Current Search: Chen, Quanfang (x)
View All Items
Pages
- Title
- NON-SILICON MICROFABRICATED NANOSTRUCTURED CHEMICAL SENSORS FOR ELECTRIC NOSE APPLICATION.
- Creator
-
Gong, Jianwei, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
A systematic investigation has been performed for "Electric Nose", a system that can identify gas samples and detect their concentrations by combining sensor array and data processing technologies. Non-silicon based microfabricatition has been developed for micro-electro-mechanical-system (MEMS) based gas sensors. Novel sensors have been designed, fabricated and tested. Nanocrystalline semiconductor metal oxide (SMO) materials include SnO2, WO3 and In2O3 have been studied for gas sensing...
Show moreA systematic investigation has been performed for "Electric Nose", a system that can identify gas samples and detect their concentrations by combining sensor array and data processing technologies. Non-silicon based microfabricatition has been developed for micro-electro-mechanical-system (MEMS) based gas sensors. Novel sensors have been designed, fabricated and tested. Nanocrystalline semiconductor metal oxide (SMO) materials include SnO2, WO3 and In2O3 have been studied for gas sensing applications. Different doping material such as copper, silver, platinum and indium are studied in order to achieve better selectivity for different targeting toxic gases including hydrogen, carbon monoxide, hydrogen sulfide etc. Fundamental issues like sensitivity, selectivity, stability, temperature influence, humidity influence, thermal characterization, drifting problem etc. of SMO gas sensors have been intensively investigated. A novel approach to improve temperature stability of SMO (including tin oxide) gas sensors by applying a temperature feedback control circuit has been developed. The feedback temperature controller that is compatible with MEMS sensor fabrication has been invented and applied to gas sensor array system. Significant improvement of stability has been achieved compared to SMO gas sensors without temperature compensation under the same ambient conditions. Single walled carbon nanotube (SWNT) has been studied to improve SnO2 gas sensing property in terms of sensitivity, response time and recovery time. Three times of better sensitivity has been achieved experimentally. The feasibility of using TSK Fuzzy neural network algorithm for Electric Nose has been exploited during the research. A training process of using TSK Fuzzy neural network with input/output pairs from individual gas sensor cell has been developed. This will make electric nose smart enough to measure gas concentrations in a gas mixture. The model has been proven valid by gas experimental results conducted.
Show less - Date Issued
- 2005
- Identifier
- CFE0000377, ucf:46328
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000377
- Title
- UV-LIGA COMPATIBLE ELECTROFORMED NANO-STRUCTURED MATERIALS FOR MICRO MECHANICAL SYSTEMS.
- Creator
-
LI, BO, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
UV-LIGA is a microfabrication process realzed by material deposition through microfabricated molds. UV photolithography is conducted to pattern precise thick micro molds using UV light sensitive materials, mostly SU-8, and electroforming is performed to fabricate micro metallic structures defined by the micro molds. Therefore, UV-LIGA is a bottom-up in situ material-addition process. UV-LIGA has received broad attention recently than LIGA a micro molding fabrication process using X-ray to...
Show moreUV-LIGA is a microfabrication process realzed by material deposition through microfabricated molds. UV photolithography is conducted to pattern precise thick micro molds using UV light sensitive materials, mostly SU-8, and electroforming is performed to fabricate micro metallic structures defined by the micro molds. Therefore, UV-LIGA is a bottom-up in situ material-addition process. UV-LIGA has received broad attention recently than LIGA a micro molding fabrication process using X-ray to pattern the micro molds. LIGA is an expansive and is limited in access. In comparing to LIGA, the UV-LIGA is a cost effective process, and is widely accessible and safe. Therefore, it has been extensively used for the fabrication of metallic micro-electro-mechanical-systems (MEMS). The motivation of this research was to study micro mechanical systems fabricated with nano-structured metallic materials via UV-LIGA process. Various micro mechanical systems with high-aspect-ratio and thick metallic structures have been developed and are presented in this desertation. A novel micro mechanical valve has been developed with nano-structured nickel realized with UV-LIGA fabrication technique. Robust compact valves are crucial for space applications where payload and rubstaness are critically concerned. Two types of large flow rate robust passive micro check valve arrays have been designed, fabricated and tested for robust hydraulic actuators. The first such micro valve developed employs nanostructured nickel as the valve flap and single-crystal silicon as the substrates to house inlet and outlet channels. The Nano-structured nickel valve flap was fabricated using the UV-LIGA process developed and the microchannels were fabricated by deep reactive etching (DRIE) method. The valves were designed to operate under a high pressure (>10MPa), able to operate at high frequencies (>10kHz) in cooperating with the PZT actuator to produce large flow rates (>10 cc/s). The fabricated microvalves weigh 0.2 gram, after packing with a novel designated valve stopper. The tested results showed that the micro valve was able to operate at up to 14kHz. This is a great difference in comparison to traditional mechanical valves whose operations are limited to 500 Hz or less. The advantages of micro machined valves attribute to the scaling laws. The second type of micro mechanical valves developed is a in situ assembled solid metallic (nickel) valves. Both the valve substrates for inlet and outlet channels and the valve flap, as well as the valve stopper were made by nickel through a UV-LIGA fabrication process developed. Continuous multiple micro molds fabrication and molding processes were performed. Final micro mechanical valves were received after removing the micro molds used to define the strutures. There is no any additional machining process, such as cutting or packaging. The alignment for laminated fabrication was realized under microscope, therefore it is a highly precise in situ fabrication process. Testing results show the valve has a forward flow rate of19 cc/s under a pressure difference of 90 psi. The backward flow rate of 0.023 cc/s, which is negligible (0.13%). Nano-structured nickel has also been used to develop laminated (sandwiched) micro cryogenic heater exchanger with the UV-LIGA process. Even though nickel is apparently not a good thermal conductor at room temperature, it is a good conductor at cryogentic temerpature since its thermal conductivity increases to 1250 W/k·m at 77K. Micro patterned SU-8 molds and electroformed nickel have been developed to realize the sandwiched heat exchanger. The SU-8 mold (200mm x 200mm x50mm) array was successfully removed after completing the nickel electroforming. The second layer of patterned SU-8 layer (200mm x 200mm x50mm, as a thermal insulating layer) was patterned and aligned on the top of the electroformed nickel structure to form the laminated (sandwiched) micro heat exchanger. The fabricated sandwiched structure can withstand cryogenic temperature (77K) without any damages (cracks or delaminations). A study on nanocomposite for micro mechanical systems using UV-LIGA compatible electroforming process has been performed. Single-walled carbon nanotubes (SWNTs) have been proven excellent mechanical properties and thermal conductive properties, such as high strength and elastic modulus, negative coefficient of thermal expansion (CTE) and a high thermal conductivity. These properties make SWNT an excellent reinforcement in nanocomposite for various applications. However, there has been a challenge of utilizing SWNTs for engineering applications due to difficulties in quality control and handling too small (1-2nm in diameter). A novel copper/SWNT nanocomposite has been developed during this dissertational research. The goal of this research was to develop a heat spreader for high power electronics (HPE). Semiconductors for HPE, such as AlGaN/GaN high electron mobility transistors grown on SiC dies have a typical CTE about 4~6x10-6/k while most metallic heat spreaders such as copper have a CTE of more than 10x10-6/k. The SWNTs were successfully dispersed in the copper matrix to form the SWNT/Cu nano composite. The tested composite density is about 7.54 g/cm3, which indicating the SWNT volumetric fraction of 18%. SEM pictures show copper univformly coated on SWNT (worm-shaped structure). The measured CTE of the nanocomposite is 4.7 x 10-6/°C, perfectly matching that of SiC die (3.8 x 10-6/°C). The thermal conductivity derived by Wiedemann-Franz law after measuring composit's electrical conductivity, is 588 W/m-K, which is 40% better than that of pure copper. These properties are extremely important for the heat spreader/exchanger to remove the heat from HPE devices (SiC dies). Meanwhile, the matched CTE will reduce the resulted stress in the interface to prevent delaminations. Therefore, the naocomposite developed will be an excellent replacement material for the CuMo currently used in high power radar, and other HPE devices under developing. The mechanical performance and reliability of micro mechanical devices are critical for their application. In order to validate the design & simulation results, a direct (tensile) test method was developed to test the mechanical properties of the materials involved in this research, including nickel and SU-8. Micro machined specimens were fabricated and tested on a MTS Tytron Micro Force Tester with specially designed gripers. The tested fracture strength of nanostructured nickel is 900±70 MPa and of 50MPa for SU-8, resepctively which are much higher than published values.
