring CEP drifts, modification of the feedback electronics was needed. The modification consisted of integrating noise reduction electronics. This novel noise reducer uses a similar process to a super-heterodyne receiver. The noise reducer resulted in 60 dB reduction of out-of-band noise. This led to increased signal quality with cleaner amplification of weaker signals. The enhanced signal quality led to more reliable long-term locking. The synthetically increased signal-to-noise ratio allows locking of the CEP frequency below the typically requirements. This integration allows relaxed constraints on the laser systems.The optics and electronics of a high-power, quasi-single cycle laser facility were improved. This thesis included the stabilization of the pump line and the stabilization of the CEP. This work allows for new long-duration experiments.
Show less - Date Issued
- 2013
- Identifier
- CFE0004654, ucf:49908
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004654
- Title
- Design and Engineering of Ultrafast Amplifier Systems.
- Creator
-
Webb, Benjamin, Richardson, Martin, Chang, Zenghu, Delfyett, Peter, Gaume, Romain, Shah, Lawrence, Klemm, Richard, University of Central Florida
- Abstract / Description
-
Recently, the design and engineering of ultrafast laser systems have led to an extraordinary increase in laser power and performance which have brought about advances in many fields such as medicine, material processing, communications, remote sensing, spectroscopy, nonlinear optics, and atomic physics. In this work, several ultrafast amplification techniques -- including chirped-pulse amplification (CPA), optical parametric chirped-pulse amplification (OPCPA), and divided-pulse amplification...
Show moreRecently, the design and engineering of ultrafast laser systems have led to an extraordinary increase in laser power and performance which have brought about advances in many fields such as medicine, material processing, communications, remote sensing, spectroscopy, nonlinear optics, and atomic physics. In this work, several ultrafast amplification techniques -- including chirped-pulse amplification (CPA), optical parametric chirped-pulse amplification (OPCPA), and divided-pulse amplification (DPA) -- are described and demonstrated in the design and construction of two ultrafast laser facilities. An existing Ti:Sapphire laser system was completely redesigned with an increased power of 10 TW for experiments capable of generating hundreds of laser filaments in ordered arrays. The performance of DPA above the Joule-level was investigated in a series of experiments utilizing various DPA schemes with gain-saturated amplifiers at high pulse energy. A new high energy OPCPA facility has been designed and its pump laser system constructed, utilizing the technique of DPA for the first time in a flashlamp-pumped amplifier chain and with a record combined energy of 5 Joules in a 230 ps pulse duration. The demonstrated OPCPA pump performance will allow for the generation of 50 TW quasi-single cycle 5 fs pulses at 2.5 Hz from a table-top OPCPA system.
Show less - Date Issued
- 2016
- Identifier
- CFE0006547, ucf:51349
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006547
- Title
- High power fiber lasers and fiber devices.
- Creator
-
Sanjabieznaveh, Zeinab, Amezcua Correa, Rodrigo, Chang, Zenghu, Argenti, Luca, Richardson, Martin, Schulzgen, Axel, University of Central Florida
- Abstract / Description
-
Fiber lasers and fiber amplifiers have experienced considerable improvements in recent years and demonstrated remarkable power scalability. However, due to high optical intensity in the core, the performance of high power fiber lasers is limited by detrimental nonlinear processes, such as four-wave mixing, self-phase modulation, stimulated Brillouin scattering, and stimulated Raman scattering. To mitigate nonlinear effects, very large mode area (LMA) fibers, which exhibit a mode field...
