Current Search: Chow, Lee (x)
Pages
-
-
Title
-
EXPERIMENTAL STUDY OF PROFILES OF IMPLANTED SPECIES INTO SEMICONDUCTOR MATERIALS USING SECONDARY ION MASS SPECTROMETRY.
-
Creator
-
Salman, Fatma, Chow, Lee, University of Central Florida
-
Abstract / Description
-
ABSTRACT The study of impurity diffusion in semiconductor hosts is an important field that has both fundamental appeal and practical applications. Ion implantation is a good technique to introduce impurities deep into the semiconductor substrates at relatively low temperature and is not limited by the solubility of the dopants in the host. However ion implantation creates defects and damages to the substrate. Annealing process was used to heal these damages and to activate the dopants. In...
Show moreABSTRACT The study of impurity diffusion in semiconductor hosts is an important field that has both fundamental appeal and practical applications. Ion implantation is a good technique to introduce impurities deep into the semiconductor substrates at relatively low temperature and is not limited by the solubility of the dopants in the host. However ion implantation creates defects and damages to the substrate. Annealing process was used to heal these damages and to activate the dopants. In this study, we introduced several species such as alkali metals (Li, Na, K), alkali earth metals (Be, Ca,), transition metals (Ti, V, Cr, Mn) and other metals (Ga, Ge) into semiconductor substrates using ion implantation. The implantation energy varies form 70 keV to 200 keV and the dosages vary between ~ 1.0x1012 and ~5.0x1015 atoms/cm2. The samples are annealed at different temperatures from 300°C to 1000°C and for different time intervals. The redistribution behaviors of the implanted ions are studied experimentally using secondary ion mass spectrometry (SIMS). We observed some complex distribution behaviors due to the defects created during the process of ion implantation. The diffusivities of some impurities are calculated and compared to previous data. It was found that the diffusivities of implanted impurities is related to the dosages, annealing temperatures and the defects and damages caused by ion implantation. Additionally, as we go from one type of semiconductor to another, the diffusion behavior of the impurities shows a different trend.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001791, ucf:47269
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001791
-
-
Title
-
INDIVIDUAL CARBON NANOTUBE PROBES AND FIELD EMITTERS FABRICATION AND THEIR PROPERTIES.
-
Creator
-
Chai, Guangyu, Chow, Lee, University of Central Florida
-
Abstract / Description
-
Since the discovery of carbon nanotubes (CNT) in 1999, they have attracted much attention due to their unique mechanical and electrical properties and potential applications. Yet their nanosize makes the study of individual CNTs easier said than done. In our laboratory, carbon fibers with nanotube cores have been synthesized with conventional chemical vapor deposition (CVD) method. The single multiwall carbon nanotube (MWNT) sticks out as a tip of the carbon fiber. In order to pick up the...
Show moreSince the discovery of carbon nanotubes (CNT) in 1999, they have attracted much attention due to their unique mechanical and electrical properties and potential applications. Yet their nanosize makes the study of individual CNTs easier said than done. In our laboratory, carbon fibers with nanotube cores have been synthesized with conventional chemical vapor deposition (CVD) method. The single multiwall carbon nanotube (MWNT) sticks out as a tip of the carbon fiber. In order to pick up the individual CNT tips, focused ion beam (FIB) technique is applied to cut and adhere the samples. The carbon fiber with nanotube tip was first adhered on a micro-manipulator with the FIB welding function. Afterwards, by applying the FIB milling function, the fiber was cut from the base. This enables us to handle the individual CNT tips conveniently. By the same method, we can attach the nanotube tip on any geometry of solid samples such as conventional atomic force microscopy (AFM) silicon tips. The procedures developed for the FIB assisted individual CNT tip fabrication will be described in detail. Because of their excellent electrical and stable chemical properties, individual CNTs are potential candidates as electron guns for electron based microscopes to produce highly coherent electron beams. Due to the flexibility of the FIB fabrication, the individual CNT tips can be easily fabricated on a sharpened clean tungsten wire for field emission (FE) experimentation. Another promising application for individual CNT tips is as AFM probes. The high aspect ratio and mechanical resilience make individual CNTs ideal for scanning probe microscopy (SPM) tips. Atomic force microscopy with nanotube tips allows us to image relatively deep features of the sample surface at near nanometer resolution. Characterization of AFM with individual CNT tips and field emission properties of single CNT emitters will be studied and presented.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000248, ucf:46233
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000248
-
-
Title
-
CHEMICAL BATH DEPOSITION OF GROUP II-VI SEMICONDUCTOR THIN FILMS FOR SOLAR CELLS APPLICATIONS.