Show less - Date Issued
- 2005
- Identifier
- CFE0000478, ucf:46372
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000478
- Title
- A CUSTOMER PROGRAMMABLE MICROFLUIDIC SYSTEM.
- Creator
-
Liu, Miao, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
Microfluidics is both a science and a technology offering great and perhaps even revolutionary capabilities to impact the society in the future. However, due to the scaling effects there are unknown phenomena and technology barriers about fluidics in microchannel, material properties in microscale and interactions with fluids are still missing. A systematic investigation has been performed aiming to develop "A Customer Programmable Microfluidic System". This innovative Polydimethylsiloxane ...
Show moreMicrofluidics is both a science and a technology offering great and perhaps even revolutionary capabilities to impact the society in the future. However, due to the scaling effects there are unknown phenomena and technology barriers about fluidics in microchannel, material properties in microscale and interactions with fluids are still missing. A systematic investigation has been performed aiming to develop "A Customer Programmable Microfluidic System". This innovative Polydimethylsiloxane (PDMS)-based microfluidic system provides a bio-compatible platform for bio-analysis systems such as Lab-on-a-chip, micro-total-analysis system and biosensors as well as the applications such as micromirrors. The system consists of an array of microfluidic devices and each device containing a multilayer microvalve. The microvalve uses a thermal pneumatic actuation method to switch and/or control the fluid flow in the integrated microchannels. It provides a means to isolate samples of interest and channel them from one location of the system to another based on needs of realizing the customers' desired functions. Along with the fluid flow control properties, the system was developed and tested as an array of micromirrors. An aluminum layer is embedded into the PDMS membrane. The metal was patterned as a network to increase the reflectivity of the membrane, which inherits the deformation of the membrane as a mirror. The deformable mirror is a key element in the adaptive optics. The proposed system utilizes the extraordinary flexibility of PDMS and the addressable control to manipulate the phase of a propagating optical wave front, which in turn can increase the performance of the adaptive optics. Polydimethylsiloxane (PDMS) has been widely used in microfabrication for microfluidic systems. However, few attentions were paid in the past to mechanical properties of PDMS. Importantly there is no report on influences of microfabrication processes which normally involve chemical reactors and biologically reaction processes. A comprehensive study was made in this work to study fundamental issues such as scaling law effects on PDMS properties, chemical emersion and temperature effects on mechanical properties of PDMS, PDMS compositions and resultant properties, as well as bonding strength, etc. Results achieved from this work will provide foundation of future developments of microfluidics utilizing PDMS.
Show less - Date Issued
- 2008
- Identifier
- CFE0002372, ucf:47798
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002372
- Title
- PARTICLE SEPARATION THROUGH TAYLOR COUETTE FLOW AND DIELECTROPHORETIC TRAPPING.
- Creator
-
Bock, Christopher, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
As the world population approaches seven billion, a greater strain is put on the resources necessary to sustain life. One of the most basic and essential resources is water and while two thirds of the earth is covered by water, the majority is either salt water (oceans and seas) or it is too contaminated to drink. The purpose of this project is to develop a portable device capable of testing whether a specific source of water (i.e. lake, river, wellÃÂÃ...
Show moreAs the world population approaches seven billion, a greater strain is put on the resources necessary to sustain life. One of the most basic and essential resources is water and while two thirds of the earth is covered by water, the majority is either salt water (oceans and seas) or it is too contaminated to drink. The purpose of this project is to develop a portable device capable of testing whether a specific source of water (i.e. lake, river, wellÃÂÃÂÃÂÃÂ ) is potable. There are numerous filtration techniques that can remove contaminants and make even the dirtiest water clean enough for consumption but they are for the most part, very time consuming and immobile processes. The device is not a means of water purification but rather focuses on determining the content of the water and whether it is safe. Particles within the water are separated and trapped using a combination of a Taylor Couette fluid flow system and Dielectrophoretic electrodes. This paper explores Taylor Couette flow in a large gap and low aspect ratio system through theory and experimentation with early stage prototypes. Different inner cylinder radii, 2.12cm, 1.665cm and 1.075cm, were tested at different speeds approaching, at and passing the critical Taylor number, 3825, 4713 and 6923 respectively for each cylinder. Dielectrophoretic (DEP) electrodes were designed, fabricated, coated and tested using latex beads to determine the method of integrating them within the fluid flow system. Taylor Couette theory, in terms of the formation of vortices within the large gap, small aspect ratio system, was not validated during testing. The flow pattern generated was more akin to a chaotic circular Couette flow but still served to move the particles toward the outer wall. Fully integrated tests were run with limited success. Recommendations were made to pursue both circular Couette flow as the basis for particle separation and dimensional changes in the setup to allow for the formation of Taylor vortices by increasing the radius ratio but still allowing for a larger volume of fluid.
Show less - Date Issued
- 2010
- Identifier
- CFE0003129, ucf:48634
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003129
- Title
- MECHANICAL PROPERTIES OF CARBON NANOTUBE / METAL COMPOSITES.
- Creator
-
Sun, Ying, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
Carbon nanotubes (CNTs) have captured a great deal of attention worldwide since their discovery in 1991. CNTs are considered to be the stiffest and strongest material due to their perfect atomic arrangement and intrinsic strong in-plane sp2ÃÂ--sp2 covalent bonds between carbon atoms. In addition to mechanical properties, CNTs have also shown exceptional chemical, electrical and thermal properties. All these aspects make CNTs promising candidates in the development of novel...
Show moreCarbon nanotubes (CNTs) have captured a great deal of attention worldwide since their discovery in 1991. CNTs are considered to be the stiffest and strongest material due to their perfect atomic arrangement and intrinsic strong in-plane sp2ÃÂ--sp2 covalent bonds between carbon atoms. In addition to mechanical properties, CNTs have also shown exceptional chemical, electrical and thermal properties. All these aspects make CNTs promising candidates in the development of novel multi-functional nanocomposites. Utilizing CNTs as fillers to develop advanced nanocomposites still remains a challenge, due to the lack of fundamental understanding of both material processing at the nanometer scale and the resultant material properties. In this work, a new model was developed to investigate the amount of control specific parameters have on the mechanical properties of CNT composites. The new theory can be used to guide the development of advanced composites using carbon nanotubes, as well as other nano-fibers, with any matrices (ceramic, metal, or polymer). Our study has shown that the varying effect based on changes in CNT dimensions and concentration fit the model predictions very well. Metallic CNT composites using both single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT), have been developed through a novel electrochemical co-deposition process. Copper and nickel matrix composites were developed by using pulse-reverse electrochemical co-deposition. Uniaxial tensile test results showed that a more than 300% increase in strength compared to that of the pure metal had been achieved. For example, the ultimate tensile strength of Ni/CNTs composites reached as high as about 2GPa. These are best experimental results ever reported within this field. The mechanical results are mainly attributed to the good interfacial bonding between the CNTs and the metal matrices and good dispersion of carbon nanotubes within the matrices. Experimental results have also shown that the strength is inversely dependent on the diameter of carbon nanotubes. In addition to the mechanical strength, carbon nanotube reinforced metallic composites are excellent multifunctional materials in terms of electrical and thermal conduction. The electrical resistivity of carbon nanotube/copper composites produces electrical resistivity of about 1.0~1.2 x10-6ohm-cm, which is about 40% less than the pure copper. The reduced electrical resistivity is also attributed to the good interfacial bonding between carbon nanotubes and metal matrices, realized by the electrochemical co-deposition.
Show less - Date Issued
- 2010
- Identifier
- CFE0003144, ucf:48652
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003144
- Title
- A Linear Multiplexed Electrospray Thin Film Deposition System.