Show moreFiber lasers and fiber amplifiers have experienced considerable improvements in recent years and demonstrated remarkable power scalability. However, due to high optical intensity in the core, the performance of high power fiber lasers is limited by detrimental nonlinear processes, such as four-wave mixing, self-phase modulation, stimulated Brillouin scattering, and stimulated Raman scattering. To mitigate nonlinear effects, very large mode area (LMA) fibers, which exhibit a mode field diameter larger than 30 ?m have been developed. However, for larger core sizes the discrimination capabilities of conventional fiber designs decrease, consequently, LMA fibers are not strictly single mode which ultimately at high average powers results in sudden degradation of the output beam of a fiber laser or amplifier, namely, modal instability (MI). To suppress higher order modes (HOMs) in LMA fibers, various techniques have been proposed such as large pitch fibers (LPFs), differential bend loss for HOMs, leakage channel fibers, mode filtering with tapers, and chirally coupled cores. This thesis is divided into two parts. In the first two chapters, I focus on simulation, design and characterization of advanced high power fiber amplifiers. In the first chapter, I study the numerical modeling of the MI in active LMA fibers. Using a high fidelity time dependent computer model based on beam propagation method (BPM), taking laser gain and thermal effects into account, I show that engineering pump scheme is a promising technique leading to an appreciable threshold increase in a fiber amplifier. As an example I demonstrate that bi-directional pump scheme increases the instabilities threshold by a factor of ~30% with respect to the forward pump configuration. In the second chapter, I present a novel design of microstructured large pitch, LMA asymmetric rod-type fiber to achieve higher MI threshold. By eliminating mirror symmetries in the cladding of the LPF through six high refractive index germanium-doped silica inclusions, we reduce the overlap of the LP1m-like modes with the core region, which leads to strong HOM delocalization and enhanced preferential gain for the fundamental mode in active fibers. The third and fourth chapters of this thesis are focused on all-fiber mode multiplexers for communication applications. In the third chapter, I present an all-fiber mode selective photonic lantern mode multiplexer designed for launching into few-mode multicore fibers (FM-MCFs). This device is capable of selectively exciting LP01, LP11a and LP11b modes in a seven core configuration resulting in 21 spatial channels, with less than 38 dB crosstalk and with insertion loss below 0.4 dB. This device can be a critical component for the evolution of high capacity, high-density space division multiplexing (SDM) transmission networks based on MCFs.In the fourth chapter, I demonstrate for the first time, an all-fiber orbital angular momentum (OAM) mode multiplexer to efficiently generate and simultaneously multiplex multiple OAM modes within a broad spectral range of at least 550 nm. This innovative all-fiber passive design provides simultaneous multiplexing of multiple orthogonal OAM modes in a single fiber device with low loss and at low design complexity, therefore, it is of grand utility in variety of applications in classical and modern optical studies.
Show less - Date Issued
- 2017
- Identifier
- CFE0006956, ucf:51632
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006956
- Title
- Laser Filamentation - Beyond Self-focusing and Plasma Defocusing.
- Creator
-
Lim, Khan, Richardson, Martin, Chang, Zenghu, Christodoulides, Demetrios, Zhang, Xi-Cheng, University of Central Florida
- Abstract / Description
-
Laser filamentation is a highly complex and dynamic nonlinear process that is sensitive to many physical parameters. The basic properties that define a filament consist of (i) a narrow, high intensity core that persists for distances much greater than the Rayleigh distance, (ii) a low density plasma channel existing within the filament core, and (iii) a supercontinuum generated over the course of filamentation. However, there remain many questions pertaining to how these basic properties are...
Show moreLaser filamentation is a highly complex and dynamic nonlinear process that is sensitive to many physical parameters. The basic properties that define a filament consist of (i) a narrow, high intensity core that persists for distances much greater than the Rayleigh distance, (ii) a low density plasma channel existing within the filament core, and (iii) a supercontinuum generated over the course of filamentation. However, there remain many questions pertaining to how these basic properties are affected by changes in the conditions in which the filaments are formed; that is the premise of the work presented in this dissertation.To examine the effects of anomalous dispersion and of different multi-photon ionization regimes, filaments were formed in solids with different laser wavelengths. The results provided a better understanding of supercontinuum generation in the anomalous dispersion regime, and of how multi-photon ionization can affect the formation of filaments.Three different experiments were carried out on filamentation in air. The first was an investigation into the effects of geometrical focusing. A simplified theoretical model was derived to determine the transition of filamentation in the linear-focusing and nonlinear- focusing regimes. The second examined the effects of polarization on supercontinuum generation, where a polarization-dependent anomalous spectral broadening phenomenon due to molecular effects was identified. The third involved the characterization of filaments in the ultraviolet. The combination of physical mechanisms responsible for filamentation in the ultraviolet was found to be different from that in the near infrared.
Show less - Date Issued
- 2014
- Identifier
- CFE0005520, ucf:50317
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005520