-
Creator
-
KHALLAF, HANI, Chow, Lee, University of Central Florida
-
Abstract / Description
-
Chemical bath deposition (CBD) is the analog in liquid phase of the well-known chemical vapor deposition technique in the vapor phase. In CBD, deposition of thin films takes place from aqueous solutions at low temperatures by a chemical reaction between dissolved precursors, with the help of a complexing agent. Among all techniques used to grow Group II-VI semiconductors, CBD has the advantage of being a simple, low temperature, and inexpensive large-area deposition technique. So far, its...
Show moreChemical bath deposition (CBD) is the analog in liquid phase of the well-known chemical vapor deposition technique in the vapor phase. In CBD, deposition of thin films takes place from aqueous solutions at low temperatures by a chemical reaction between dissolved precursors, with the help of a complexing agent. Among all techniques used to grow Group II-VI semiconductors, CBD has the advantage of being a simple, low temperature, and inexpensive large-area deposition technique. So far, its contribution in thin film solar cells industry has been mainly limited to growing n-type CdS and/or ZnS window layers for CdTe-based and CIGS-based solar cells. In this work we first optimize the CBD process of CdS using nitrilotriacetic acid and hydrazine as complexing agents as an alternative to ammonia. We then study the effect of the cadmium precursor on the optical/electrical properties, as well as crystal structure, morphology, and composition of CBD-CdS films. A better understanding of the CBD process of CdS as a whole has been achieved and high quality CBD-CdS films have been obtained. Next, we investigate in-situ doping of CBD-CdS with group III elements, such as B, Al, In, and Ga. The objective is to show that CBD is capable of not only growing CdS but also of doping it to reduce its resistivity and, as a result, facilitate its use in solar cells as well as other optoelectronic device fabrication. A four orders of magnitude drop of film resistivity has been achieved without a significant change in film bandgap, structure, or morphology. Finally, we test the possibility of using CBD to grow transparent conducting oxide (TCO) films, such as Al-doped ZnO films and cadmium stannate films. First, we study CBD of ZnO and later in-situ doping of ZnO using Al. High quality ZnO thin films have been grown using CBD with the help of four different complexing agents. Post heat treatment in argon ambient helped reduce resistivity of CBD-ZnO undoped films to ~ 10-1 Ω-cm. In-situ doping of such films using Al shows promising results. Such films could be an alternative to indium tin oxide (ITO) layers that are commonly used as TCO layers for solar cells. Another approach is to use CBD to grow CdO and SnO2 thin films, with the goal of obtaining Cd2SnO4 by later annealing of these two layers. Cadmium stannate is another TCO candidate that could replace ITO in the near future. We have succeeded in growing CBD-CdO thin films using three different complexing agents. Undoped CBD-CdO films with a resistivity as low as 1.01 x10-2 -cm and a carrier density as high as 2.59 x 1020 cm-3 have been obtained. SnO2 films have been successfully grown using CBD. Fabrication of Cadmium stannate thin films using CBD is investigated. In summary, our objective to expand the use of CBD beyond just growing CdS and ZnS, and to test the possibility of using it for in-situ doping of group II-VI semiconductors as well as TCO layers fabrication proved to be successful. We believe that this may have a significant impact on solar cells as well as other optoelectronic devices fabrication industry, due to the simplicity and the cost-effectiveness of CBD.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002860, ucf:48071
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002860
-
-
Title
-
From Excited Charge Dynamics to Cluster Diffusion: Development and Application of Techniques Beyond DFT and KMC.