- Creator
-
Lojewski, Brandon, Deng, Weiwei, Chen, Ruey-Hung, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
Liquid spray is essential to industries requiring processes such as spray coating, spray drying, spray pyrolysis, or spray cooling. This thesis reports the design, fabrication, and characterization of a thin film deposition system which utilizes a linear multiplexed electrospray (LINES) atomizer. First, a thorough review of the advantages and limitations of prior multiplexed electrospray systems leads to discussion of the design rationale for this work. Next, the line of charge model was...
Show moreLiquid spray is essential to industries requiring processes such as spray coating, spray drying, spray pyrolysis, or spray cooling. This thesis reports the design, fabrication, and characterization of a thin film deposition system which utilizes a linear multiplexed electrospray (LINES) atomizer. First, a thorough review of the advantages and limitations of prior multiplexed electrospray systems leads to discussion of the design rationale for this work. Next, the line of charge model was extended to prescribe the operating conditions for the experiments and to estimate the spray profile. The spray profile was then simulated using a Lagrangian model and solved using a desktop supercomputer based on Graphics Processing Units (GPUs). The simulation was extended to estimate the droplet number density flux during deposition. Pure ethanol was electrosprayed in the cone-jet mode from a 51-nozzle aluminum LINES atomizer with less than 3% relative standard deviation in the D10 average droplet diameter as characterized using Phase Doppler Interferometry (PDI). Finally a 25-nozzle LINES was integrated into a thin film deposition system with a heated, motion controlled stage, to deposit TiO2 thin films onto silicon wafers from an ethanol based nanoparticle suspension. The resulting deposition pattern was analyzed using SEM, optical profilometry, and macro photography and compared with the numerical simulation results. The LINES tool developed here is a step forward to enabling the power of electrospray for industrial manufacturing applications in clean energy, health care, and electronics.
Show less - Date Issued
- 2013
- Identifier
- CFE0005106, ucf:50745
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005106
- Title
- Electrohydrodynamic Manipulation of Liquid Droplet Emulsions in a Microfluidic Channel.
- Creator
-
Wehking, Jonathan, Chew, Phyekeng, Chen, Quanfang, Chen, Ruey-Hung, University of Central Florida
- Abstract / Description
-
This work specifically aims to provide a fundamental framework, with some experimental validation, for understanding droplet emulsion dynamics in a microfluidic channel with an applied electric field. Electrification of fluids can result in several different modes of electrohydrodynamics (EHD). Several studies to date have provided theoretical, experimental, and numerical results for stationary droplet deformations and some flowing droplet configurations, but none have reported a method by...
Show moreThis work specifically aims to provide a fundamental framework, with some experimental validation, for understanding droplet emulsion dynamics in a microfluidic channel with an applied electric field. Electrification of fluids can result in several different modes of electrohydrodynamics (EHD). Several studies to date have provided theoretical, experimental, and numerical results for stationary droplet deformations and some flowing droplet configurations, but none have reported a method by which droplets of different diameters can be separated, binned and routed through the use of electric fields. It is therefore the goal of this work to fill that void and report a comprehensive understanding of how the electric field can affect flowing droplet dynamics.This work deals with two primary models used in electrohydrodynamics: the leaky dielectric model and the perfect dielectric model. The perfect dielectric model assumes that fluids with low conductivities do not react to any effects from the small amount of free charge they contain, and can be assumed as dielectrics, or electrical insulators. The leaky dielectric model suggests that even though the free charge is minimal in fluids with low conductivities, it is still is enough to affect droplet deformations. Finite element numerical results of stationary droplet deformations, implemented using the level set method, compare well both qualitatively (prolate/oblate and vortex directions), and quantitatively with results published by other researchers. Errors of less than 7.5% are found when comparing three-dimensional (3D) numerical results of this study to results predicted by the 3D leaky dielectric model, for a stationary high conductivity drop suspended in a slightly lower conductivity suspending medium. Droplet formations in a T-junction with no applied electric field are adequately predicted numerically using the level set finite element technique, as demonstrated by other researchers and verified in this study. For 3D models, droplet size is within 6%, and droplet production frequency is within 2.4% of experimental values found in the microfluidic T-junction device. In order to reduce computational complexity, a larger scale model was solved first to obtain electrical potential distributions localized at the channel walls for the electrode placement configurations.Droplet deceleration and pinning is demonstrated, both experimentally and numerically, by applying steep gradients of electrical potential to the microchannel walls. As droplets flow over these electrical potential ``steps," they are pinned to the channel walls if the resulting electric forces are large enough to overcome the hydrodynamic forces. A balance between four dimensionless force ratios, the electric Euler number (Eu_e - ratio of inertial to electric forces), Mason number (Ma - ratio of viscous to electric forces), electric pressure (Ps - ratio of upstream pressure forces to electric forces), and the electric capillary number (Ca_e - ratio of electric to capillary forces) are used to quantify the magnitudes of each of these forces required to pin a droplet, and is consistent with a cubic dependency on the drop diameter. For larger drop diameters, effects of hydrodynamic forces become more prominent, and for smaller droplets, a greater electric forces is required due to the proximity of the droplet boundary with reference to the electrified channel wall. Droplet deceleration and pinning can be exploited to route droplets into different branches of a microfluidic T-junction. In addition, using steep electrical potential gradients placed strategically along a microchannel, droplets can even be passively binned by size into separate branches of the microfluidic device. These characteristics have been identified and demonstrated in this work.
Show less - Date Issued
- 2013
- Identifier
- CFE0005071, ucf:49950
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005071
- Title
- Numerical study on reinforcement mechanism of copper/carbon nanotubes composite.
- Creator
-
Long, Xiang, Bai, Yuanli, Gordon, Ali, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
Because of its high stiffness, carbon nanotubes (CNTs) are considered as one of the widely used reinforcement materials in the metal matrix composites. In this thesis, finite element (FE) models were built in Ls-Dyna3D to simulate Copper/CNTs composite deformation and fracture, and to explore CNTs reinforcement mechanisms. Several possible mechanisms were discussed. Deformation and failure of Cu/CNT composites were studied numerically using unit cell FE models, which consist of both metal...
Show moreBecause of its high stiffness, carbon nanotubes (CNTs) are considered as one of the widely used reinforcement materials in the metal matrix composites. In this thesis, finite element (FE) models were built in Ls-Dyna3D to simulate Copper/CNTs composite deformation and fracture, and to explore CNTs reinforcement mechanisms. Several possible mechanisms were discussed. Deformation and failure of Cu/CNT composites were studied numerically using unit cell FE models, which consist of both metal matrix and CNTs. The simulation results have been verified by existing experiment data reported by Chen's group. The matrix material was modeled as elasto-plastic ductile solids. The CNTs material properties were taken from literature results using molecular dynamics simulation. FE simulations have showed that CNTs deformation exceeds material elastic limit, which means that CNTs plasticity should be taken into account as well. 2D unit cell models were developed using axial symmetric elements with suitable boundary conditions. Several mechanisms are found to affect CNTs reinforcement prediction. The first one is the boundary condition imposed in the models. The CNTs significantly affect the plastic flow of copper during plastic deformation, which is one important reinforcement mechanism. The second reinforcement mechanism is found to be the hardening zone of Cu matrix around CNTs, which is introduced by mismatch of coefficient of thermal expansion (CTE).A round of parametric studies was performed to investigate the effects of several modeling parameters in the FE simulations; these parameters include the volume fraction of CNTs, aspect ratio of CNTs, the size of hardening zone, and the residual plastic strain in the zone. A tool combining Matlab and Ls-Dyna was developed to automatically build 2D unit cell models and automatically post-process simulation results. Picking up suitable parameters, 2D unit cell model results well predict the experimental results from Chen's group. It should be noted that the interface between Cu and CNTs was assumed to be perfect in FE simulations since no CNTs debonding was observed in the experiments. Also, a 3D unit cell model using tetrahedral elements (with element numbers up to one million) was tentatively developed to obtain more accurate results. The purpose was to explore the interface properties of Cu/CNTs, the effect of CNTs orientation distribution, and the other reinforcement mechanism coming from geometry necessary dislocation (GND) since the size of Cu matrix is divided into nano scales by CNTs. 3D unit models are also used to verify the 2D unit cell one, which is a simplified and effective approach. Very interesting results was observed in this part of study. Further works are needed to overcome the difficulties in 3D modeling and the limitation of current CPU speed.
