Current Search: Chen, Xi (x)
-
-
Title
-
Climate and landscape controls on seasonal water balance at the watershed scale.
-
Creator
-
Chen, Xi, Wang, Dingbao, Chopra, Manoj, Hagen, Scott, Sumner, David, University of Central Florida
-
Abstract / Description
-
The main goal of this dissertation is to develop a seasonal water balance model for evaporation, runoff and water storage change based on observations from a large number of watersheds, and further to obtain a comprehensive understanding on the dominant physical controls on intra-annual water balance. Meanwhile, the method for estimating evaporation and water storage based on recession analysis is improved by quantifying the seasonal pattern of the partial contributing area and contributing...
Show moreThe main goal of this dissertation is to develop a seasonal water balance model for evaporation, runoff and water storage change based on observations from a large number of watersheds, and further to obtain a comprehensive understanding on the dominant physical controls on intra-annual water balance. Meanwhile, the method for estimating evaporation and water storage based on recession analysis is improved by quantifying the seasonal pattern of the partial contributing area and contributing storage to base flow during low flow seasons. A new method for quantifying seasonality is developed in this research. The difference between precipitation and soil water storage change, defined as effective precipitation, is considered as the available water. As an analog to climate aridity index, the ratio between monthly potential evaporation and effective precipitation is defined as a monthly aridity index. Water-limited or energy-limited months are defined based on the threshold of 1. Water-limited or energy-limited seasons are defined by aggregating water-limited or energy-limited months, respectively. Seasonal evaporation is modeled by extending the Budyko hypothesis, which is originally for mean annual water balance; while seasonal surface runoff and base flow are modeled by generalizing the proportionality hypothesis originating from the SCS curve number model for surface runoff at the event scale. The developed seasonal evaporation and runoff models are evaluated based on watersheds across the United States. For the extended Budyko model, 250 out of 277 study watersheds have a Nash-Sutcliff efficiency (NSE) higher than 0.5, and for the seasonal runoff model, 179 out of 203 study watersheds have a NSE higher than 0.5. Furthermore, the connection between the seasonal parameters of the developed model and a variety of physical factors in the study watersheds is investigated. For the extended Budyko model, vegetation is identified as an important physical factor that related to the seasonal model parameters. However, the relationship is only strong in water-limited seasons, due to the seasonality of the vegetation coverage. In the seasonal runoff model, the key controlling factors for wetting capacity and initial wetting are soil hydraulic conductivity and maximum rainfall intensity respectively. As for initial evaporation, vegetation is identified as the strongest controlling factor. Besides long-term climate, this research identifies the key controlling factors on seasonal water balance: the effects of soil water storage, vegetation, soil hydraulic conductivity, and storminess. The developed model is applied to the Chipola River watershed and the Apalachicola River basin in Florida for assessing potential climate change impact on the seasonal water balance. The developed model performance is compared with a physically-based distributed hydrologic model of the Soil Water Assessment Tool, showing a good performance for seasonal runoff, evaporation and storage change.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005313, ucf:50519
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005313
-
-
Title
-
Analysis, Design and Efficiency Optimization of Power Converters for Renewable Energy Applications.
-
Creator
-
Chen, Xi, Batarseh, Issa, Zhou, Qun, Mikhael, Wasfy, Sun, Wei, Kutkut, Nasser, University of Central Florida
-
Abstract / Description
-
DC-DC power converters are widely used in renewable energy-based power generation systems due to the constant demand of high-power density and high-power conversion efficiency. DC-DC converters can be classified into non-isolated and isolated topologies. For non-isolated topologies, they are typically derived from buck, boost, buck-boost or forth order (such as Cuk, Sepic and Zeta) converters and they usually have relatively higher conversion efficiency than isolated topologies. However, with...
Show moreDC-DC power converters are widely used in renewable energy-based power generation systems due to the constant demand of high-power density and high-power conversion efficiency. DC-DC converters can be classified into non-isolated and isolated topologies. For non-isolated topologies, they are typically derived from buck, boost, buck-boost or forth order (such as Cuk, Sepic and Zeta) converters and they usually have relatively higher conversion efficiency than isolated topologies. However, with the applications where the isolation is required, either these topologies should be modified, or alternative topologies are needed. Among various isolated DC-DC converters, the LLC resonant converter is an attractive selection due to its soft switching, isolation, wide gain range, high reliability, high power density and high conversion efficiency.In low power applications, such as battery chargers and solar microinverters, increasing the switching frequency can reduce the size of passive components and reduce the current ripple and root-mean-square (RMS) current, resulting in higher power density and lower conduction loss. However, switching losses, gate driving loss and electromagnetic interference (EMI) may increase as a consequence of higher switching frequency. Therefore, switching frequency modulation, components optimization and soft switching techniques have been proposed to overcome these issues and achieve a tradeoff to reach the maximum conversion efficiency.This dissertation can be divided into two categories: the first part is focusing on the well-known non-isolated bidirectional cascaded-buck-boost converter, and the second part is concentrating on the isolated dual-input single resonant tank LLC converter. Several optimization approaches have been presented to improve the efficiency, power density and reliability of the power converters. In the first part, an adaptive switching frequency modulation technique has been proposed based on the precise loss model in this dissertation to increase the efficiency of the cascaded-buck-boost converter. In adaptive switching frequency modulation technique, the optimal switching frequency for the cascaded-buck-boost converter is adaptively selected to achieve the minimum total power loss. In addition, due to the major power losses coming from the inductor, a new low profile nanocrystalline inductor filled with copper foil has been designed to significantly reduce the core loss and winding loss. To further improve the efficiency of the cascaded-buck-boost converter, the adaptive switching frequency modulation technique has been applied on the converter with designed nanocrystalline inductor, in which the peak efficiency of the converter can break the 99% bottleneck.In the second part, a novel dual-input DC-DC converter is developed according to the LLC resonant topology. This design concept minimizes the circuit components by allowing single resonant tank to interface with multiple input sources. Based on different applications, the circuit configuration for the dual-input LLC converter will be a little different. In order to improve the efficiency of the dual-input LLC converter, the semi-active rectifiers have been used on the transformer secondary side to replace the low-side bridge diodes. In this case, higher magnetizing inductance can be selected while maintaining the same voltage gain. Besides, a burst-mode control strategy has been proposed to improve the light load and very light load efficiency of the dual- input LLC converter. This control strategy is able to be readily implemented on any power converter since it can be achieved directly through firmware and no circuit modification is needed in implementation of this strategy.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007612, ucf:52531
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007612