-
Creator
-
Acharya, Shree Ram, Rahman, Talat, Chow, Lee, Stolbov, Sergey, Wu, Annie, University of Central Florida
-
Abstract / Description
-
This dissertation focuses on developing reliable and accurate computational techniques which enable the examination of static and dynamic properties of various activated phenomena using deterministic and stochastic approaches. To explore ultrafast electron dynamics in materials with strong electron-electron correlation, under the influence of a laser pulse, an ab initio electronic structure method based on time-dependent density functional theory (TDDFT) in combination with dynamical mean...
Show moreThis dissertation focuses on developing reliable and accurate computational techniques which enable the examination of static and dynamic properties of various activated phenomena using deterministic and stochastic approaches. To explore ultrafast electron dynamics in materials with strong electron-electron correlation, under the influence of a laser pulse, an ab initio electronic structure method based on time-dependent density functional theory (TDDFT) in combination with dynamical mean field theory (DMFT) is developed and applied to: 1) single-band Hubbard model; 2) multi-band metal Ni; and 3) multi-band insulator MnO. The ultrafast demagnetization in Ni reveal the importance of memory and correlation effects, leading to much better agreement with experimental data than previously obtained, while for MnO the main channels of charge response are identified. Furthermore, an analytical form of the exchange-correlation kernel is obtained for future applications, saving tremendous computational cost. In another project, size-dependent temporal and spatial evolution of homo- and hetero-epitaxial adatom islands on fcc(111) transition metals surfaces are investigated using the self-learning kinetic Monte Carlo (SLKMC) method that explores long-time dynamics unbiased by apriori selected diffusion processes. Novel multi-atom diffusion processes are revealed. Trends in the diffusion coefficients point to the relative role of adatom lateral interaction and island-substrate binding energy in determining island diffusivity. Moreover, analysis of the large data-base of the activation energy barriers generated for multitude of diffusion processes for variety of systems allows extraction of a set of descriptors that in turn generate predictive models for energy barrier evaluation. Finally, the kinetics of the industrially important methanol partial oxidation reaction on a model nanocatalyst is explored using KMC supplemented by DFT energetics. Calculated thermodynamics explores the active surface sites for reaction components including different intermediates and energetics of competing probable reaction pathways, while kinetic study attends to the selectivity of products and its variation with external factors.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0006965, ucf:52910
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006965
-
-
Title
-
Parallel fabrication and transport properties of carbon nanotube single electron transistors.
-
Creator
-
Islam, Muhammad, Khondaker, Saiful, Chow, Lee, Stolbov, Sergey, Zhai, Lei, University of Central Florida
-
Abstract / Description
-
Single electron transistors (SET) have attracted significant attention as a potential building block for post CMOS nanoelectronic devices. However, lack of reproducible and parallel fabrication approach and room temperature operation are the two major bottlenecks for practical realization of SET based devices. In this thesis, I demonstrate large scale single electron transistors fabrication techniques using solution processed single wall carbon nanotubes (SWNTs) and studied their electron...
Show moreSingle electron transistors (SET) have attracted significant attention as a potential building block for post CMOS nanoelectronic devices. However, lack of reproducible and parallel fabrication approach and room temperature operation are the two major bottlenecks for practical realization of SET based devices. In this thesis, I demonstrate large scale single electron transistors fabrication techniques using solution processed single wall carbon nanotubes (SWNTs) and studied their electron transport properties. The approach is based on the assembly of individual SWNTs via dielectrophoresis (DEP) at the selected position of the circuit and formation of tunnel barriers on SWNT. Two different techniques: i) metal-SWNT Schottky contact, and ii) mechanical templating of SWNTs were used for tunnel barrier creation.Low temperature (4.2K) transport measurement of 100 nm long metal-SWNT Schottky contact devices show that 93% of the devices with contact resistance (RT) (>) 100 K? show SET behavior. Majority (90%) of the devices with 100 K? (<) RT (<) 1 M?, show periodic, well-de?ned Coulomb diamonds with a charging energy ~ 15 meV, represents single electron tunnelling through a single quantum dot (QD), defined by the top contact. For high RT ((>) 1M?), devices show multiple QDs behaviors, while QD was not formed for low RT ((<) 100 K?) devices. From the transport study of 50 SWNT devices, a total of 38 devices show SET behavior giving an yield of 76%. I also demonstrate room temperature operating SET by using mechanical template technique. In mechanical template method individual SWNT is placed on top of a Al/Al2O3 local gate which bends the SWNT at the edge and tunnel barriers are created. SET devices fabricated with a template width of ~20 nm shows room temperature operation with a charging energy of ~150 meV. I also discussed the detailed transport spectroscopy of the devices.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006037, ucf:50987
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006037
-
-
Title
-
Comparison Of Casimir , Elastic, Electrostatic Forces For A Micro-Cantilever.