Show less - Date Issued
- 2012
- Identifier
- CFE0004197, ucf:49019
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004197
- Title
- Study of High Efficiency Micro Thermoelectric Energy Harvesters.
- Creator
-
Pedrosa, Steven, Chen, Quanfang, Cho, Hyoung, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
Thermal energy sources, including waste heat and thermal radiation from the sun, are important renewable energy resources. Thermal energy can be converted into electricity by thermoelectric phenomena; the thermoelectric phenomena can also be operated in reverse when provided an electric current, producing a temperature gradient across the device. Thermoelectric devices are scalable, renewable, and cost effective products that offer capabilities to harness waste heat or environmental heat...
Show moreThermal energy sources, including waste heat and thermal radiation from the sun, are important renewable energy resources. Thermal energy can be converted into electricity by thermoelectric phenomena; the thermoelectric phenomena can also be operated in reverse when provided an electric current, producing a temperature gradient across the device. Thermoelectric devices are scalable, renewable, and cost effective products that offer capabilities to harness waste heat or environmental heat sources, and convert the captured heat into usable electricity. The operating principle of a thermoelectric device requires that a temperature gradient be present across the device, which induces the flow of electrons from the hot side of the device to the cold side. Thermoelectric devices are currently hampered by the low conversion efficiencies and strict operating temperatures for certain materials. This study investigates the main factors affecting efficiencies of thermoelectric devices as energy harvesters and aims to optimize the devices for maximum efficiency and lower costs by using microfabrication processes and self-assembled materials for complete thermoelectric modules (TEMs). By first establishing operating conditions and a desired mode of operation, optimization equations have been established to determine device dimensions and performance parameters. Compact integration realized by microfabrication technologies that allow for multiple output voltages from a single chip was also investigated. Additionally, cost savings were found by reducing the number of fabrication processing steps and eliminating the need for precious metals during fabrication. The optimized design proposed in this study utilizes copper electrodes and requires fewer applications of photoresist than previous proposed designs. In fabrication of thin film based micro devices, the film quality and the composition of the film are essential elements for producing TEMs with desired efficiencies. Although Bi2Te3 has been investigated as thermoelectric material, this study determined that there was a possibility that both N-type and P-Type Bi2Te3 could be created from a single electrolyte solution by controlling the amount of Te present in the film. Films were produced with both AC and DC signals and varied composition of Te at.% of Bi2Te3 was achieved by controlling the average current density during electrochemical deposition. A linear relationship was established between the average current density and the resultant Te content. SEM and EDS were used to characterize the morphology and the composition of the thin films created. With the fabricated thermoelectric materials, analytical models could be developed using known material properties of thermoelectric films with a given Te content. The analytical results obtained by the developed optimization equations were comparable with the FEA models produced by using COMSOL, a multiphysics program with powerful solving algorithms that was used to evaluate designs. Further improvements to device performance can be achieved by designing a segmented thermoelectric device with multiple layers of thermoelectric material to allow the device to operate across a larger temperature gradient.
Show less - Date Issued
- 2011
- Identifier
- CFE0004486, ucf:49318
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004486
- Title
- Simulation of a Capacitive Micromachined Ultrasonic Transducer with a Parylene Membrane and Graphene Electrodes.
- Creator
-
Sadat, David, Chen, Quanfang, Xu, Yunjun, Foroosh, Hassan, University of Central Florida
- Abstract / Description
-
Medical ultrasound technology accounts for over half of all imaging tests performed worldwide. In comparison to other methods, ultrasonic imaging is more portable and lower cost, and is becoming more accessible to remote regions where traditionally no medical imaging can be done. However, conventional ultrasonic imaging systems still rely on expensive PZT-based ultrasound probes that limit broader applications. In addition, the resolution of PZT based transducers is low due to the limitation...
Show moreMedical ultrasound technology accounts for over half of all imaging tests performed worldwide. In comparison to other methods, ultrasonic imaging is more portable and lower cost, and is becoming more accessible to remote regions where traditionally no medical imaging can be done. However, conventional ultrasonic imaging systems still rely on expensive PZT-based ultrasound probes that limit broader applications. In addition, the resolution of PZT based transducers is low due to the limitation in hand-fabrication methods of the piezoelectric ceramics.Capacitive Micromachined Ultrasonic Transducers (CMUTs) appears as an alternative to the piezoelectric (PZT) ceramic based transducer for ultrasound medical imaging. CMUTs show better ultrasound transducer design for batch fabrication, higher axial resolution of images, lower fabrication costs of the elements, ease of fabricating large arrays of cells using MEMS fabrication, and the extremely important potential to monolithically integrate the 2D transducer arrays directly with IC circuits for real-time 3D imaging.Currently most efforts on CMUTs are silicon based. Problems with current silicon-based CMUT designs include low pressure transmission and high-temperature fabrication processes. The pressure output from the silicon based CMUTs cells during transmission are too low when compared to commercially available PZT transducers, resulting in relatively blurry ultrasound images. The fabrication of the silicon-based cells, although easier than PZT transducers, still suffers from inevitable high temperature process and require specialized and expensive equipment. Manufacturing at an elevated temperature hinders the capability of fabricating front end analog processing IC circuits, thus it is difficult to achieve true 3D/4D imaging. Therefore novel low temperature fabrication with a low cost nature is needed. A polymer (Parylene) based CMUTs transducer has been investigated recently at UCF and aims to overcome limitations posted from the silicon based counterparts. This thesis describes the numerical simulation work and proposed fabrication steps of the Parylene based CMUT. The issue of transducer cost and pressure transmission is addressed by proposing the use of low cost and low temperature Chemical Vapor Deposition (CVD) fabrication of Parylene-C as the structural membrane plus graphene for the membrane electrodes. This study focuses mainly on comparing traditional silicon-based CMUT designs against the Parylene-C/Graphene CMUT based transducer, by using MEMS modules in COMSOL. For a fair comparison, single CMUT cells are modeled and held at a constant diameter and the similar operational frequency at the structural center. The numerical CMUT model is characterized for: collapse voltage, membrane deflection profile, center frequency, peak output pressure transmission over the membrane surface, and the sensitivity to the change in electrode surface charge. This study took the unique approaches in defining sensitivity of the CMUT by calculating the membrane response and the change in the electrode surface charge due to an incoming pressure wave. Optimal design has been achieved based on the simulation results. In comparison to silicon based CMUTs, the Parylene/Graphene based CMUT transducer produces 55% more in volume displacement and more than 35% in pressure output. The thesis has also laid out the detailed fabrication processes of the Parylene/Graphene based CMUT transducers. Parylene/Graphene based ultrasonic transducers can find wide applications in both medical imaging and Non destructive evaluation (NDE).
Show less - Date Issued
- 2012
- Identifier
- CFE0004333, ucf:49458
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004333
- Title
- Carbon nanotube (CNT) metallic composite with focus on processing and the resultant properties.
- Creator
-
Billah, Md Muktadir, Chen, Quanfang, Bai, Yuanli, An, Linan, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Metal-carbon nanotubes (CNTs) composites are the promising advanced materials that are being developed to take the advantage of the exceptional properties of CNTs. Because of the intrinsically strong in-plane atomic SP2 bonding CNTs offer high young's modulus (1.0(-)1.8 TPa), high tensile strength (30(-)200 GPa) and high elongation at break (10(-)30%). The thermal conductivity of individual single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) are about 6000 W/m-K and...
