Current Search: Chen, Yan (x)
-
-
Title
-
Scandia and ceria stabilized zirconia based electrolytes and anodes for intermediate temperature solid oxide fuel cells: Manufacturing and properties.
-
Creator
-
Chen, Yan, Orlovskaya, Nina, An, Linan, Chen, Quanfang, Sohn, Yongho, Raghavan, Seetha, Huang, Xinyu, University of Central Florida
-
Abstract / Description
-
Scandia and ceria stabilized zirconia (10 mol% Sc2O3 (-) 1 mol% CeO2 (-) ZrO2, SCSZ) has superior ionic conductivity in the intermediate temperature range for the operation of solid oxide fuel cells, but it does not exhibit good phase stability in comparison with yttria stabilized zirconia (8 mol% Y2O3 (-) ZrO2, YSZ). To maintain high ionic conductivity and improve the stability of the electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed, along with the...
Show moreScandia and ceria stabilized zirconia (10 mol% Sc2O3 (-) 1 mol% CeO2 (-) ZrO2, SCSZ) has superior ionic conductivity in the intermediate temperature range for the operation of solid oxide fuel cells, but it does not exhibit good phase stability in comparison with yttria stabilized zirconia (8 mol% Y2O3 (-) ZrO2, YSZ). To maintain high ionic conductivity and improve the stability of the electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed, along with the referential electrolytes containing pure SCSZ or YSZ. The electrolytes were manufactured by tape casting, laminating, and pressureless sintering techniques. After sintering, while the thickness of YSZ outer layers remained constant at ~30 ?m, the thickness of inner layers of SCSZ for the 3-, 4- and 6-layer designs varied at ~30, ~60 and ~120 ?m, respectively. Selected characterizations were employed to study the structure, morphology, impurity content and the density of the electrolytes. Furthermore, in situ X-ray diffraction, neutron diffraction and Raman scattering were carried out to study the phase transition and lattice distortion during long-term annealing at 350 (&)deg;C and 275 (&)deg;C for SCSZ and YSZ, respectively, where the dynamic damping occurred when Young's modulus was measured.In YSZ/SCSZ electrolytes, thermal residual stresses and strains were generated due to the mismatch of coefficients of thermal expansion from each layer of different compositions. They could be adjusted by varying the thickness ratios of each layer in different designs of laminates. The theoretical residual stresses have been calculated for different thickness ratios. The effect of thermal residual stress on the biaxial flexural strength was studied in layered electrolytes. The biaxial flexure tests of electrolytes with various layered designs were performed using a ring-on-ring method at both room temperature and 800 (&)deg;C. The maximum principal stress during fracture indicated an increase of flexural strength in the electrolytes with layered structure at both temperatures in comparison with the electrolytes without compositional gradient. Such an increase of strength is the result of the existence of residual compressive stresses in the outer YSZ layer. In addition, Weibull statistics of the strength values were built for the layered electrolytes tested at room temperature, and the effect of thermal residual stresses on Weibull distribution was established. The calculation of residual stress present at the outer layers was verified. The high ionic conductivity was maintained with layered electrolyte designs in the intermediate temperature range. It was also established that the ionic conductivity of layered electrolytes exhibited 7% (-) 11% improvement at 800 (&)deg;C due to the stress/strain effects, and the largest improvements in a certain electrolyte was found to nearly coincide with the largest residual compressive strain in the outer YSZ layer.In addition to the study of layered electrolytes, mechanical properties of porous Ni/SCSZ cermet were studied. The anode materials were reduced by 65 wt% NiO (-) 35 wt% SCSZ (N65) and 50 wt% NiO (-) 50 wt% SCSZ (N50) porous ceramics in the forming gas. Young's modulus as well as strength and fracture toughness of non-reduced and reduced anodes has been measured, both at room and high temperatures. High temperature experiments were performed in the reducing environment of forming gas. It was shown that while at 700 (&)deg;C and 800 (&)deg;C the anode specimens exhibited purely brittle deformation, a brittle-to-ductile transition occurred at 800 (-) 900 (&)deg;C, and the anode deformed plastically at 900 (&)deg;C. Fractography of the anode specimens were studied to identify the fracture modes of the anodes tested at different temperatures.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005090, ucf:50750
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005090
-
-
Title
-
Effect of particles on evaporation of droplet containing particles.
-
Creator
-
Wei, Yan, Chen, Ruey-Hung, Deng, Weiwei, Putnam, Shawn, Wu, Thomas, University of Central Florida
-
Abstract / Description
-
The evaporation of droplet containing insoluble particles has grown into an active area of research due to the needs for nanofluids for applications in heat transfer, combustion, and manufacturing desired micro/nano particles in the pharmaceutical industry. The evaporation of droplets containing particles involves complicated multiphase heat and mass transport. The evaporation process consists of two stages: the first stage consists of evaporation until a shell of particle forms or when the...
Show moreThe evaporation of droplet containing insoluble particles has grown into an active area of research due to the needs for nanofluids for applications in heat transfer, combustion, and manufacturing desired micro/nano particles in the pharmaceutical industry. The evaporation of droplets containing particles involves complicated multiphase heat and mass transport. The evaporation process consists of two stages: the first stage consists of evaporation until a shell of particle forms or when the solid to liquid ratio is sufficiently large and the second stage, where the droplet size is commonly assumed to be unchanged. The dissertation investigates the evaporation kinetics in the first stage. An experimental setup based on electrodynamic balance (EDB) is built to allow the observation of evaporation of a free standing micro size droplet. Besides experimental design, a novel theoretical model is developed to first describe the morphological evolution process in the absence of internal convection. The model accounts for the effect of particles at the droplet surface on the diffusion of liquid vapor. The gradually increasing particle number at the droplet surface reduces the area for evaporation, leading to reduction in evaporation rate in the first drying stage, contrary to previous assumptions. The evaporation in the first stage is controlled by Pe (defined as the ratio of droplet evaporation rate to the particle diffusion rate) and particle properties such as wettability. For large values of Pe, the particles concentration is high near the droplet surface, leading to the change of evaporation rate. For small values of Pe, the effect of particles on the evaporation rate of droplet in the first drying stage is small because particles are allowed sufficient time to redistribute within the droplet. The model analysis also reveals that particle wettability is an important factor affecting the first drying stage. For hydrophilic particles, the contact angle of the particles at the droplet surface is small, leading to small change of evaporation in the first stage. For the hydrophobic particles that have large contact angles, the change of evaporation rate in the first drying stage is larger. The evaporation model that accounts for the internal convection is also used to describe the evaporation process. In this model, the evaporation behavior during the first stage is controlled by the particle mobility, initial particle concentration, and droplet recession/evaporation rate. For particles with high mobility, the particle distribution within the droplet tends to be smooth. The effect of convection flow on the particles distribution becomes stronger as particle mobility decreases. Once the particles mobility is decreased to a limit at which the surface particle density is only controlled by the internal flow and the evaporation process is independent of the particles mobility. For a given internal flow field and a specific particles mobility, the duration of the first stage and the final dry particle size are both controlled by the initial particle concentration. A smaller/larger initial particle concentration results in a longer/shorter first stage and smaller/larger dry particle.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005903, ucf:50856
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005903