-
Creator
-
Alhasan, Ammar, Peale, Robert, Del Barco, Enrique, Chow, Lee, University of Central Florida
-
Abstract / Description
-
Casimir force is a cause of stiction (adhesion) between metal surfaces in Micro-Electro Mechanical Systems (MEMS). Casimir Force depends strongly on the separation of the two surfaces and the contact area. This thesis reviews the theory and prior experimental demonstrations of the Casimir force. Then the Casimir attractive force is calculated for a particular MEMS cantilever device, in which the metal cantilever tip is required to repeatedly touch and release from a metal tip pad on the...
Show moreCasimir force is a cause of stiction (adhesion) between metal surfaces in Micro-Electro Mechanical Systems (MEMS). Casimir Force depends strongly on the separation of the two surfaces and the contact area. This thesis reviews the theory and prior experimental demonstrations of the Casimir force. Then the Casimir attractive force is calculated for a particular MEMS cantilever device, in which the metal cantilever tip is required to repeatedly touch and release from a metal tip pad on the substrate surface in response to a periodic driving electrostatic force. The elastic force due to the bending of the cantilever support arms is also a consideration in the device operation. The three forces are calculated analytically and compared as a function of cantilever tip height. Calculation of the electrostatic force uses coefficients of capacitance and electrostatic induction determined numerically by the finite element method, including the effect of permittivity for the structural oxide. A condition on the tip area to allow electrostatic release of the tip from the surface against Casimir sticking and elastic restoring forces is established.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005123, ucf:50713
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005123
-
-
Title
-
Attosecond Transient Absorption Spectroscopy of Atoms and Molecules.
-
Creator
-
Cheng, Yan, Chang, Zenghu, Saha, Haripada, Chow, Lee, Vanstryland, Eric, University of Central Florida
-
Abstract / Description
-
One of the most fundamental goals of attosecond science is to observe and to control the dynamic evolutions of electrons in matter. The attosecond transient absorption spectroscopy is a powerful tool to utilize attosecond pulse to measure electron dynamics in quantum systems directly. In this work, isolated single attosecond pulses are used to probe electron dynamics in atoms and to study dynamics in hydrogen molecules using the attosecond transient absorption spectroscopy technique. The...
Show moreOne of the most fundamental goals of attosecond science is to observe and to control the dynamic evolutions of electrons in matter. The attosecond transient absorption spectroscopy is a powerful tool to utilize attosecond pulse to measure electron dynamics in quantum systems directly. In this work, isolated single attosecond pulses are used to probe electron dynamics in atoms and to study dynamics in hydrogen molecules using the attosecond transient absorption spectroscopy technique. The target atom/molecule is first pumped to excited states and then probed by a subsequent attosecond extreme ultraviolet (XUV) pulse or by a near infrared (NIR) laser pulse. By measuring the absorbed attosecond XUV pulse spectrum, the ultrafast electron correlation dynamics can be studied in real time. The quantum processes that can be studied using the attosecond transient absorption spectroscopy include the AC stark shift, multi-photon absorption, intermediate states of atoms, autoionizing states, and transitions of vibrational states in molecules. In all experiments, the absorption changes as a function of the time delay between the attosecond XUV probe pulse and the dressing NIR laser pulse, on a time scale of sub-cycle laser period, which reveals attosecond electron dynamics. These experiments demonstrate that the attosecond transient absorption spectroscopy can be performed to study and control electronic and nuclear dynamics in quantum systems with high temporal and spectral resolution, and it opens door for the study of electron dynamics in large molecules and other more complex systems.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006284, ucf:51595
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006284
-
-
Title
-
Characterization and Application of Isolated Attosecond Pulses.