Show moreMetal-carbon nanotubes (CNTs) composites are the promising advanced materials that are being developed to take the advantage of the exceptional properties of CNTs. Because of the intrinsically strong in-plane atomic SP2 bonding CNTs offer high young's modulus (1.0(-)1.8 TPa), high tensile strength (30(-)200 GPa) and high elongation at break (10(-)30%). The thermal conductivity of individual single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) are about 6000 W/m-K and 3000 W/m-K, respectively. Therefore it is expected that by incorporation of CNTs in metal matrices multi-functional composites can be used ideally as thermal interface materials, light-weight high-strength structural materials, electric components, optical devices, electromagnetic absorption materials etc. However, so far results are far from satisfied for CNT composites, mainly due to the fact that there are two main key issues remained without good solutions for CNT composites: the poor uniformity in CNT dispersion and the weak interfacial bonding between CNTs and the matrices. In this study, MWCNTs were functionalized and coated with metals like Cu and Ni by electroless deposition methods prior to their application. Metal coatings result in strong interfacial bonding at CNT-metal interfaces and uniform dispersion. During metal coating processes CNTs are physically separated in electrolyte and after coating they get physically retain the separation by the coated metal layer that they are not allowed to aggregate to form bundles. Moreover, after metal coating, the resultant density of Ni-coated MWCNTs is close to that of molten metal matrix. This prevent separation of CNTs due to buoyancy effects and results in uniform dispersion. Metal coating on CNTs surfaces also allows to form strong interfacial bonding with the metal matrices.SnBi alloy has been identified as novel lead-free thermal interface material (TIM) for electronics packaging. However the thermal conductivity and the mechanical strength of pure SnBi alloy are not sufficient to withstand harsh environment imposed by powder electronics. Therefor how to increase the thermal conductivity and the mechanical strength of SnBi solders becomes important. In this study, MWCNTs have been added into SnBi alloy to form SnBi/CNT composite solders by different material processing methods. First, in sandwich method Cu-coated CNTs were added to the 70Sn-30Bi alloy and mixed mechanically. UTS was increased by 47.6% for 3 wt. % Cu/CNTs addition. Second. Ni-coated CNTs were added by sonication assisted melting method in fabricating 70Sn-30Bi solder. For 3 wt. % Ni-coated MWCNTs, equivalent to 0.6 wt. % pure MWCNTs, UTS and YS were increased by 88.8 % and 112.3% respectively. In addition the thermal conductivity was also increased by more than 70%. Ni-coated CNTs were also added to pure Al by powder metallurgy method. For 7 wt. % Ni/CNTs having diameter 30-50 nm, UTS and YS were increased by 92.7% and 101.6% respectively. For CNTs having diameter 8-15 nm, UTS and YS were increased by 108.9% and 128.2% respectively for 7 wt. % addition. All these results are first time obtained that are much greater than published data on CNT/metal composites. Results discussion and mechanism in reinforcement were also presented.
Show less - Date Issued
- 2017
- Identifier
- CFE0006567, ucf:51320
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006567
- Title
- Graphene Induced Formation of Nanostructures in Composites.
- Creator
-
Shen, Chen, Zhai, Lei, Chen, Quanfang, Thomas, Jayan, Fang, Jiyu, Khondaker, Saiful, University of Central Florida
- Abstract / Description
-
Graphene induced nanostructures in graphene-based composites and the performance of these composites have been explored in this study. For the metallic nanoparticles decorated graphene aerogels composites, the fabrication of hierarchically structured, reduced graphene oxide (rGO) aerogels with heavily metallic nanoparticles was realized. Higher loading of palladium nanoparticles in graphene aerogels leads to improved hydrogen gas sensing performance. For polymer derived ceramics (PDCs)...
Show moreGraphene induced nanostructures in graphene-based composites and the performance of these composites have been explored in this study. For the metallic nanoparticles decorated graphene aerogels composites, the fabrication of hierarchically structured, reduced graphene oxide (rGO) aerogels with heavily metallic nanoparticles was realized. Higher loading of palladium nanoparticles in graphene aerogels leads to improved hydrogen gas sensing performance. For polymer derived ceramics (PDCs) composites with anisotropic electrical properties, the fabrication of composites was realized by embedding anisotropic reduced graphene oxide aerogels (rGOAs) into the PDCs matrix. Raman spectroscopy and X-ray diffraction studies of PDCs composites with and without graphene indicate that graphene facilitates the transition from amorphous carbon to graphitic carbon in the PDCs. For composites composed of PDCs and edge functionalized graphene oxide (EFGO), bulk PDCs based composites with embedded graphene networks show high electrical conductivity, high thermal stability, and low thermal conductivity. For the study of poly(3-hexylthiophene) (P3HT) crystallization on graphitic substrates (i.e. carbon nanotubes, carbon fibers and graphene), different types of P3HT nanocrystals (i.e. nanowires, nanoribbons, and nanowalls) were observed. The type of nanocrystals grown from graphitic substrates depends on the curvature of graphitic substrates, the molecular weight of P3HT molecules, and the concentration of P3HT marginal solutions. Besides, both specific surface area and curvature of graphitic substrates have major effects on P3HT crystallization processes.
Show less - Date Issued
- 2018
- Identifier
- CFE0007095, ucf:51961
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007095
- Title
- Scandia and ceria stabilized zirconia based electrolytes and anodes for intermediate temperature solid oxide fuel cells: Manufacturing and properties.
- Creator
-
Chen, Yan, Orlovskaya, Nina, An, Linan, Chen, Quanfang, Sohn, Yongho, Raghavan, Seetha, Huang, Xinyu, University of Central Florida
- Abstract / Description
-
Scandia and ceria stabilized zirconia (10 mol% Sc2O3 (-) 1 mol% CeO2 (-) ZrO2, SCSZ) has superior ionic conductivity in the intermediate temperature range for the operation of solid oxide fuel cells, but it does not exhibit good phase stability in comparison with yttria stabilized zirconia (8 mol% Y2O3 (-) ZrO2, YSZ). To maintain high ionic conductivity and improve the stability of the electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed, along with the...
Show moreScandia and ceria stabilized zirconia (10 mol% Sc2O3 (-) 1 mol% CeO2 (-) ZrO2, SCSZ) has superior ionic conductivity in the intermediate temperature range for the operation of solid oxide fuel cells, but it does not exhibit good phase stability in comparison with yttria stabilized zirconia (8 mol% Y2O3 (-) ZrO2, YSZ). To maintain high ionic conductivity and improve the stability of the electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed, along with the referential electrolytes containing pure SCSZ or YSZ. The electrolytes were manufactured by tape casting, laminating, and pressureless sintering techniques. After sintering, while the thickness of YSZ outer layers remained constant at ~30 ?m, the thickness of inner layers of SCSZ for the 3-, 4- and 6-layer designs varied at ~30, ~60 and ~120 ?m, respectively. Selected characterizations were employed to study the structure, morphology, impurity content and the density of the electrolytes. Furthermore, in situ X-ray diffraction, neutron diffraction and Raman scattering were carried out to study the phase transition and lattice distortion during long-term annealing at 350 (&)deg;C and 275 (&)deg;C for SCSZ and YSZ, respectively, where the dynamic damping occurred when Young's modulus was measured.In YSZ/SCSZ electrolytes, thermal residual stresses and strains were generated due to the mismatch of coefficients of thermal expansion from each layer of different compositions. They could be adjusted by varying the thickness ratios of each layer in different designs of laminates. The theoretical residual stresses have been calculated for different thickness ratios. The effect of thermal residual stress on the biaxial flexural strength was studied in layered electrolytes. The biaxial flexure tests of electrolytes with various layered designs were performed using a ring-on-ring method at both room temperature and 800 (&)deg;C. The maximum principal stress during fracture indicated an increase of flexural strength in the electrolytes with layered structure at both temperatures in comparison with the electrolytes without compositional gradient. Such an increase of strength is the result of the existence of residual compressive stresses in the outer YSZ layer. In addition, Weibull statistics of the strength values were built for the layered electrolytes tested at room temperature, and the effect of thermal residual stresses on Weibull distribution was established. The calculation of residual stress present at the outer layers was verified. The high ionic conductivity was maintained with layered electrolyte designs in the intermediate temperature range. It was also established that the ionic conductivity of layered electrolytes exhibited 7% (-) 11% improvement at 800 (&)deg;C due to the stress/strain effects, and the largest improvements in a certain electrolyte was found to nearly coincide with the largest residual compressive strain in the outer YSZ layer.In addition to the study of layered electrolytes, mechanical properties of porous Ni/SCSZ cermet were studied. The anode materials were reduced by 65 wt% NiO (-) 35 wt% SCSZ (N65) and 50 wt% NiO (-) 50 wt% SCSZ (N50) porous ceramics in the forming gas. Young's modulus as well as strength and fracture toughness of non-reduced and reduced anodes has been measured, both at room and high temperatures. High temperature experiments were performed in the reducing environment of forming gas. It was shown that while at 700 (&)deg;C and 800 (&)deg;C the anode specimens exhibited purely brittle deformation, a brittle-to-ductile transition occurred at 800 (-) 900 (&)deg;C, and the anode deformed plastically at 900 (&)deg;C. Fractography of the anode specimens were studied to identify the fracture modes of the anodes tested at different temperatures.
Show less - Date Issued
- 2013
- Identifier
- CFE0005090, ucf:50750
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005090
- Title
- Electrode Integration of Nanostructured Metal and Metal Oxide Materials Based on in-situ Growth Methods for Environmental Sensors.
- Creator
-
Wang, Xiaochen, Cho, Hyoung Jin, Fang, Jiyu, Chen, Quanfang, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
In the past decades, increased human population and activities have introduced a large amount of pollutants into the environment. Various types of conventional analytical instruments were used for monitoring the emitted chemicals with low detection limit, high accuracy, and discrimination power. However, many of these methods are laboratory-based owing to sample collection, transportation, extraction, and purification steps. To make real-time on-site monitoring possible, miniaturized sensors...
Show moreIn the past decades, increased human population and activities have introduced a large amount of pollutants into the environment. Various types of conventional analytical instruments were used for monitoring the emitted chemicals with low detection limit, high accuracy, and discrimination power. However, many of these methods are laboratory-based owing to sample collection, transportation, extraction, and purification steps. To make real-time on-site monitoring possible, miniaturized sensors with various integrated elements were developed. One of the most well-known strategies is to utilize nanostructured materials with enhanced sensing properties for those devices. For a majority of the current state of art devices, the synthesis of nanostructured materials and device integration are done separately, that is, (")synthesis first and then integration(") approach which involves two separate process steps. However, this approach comes with some disadvantages such as misalignment, contamination, as well as disconnection between nanomaterials and electrodes.To overcome the aforementioned technical challenge, several synthesis methods were developed and validated for in-situ integration of nanostructured metal and metal oxide materials for environmental sensors in this work. The electroplating technique combined with photolithography was used to make the predefined metal electrodes. Then, with subsequent post-treatments, nanostructured metals and metal oxides could be produced in-situ and directly integrated in the electrodes without any extra transfer process steps.In the process of developing a phosphate sensor, nanofibrous Co electrodes were fabricated by pulsed electroplating of Co-Cu alloy and dealloying the Cu component. A linear potentiometric response to phosphate in the 10-5 to 10-2 M concentration range was obtained which validated the sensor's function. A mechanism based on mixed potential response was proposed to elucidate the Co electrode behavior in aqueous solutions with varying pH conditions and optimum pH ranges for working devices were proposed.In addition to the alloying and dealloying method, the template assisted electroplating method was also investigated. A nanoporous Co-Cu electrode fabricated by electroplating through a sacrificial glass fiber template was obtained. A linear amperometric response to phosphate with suppressed oxygen interference was achieved in a 10-5 to 10-2 M concentration range of phosphate. An analysis of the cyclic voltammetry characterization results provided a direction for further exploring an optimized electrode polarization potential range for suppressing oxygen interference while maintaining a good sensitivity to phosphate. Based on this result, we improved the fabrication process with another template: in-situ hydrothermally grown ZnO nanoflakes on the electrode surface, as a template for uniform nanostructured Co electroplating. The cyclic voltammetry characterization of the fabricated electrode showed an amperometric response in the range of 10-6 to 10-2 M of phosphate where the limit of detection (LOD) was enhanced compared with the previous work.For the flammable gas sensor development, the in-situ oxidation of Cu was utilized to form nanowires for sensing electrode fabrication. Multiple CuO nanowires were synthesized in-situ on the electroplated interdigitated Cu electrodes on a hotplate at 500 ? in air. The nanowires were successfully integrated as a sensing element into the device, forming bridges between two electrodes. The sensor's behavior was characterized by a current-voltage measurement. Simple processing parameters could be utilized for controlling the electrode morphologies and determining the characteristics of contacts - Schottky or Ohmic - at the electrode interface. A hypothesis was proposed to explain the transition phenomenon between Schottky and Ohmic contact modes, providing an important baseline for future device design and fabrication. Finally, the fabricated sensor was tested for a flammable gas detection using saturated ethanol vapor at room temperature, which implicates a low power consumption gas sensor without elevating the sensor temperature unlike traditional gas sensors.
Show less - Date Issued
- 2017
- Identifier
- CFE0007139, ucf:52312
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007139
- Title
- Design, Characterization and Analysis of Electrostatic Discharge (ESD) Protection Solutions in Emerging and Modern Technologies.
- Creator
-
Liu, Wen, Liou, Juin, Yuan, Jiann-Shiun, Sundaram, Kalpathy, Shen, Zheng, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
Electrostatic Discharge (ESD) is a significant hazard to electronic components and systems. Based on a specific processing technology, a given circuit application requires a customized ESD consideration that includes the devices' operating voltage, leakage current, breakdown constraints, and footprint. As new technology nodes mature every 3-5 years, design of effective ESD protection solutions has become more and more challenging due to the narrowed design window, elevated electric field and...
Show moreElectrostatic Discharge (ESD) is a significant hazard to electronic components and systems. Based on a specific processing technology, a given circuit application requires a customized ESD consideration that includes the devices' operating voltage, leakage current, breakdown constraints, and footprint. As new technology nodes mature every 3-5 years, design of effective ESD protection solutions has become more and more challenging due to the narrowed design window, elevated electric field and current density, as well as new failure mechanisms that are not well understood. The endeavor of this research is to develop novel, effective and robust ESD protection solutions for both emerging technologies and modern complementary metal(-)oxide(-)semiconductor (CMOS) technologies.The Si nanowire field-effect transistors are projected by the International Technology Roadmap for Semiconductors as promising next-generation CMOS devices due to their superior DC and RF performances, as well as ease of fabrication in existing Silicon processing. Aiming at proposing ESD protection solutions for nanowire based circuits, the dimension parameters, fabrication process, and layout dependency of such devices under Human Body Mode (HBM) ESD stresses are studied experimentally in company with failure analysis revealing the failure mechanism induced by ESD. The findings, including design methodologies, failure mechanism, and technology comparisons should provide practical knowhow of the development of ESD protection schemes for the nanowire based integrated circuits. Organic thin-film transistors (OTFTs) are the basic elements for the emerging flexible, printable, large-area, and low-cost organic electronic circuits. Although there are plentiful studies focusing on the DC stress induced reliability degradation, the operation mechanism of OTFTs subject to ESD is not yet available in the literature and are urgently needed before the organic technology can be pushed into consumer market. In this work, the ESD operation mechanism of OTFT depending on gate biasing condition and dimension parameters are investigated by extensive characterization and thorough evaluation. The device degradation evolution and failure mechanism under ESD are also investigated by specially designed experiments. In addition to the exploration of ESD protection solutions in emerging technologies, efforts have also been placed in the design and analysis of a major ESD protection device, diode-triggered-silicon-controlled-rectifier (DTSCR), in modern CMOS technology (90nm bulk). On the one hand, a new type DTSCR having bi-directional conduction capability, optimized design window, high HBM robustness and low parasitic capacitance are developed utilizing the combination of a bi-directional silicon-controlled-rectifier and bi-directional diode strings. On the other hand, the HBM and Charged Device Mode (CDM) ESD robustness of DTSCRs using four typical layout topologies are compared and analyzed in terms of trigger voltage, holding voltage, failure current density, turn-on time, and overshoot voltage. The advantages and drawbacks of each layout are summarized and those offering the best overall performance are suggested at the end.
Show less - Date Issued
- 2012
- Identifier
- CFE0004571, ucf:49199
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004571
- Title
- Electronic Structure of Metal (Al, Cu) Doped Carbon Nanotubes and the Resultant Conduction of the Hybrid Materials.
- Creator
-
Jiang, Jingyin, Chen, Quanfang, Zhai, Lei, Fang, Jiyu, Bai, Yuanli, Stolbov, Sergey, University of Central Florida
- Abstract / Description
-
Due to the exceptional strength, stiffness and excellent electrical and thermal properties, carbon nanotubes (CNTs) have been regarded as promising candidates for advanced nanoelectronics and multifunctional nanocomposites. In this dissertation, the interaction of CNTs with metals have been investigated and the resultant electrical conduction have been analyzed, aiming to develop innovative avenues to best utilize CNTs' potential. In order to do so, quantum mechanics calculations have been...
Show moreDue to the exceptional strength, stiffness and excellent electrical and thermal properties, carbon nanotubes (CNTs) have been regarded as promising candidates for advanced nanoelectronics and multifunctional nanocomposites. In this dissertation, the interaction of CNTs with metals have been investigated and the resultant electrical conduction have been analyzed, aiming to develop innovative avenues to best utilize CNTs' potential. In order to do so, quantum mechanics calculations have been carried out to study that how to obtain greater electrical conduction by doping metals (Cu, Al) which tailor the electronic structure of three different types of metal-CNT interactions, : 1) encapsulation of atoms inside the CNTs, 2) adsorption of atoms onto CNT surface, and 3) substitutional doping. Models of different doping methods were built and optimized with Density Functional Theory (DFT). And in conjunction with non-equilibrium Green's function, the electronic structure and the conducting properties were then calculated.Through this study, both metallic and semiconducting CNTs have been used. Metallic CNT (5, 5) encapsulated with copper chains have been first investigated with an emphasis on the electronic structure and the resultant conductance. The Density of States (DOS) have showed that the encapsulation of Cu effectively introduced more states around the fermi level. And due to the interaction between copper and CNTs, the conductance of the metallic CNTs-Cu system can be significantly increased.In addition to copper, aluminum has been also introduced for the study. The electronic structure and transport properties of hybrid nanowires consisting of aluminum chains adsorbed on a single-wall semiconducting CNT (10, 0) have been calculated. The band structure and DOS of the hybrid nanowires have showed that the adsorption of Al can effectively reduce the band gap. And with more than 4 Al chains adsorbed, the CNT has transformed from semiconducting to conducting. The transmission eigenstates further indicated that both Al chains and the modified nanotube were responsible for the increased conduction in the hybrid nanowires. The resultant conductance of CNT (10, 0)/Al hybrid nanowire is about 40% greater than that of pure Cu nanowire with the same diameter. In order to utilize the extraordinary conductance in CNT(10,0)/Al hybrid nanowire, it is also important to investigate the end-contact between the hybrid nanowire with Al electrodes. During this work the transmission spectrum at different bias voltage were calculated to study the I-V characteristics and the electrical contact resistances at the interfaces. The results have suggested that the electrical contact resistances between Al electrodes and the hybrid nanowire is significantly lower than that of Al-pure CNT contacts, although the actual contact resistance is directional dependent that the contact resistance is reduced to 20% of that Al-pure CNT along the longitudinal direction.The possibility of substitutional doping of Cu and Al in both metallic and semiconducting CNTs were also investigated. The formation energies have showed that Al doping was more energy favorable than Cu doping in both cases. And by doping of Al or Cu, a metallic tube experienced a higher conductance and a semiconducting tube has transited to conducting.In summary, different doping methods could modify the conducting property of nanotubes. Encapsulation of Cu in metallic CNT results in a significant conductance increment. Adsorption of Al transforms semiconducting CNT to conducting and reduces the contact resistance between the nanowire and Al electrode. Substitutional doping of Cu or Al transits semiconducting nanotube to conducting and enhance the conductance of metallic nanotube.
Show less - Date Issued
- 2017
- Identifier
- CFE0006607, ucf:51274
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006607
- Title
- Polyelectrolyte and hydrogel stabilized liquid crystal droplets for the detection of bile acids.
- Creator
-
Deng, Jinan, Fang, Jiyu, An, Linan, Chen, Quanfang, Cho, Hyoung Jin, Wu, Shintson, University of Central Florida
- Abstract / Description
-
Liquid crystal (LC) droplets show great potential as an optical probe for sensor applications due to their large surface areas and stimuli-response director configurations. Bile acids with amphipathic properties, which are formed in liver and secreted into the small intestine, play an important role in the digestion of fats and fat-soluble vitamins. After the digestion process, most of bile acids are recycled back to the liver and ready for the next digestion. Only a few of them are excreted...
Show moreLiquid crystal (LC) droplets show great potential as an optical probe for sensor applications due to their large surface areas and stimuli-response director configurations. Bile acids with amphipathic properties, which are formed in liver and secreted into the small intestine, play an important role in the digestion of fats and fat-soluble vitamins. After the digestion process, most of bile acids are recycled back to the liver and ready for the next digestion. Only a few of them are excreted into body fluids. However, there is significant increases in the concentration level of bile acids in body fluids for patients with liver and intestinal diseases, which makes bile acids a biomarker for the early diagnosis of liver and intestinal diseases. Chromatography-mass spectrometry and electrochemical sensors are common methods for the detection of bile acids. However, these detection methods are time consuming, require relatively large sample volumes, and expensive instruments. To date, there is still a demand in the development of simple, low-cost and user-friendly sensing platforms for the rapid detection of bile acids in clinical settings.In this dissertation, two simple and low-cost LC droplet-based sensing platforms were developed for the rapid and real-time detection of bile acids with a small sample volume. First, a miniaturized LC droplet-based sensor platform was designed and fabricated by the integration of polyelectrolytes/surfactant/sulfate ?-cyclodextrin (?-CD) complex-stabilized LC droplets into a microfluidic channel for the selective detection of bile acids in a small amount of solution, in which the ?-CD immobilized at the surface of the LC droplets acts as a selective barricade and the director configuration of the LC droplets serves as an optical probe. Second, a flexible LC droplet-based sensor platform was formed by the integration of surfactant-stabilized LC droplets in biopolymer hydrogel films. The LC droplet-based hydrogel film was cut into small sheets for the real-time detection of bile acids in a small amount of solution, in which the configuration transition of LC droplets induced by the interaction of bile acids with the surfactants absorbing on the surface of LC droplets serves as an optical probe.Cholic acid (CA) and deoxycholic acid (DCA), which are the most related to the liver and intestinal diseases, were detected in phosphate buffered saline (PBS) solution in the presence of the interference species of uric acid (UA) and ascorbic acid (AA) in this dissertation. These miniaturized LC droplet-based sensor platforms can be used to selectively detect CA and DCA in the presence of UA and AA. The detection limit of these sensor platforms for CA and DCA can be tuned by the number of LC droplets and the nature of surfactants. Furthermore, we find that these sensor platforms are more sensitive for DCA with the shorter response time and lower detection limit over CA due to their difference in hydrophobicity. These miniaturized 5CB droplet-based sensor platforms are easily handled, allowing the rapid and real-time detection of bile acids in a small sample volume in the presence of interference species, which are highly desirable for the "point-of-care" analysis of bile acids.
Show less - Date Issued
- 2017
- Identifier
- CFE0006939, ucf:51664
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006939
- Title
- Electrical properties of polymer-derived silicoaluminum carboxide ceramics and their applications in micro-sensors.
- Creator
-
Cao, Yejie, An, Linan, Fang, Jiyu, Zhai, Lei, Chen, Quanfang, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Polymer-derived ceramic (PDC) is a new kind of material which is directly synthesized by the thermal decomposition of polymer precursors. Due to their unique structure, which consists of the amorphous matrix phase and free-carbon phase, PDCs exhibit many distinguished properties even at high-temperature environment such as oxidation and creep resistance, amorphous semiconducting behavior as well as piezoresistive behavior. These outstanding properties make PDCs become promising candidates for...
Show morePolymer-derived ceramic (PDC) is a new kind of material which is directly synthesized by the thermal decomposition of polymer precursors. Due to their unique structure, which consists of the amorphous matrix phase and free-carbon phase, PDCs exhibit many distinguished properties even at high-temperature environment such as oxidation and creep resistance, amorphous semiconducting behavior as well as piezoresistive behavior. These outstanding properties make PDCs become promising candidates for various applications especially for high-temperature microsensors. However, most common used PDCs in the market now are SiC, SiCN and Si(M)CN ceramics, the high price and toxicity of their raw materials as well as strict operating requirements limit their applications. SiCO ceramics are appealing increasing attentions because they can cover these shortcomings of non-oxide ceramics, but their oxidation and corrosion resistance is so weak. In this dissertation, SiAlCO ceramics are chosen as main material. The addition of Al can improve the oxidation and corrosion resistance of SiCO ceramics. In this dissertation, the SiAlCO ceramics are synthesized by using silicone resin and aluminum tri-sec-butoxide (ATSB), then ceramic samples are obtained by pyrolyzing disk green bodies at 1000, 1100, 1200, 1300, 1400?C. Firstly, the composition, microstructure and structure evolution of SiAlCO ceramics are characterized via X-Ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Impedance spectroscopy (IS). The results indicate all ceramic samples pyrolyzed below 1400?C are amorphous and a sudden structure change point around 1100?C is observed due to the increase of degree of ordering. Si-C, Si-O, C-C/H, and C=C bonds are observed within the materials.Secondly, the room-temperature and temperature-dependent conductivity of the SiAlCO ceramics are studied. The optical absorption spectra are also measured. The conductivity increases by ~6 orders of magnitude when pyrolysis temperature increases from 1000 to 1400?C. A very high activation energy of 7.15eV is observed, and the redistribution of oxygen within the material is found to be responsible for it. Amorphous semiconductor behavior which follows the band-tail hopping (BTH) process is observed within this material. And the BTH process is resulted from unique electronic structures of the materials.Thirdly, SiAlCO ceramic exhibits extraordinary piezoresistive behavior with an extremely high gauge factor in range of 7000 ~16000, which is higher than that of any previously reported high-temperature materials. The coupling effect of pressure and temperature on the piezoresistive behavior is also studied. The piezoresistive stress coefficient increases with increasing temperature, which is contradictive to other reported materials. Such change of the piezoresistive stress coefficient is due to the change in the characteristic temperature, which is reversely related to the density of state within the band-tail level.In addition, SiAlCO also shows anomalous piezo-dielectricity with the positive pressure coefficient of the dielectric constant as high as 0.10-0.25 MPa-1, which is much higher than that of other high-temperature materials. The polarizability of the material also increases with increasing pressure. There behaviors are attributed to the unique cell-like structure of the materials.In the end, a pressure sensor is successfully developed. A supportive circuit is designed and the relationships among pressure, resistance and output voltage of the system are tested. The sensitivity of the sensor is calculated to be ?1 V=?15.125 Pa, indicating the SiAlCO ceramics are promising candidates for pressure sensor materials.
Show less - Date Issued
- 2016
- Identifier
- CFE0006275, ucf:51052
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006275
- Title
- Fabrication and Study of Graphene-Based Nanocomposites for Sensing and Energy Applications.
- Creator
-
McInnis, Matthew, Zhai, Lei, Yestrebsky, Cherie, Zou, Shengli, Blair, Richard, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
Graphite is an allotrope of carbon made up of atomically thin sheets, each covalently bound together, forming a ?-conjugated network. An individual layer, called graphene, has extraordinary electrical, thermal and physical properties that provide the opportunity for innovating new functional composites. Graphene can be produced directly on a metallic substrate by chemical vapor deposition or by chemical oxidation of graphite, forming a stable aqueous suspension of graphene oxide (GO), which...
Show moreGraphite is an allotrope of carbon made up of atomically thin sheets, each covalently bound together, forming a ?-conjugated network. An individual layer, called graphene, has extraordinary electrical, thermal and physical properties that provide the opportunity for innovating new functional composites. Graphene can be produced directly on a metallic substrate by chemical vapor deposition or by chemical oxidation of graphite, forming a stable aqueous suspension of graphene oxide (GO), which allows for convenient solution processing techniques. For the latter, after thermal or chemical reduction, much of the properties of the starting graphene re-emerge due to the reestablishment of ?-conjugation. The ?-conjugated basal plane of graphene has been shown to influence the crystallization of ?-conjugated polymers, providing thermodynamically strong nucleation sites through the relatively strong ?-? interactions. These polymers can homocrystallize into 1-D filaments, but when nucleated from graphene, the orientation and geometry can be controlled producing hierarchical structures containing an electrical conductor decorated with wires of semi-conducting polymer. The resulting structures and crystallization kinetics of the conjugated polymer, poly(3-hexylthiophene-2,5-diyl) (P3HT) nucleated by graphene was studied. Further, field-effect transistors were developed using graphene as both the electrodes and the polymer crystallization surface to directly grow P3HT nanowires as the active material. This direct crystallization technique lead to higher charge mobility and higher on-off ratios, and this result was interpreted in terms of the morphology and polymer-graphene interface.Besides these thin-film technologies, neat GO suspensions can be lyophilized to produce monolithic, free-standing aerogels and then reduced to produce an electrically conductive porous material with a surface area greater than 1000 m2/g. The present research focuses on functionalizing the aerogel surfaces with metal nanoparticles to increase electrical conductivity and to impart functionality. Functionalization was carried out by adding a metal salt as a precursor and a chelating agent to inhibit GO flocculation. The GO and metal salt were simultaneously reduced to form rGO aerogels homogeneously loaded with metal nanoparticles. The size and distribution of these nanoparticles was controlled by concentration and chelating agent identity and abundance. Optimum aerogel formulations were used as a functioning and reversible conductometric hydrogen gas sensor and as an anode in an asymmetric supercapacitor with excellent properties.
Show less - Date Issued
- 2015
- Identifier
- CFE0006227, ucf:51066
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006227
- Title
- Electroplated micro- and nanoscale structures for emitters and sensors.
- Creator
-
Wang, Xiaochen, Cho, Hyoung, Fang, Jiyu, Chen, Quanfang, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
In the electroplating process, dissolved metal cations are reduced by electrical current to a form a coherent metal coating on an electrode. Therefore, electroplating is primarily applied to modify the surface properties of an object (e.g. abrasion and wear resistance, corrosion protection, lubricity, aesthetic qualities, etc.), but also be applied to build up high aspect ratio structures on undersized parts or to form devices by electroforming.Compared with other common MEMS ...
Show moreIn the electroplating process, dissolved metal cations are reduced by electrical current to a form a coherent metal coating on an electrode. Therefore, electroplating is primarily applied to modify the surface properties of an object (e.g. abrasion and wear resistance, corrosion protection, lubricity, aesthetic qualities, etc.), but also be applied to build up high aspect ratio structures on undersized parts or to form devices by electroforming.Compared with other common MEMS (microelectromechanical systems) metal device fabrication techniques, such as vapor depositions, electroplating has several outstanding advantages. First, the fabrication process is cost-efficient because electroplating process can be set up easily without complex and expensive facilities. Second, the fabrication condition of electroplating is less demanding and does not require high temperature or low pressure. Furthermore, the process is applicable to making various features consisting of nanometer to millimeter scale particles, wires, and films. Thus, in this thesis, based on the design requirements of electrospray emitters and environmental sensors, the electroplating method was chosen to fabricate micro- and nanoscale structures for such applications.Electrospray is an atomization technique by which an electrically conductive liquid through a small capillary is charged with high voltage (kV) and ejected to a ground electrode. To minimize the electric field edge effect of the emitter nozzles to get even electro-hydrodynamic pulling force on the liquid among the nozzles and minimize variation from one emitter to another, the device needs to have the viscous pressure drop across each nozzle dominant over the electro-hydrodynamic pulling force. Therefore, embedded structures that can create high flow impedance are desirable to achieve uniform feeding of low flow rate of liquid to each emitter.We designed and fabricated in-plane metallic electrospray devices with an embedded array of micropillars within a microchannel by photolithography and electroplating. The novelty of the proposed research lies in its embedded flow restriction structure, scalability, and ease of fabrication. The formation of jets as well as the flexing capability of the emitter was achieved. The other application of electroplating was demonstrated in the fabrication of environmental sensors. Utilizing a pulsed electroplating method, Co-Cu metal alloy films were prepared and Cu was selectively etched to fabricate nanoporous electrodes which could be used to measure both absolute levels and changes of phosphate concentration in aqueous environments. The formation of cobalt phosphate compound could be used for the detection. The increased surface area and relatively simple fabrication protocols make the proposed method attractive and promising for many environmental sensing applications.
Show less - Date Issued
- 2014
- Identifier
- CFE0005274, ucf:50548
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005274