-
Creator
-
Chini, Michael, Chang, Zenghu, Saha, Haripada, Chow, Lee, Schulzgen, Axel, University of Central Florida
-
Abstract / Description
-
Tracking and controlling the dynamic evolution of matter under the influence of external fields is among the most fundamental goals of physics. In the microcosm, the motion of electrons follows the laws of quantum mechanics and evolves on the timescale set by the atomic unit of time, 24 attoseconds. While only a few time-dependent quantum mechanical systems can be solved theoretically, recent advances in the generation, characterization, and application of isolated attosecond pulses and few...
Show moreTracking and controlling the dynamic evolution of matter under the influence of external fields is among the most fundamental goals of physics. In the microcosm, the motion of electrons follows the laws of quantum mechanics and evolves on the timescale set by the atomic unit of time, 24 attoseconds. While only a few time-dependent quantum mechanical systems can be solved theoretically, recent advances in the generation, characterization, and application of isolated attosecond pulses and few-cycle femtosecond lasers have given experimentalists the necessary tools for dynamic measurements on these systems. However, pioneering studies in attosecond science have so far been limited to the measurement of free electron dynamics, which can in most cases be described approximately using classical mechanics. Novel tools and techniques for studying bound states of matter are therefore desired to test the available theoretical models and to enrich our understanding of the quantum world on as-yet unprecedented timescales.In this work, attosecond transient absorption spectroscopy with ultrabroadband attosecond pulses is presented as a technique for direct measurement of electron dynamics in quantum systems, demonstrating for the first time that the attosecond transient absorption technique allows for state-resolved and simultaneous measurement of bound and continuum state dynamics. The helium atom is the primary target of the presented studies, owing to its accessibility to theoretical modeling with both ab initio simulations and to model systems with reduced dimensionality. In these studies, ultrafast dynamics (-) on timescales shorter than the laser cycle (-) are observed in prototypical quantum mechanical processes such as the AC Stark and ponderomotive energy level shifts, Rabi oscillations and electromagnetically-induced absorption and transparency, and two-color multi-photon absorption to (")dark(") states of the atom. These features are observed in both bound states and quasi-bound autoionizing states of the atom. Furthermore, dynamic interference oscillations, corresponding to quantum path interferences involving bound and free electronic states of the atom, are observed for the first time in an optical measurement. These first experiments demonstrate the applicability of attosecond transient absorption spectroscopy with ultrabroadband attosecond pulses to the study and control of electron dynamics in quantum mechanical systems with high fidelity and state selectivity. The technique is therefore ideally suited for the study of charge transfer and collective electron motion in more complex systems.The transient absorption studies on atomic bound states require ultrabroadband attosecond pulses ? attosecond pulses with large spectral bandwidth compared to their central frequency. This is due to the fact that the bound states in which we are interested lie only 15-25 eV above the ground state, so the central frequency of the pulse should lie in this range. On the other hand, the bandwidth needed to generate an isolated 100 as pulse exceeds 18 eV (-) comparable to or even larger than the central frequency. However, current methods for characterizing attosecond pulses require that the attosecond pulse spectrum bandwidth is small compared to its central frequency, known as the central momentum approximation. We therefore explore the limits of attosecond pulse characterization using the current technology and propose a novel method for characterizing ultrabroadband attosecond pules, which we term PROOF (phase retrieval by omega oscillation filtering). We demonstrate the PROOF technique with both simulated and experimental data, culminating in the characterization of a world-record-breaking 67 as pulse.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004781, ucf:49802
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004781
-
-
Title
-
On-Chip Optical Stabilization of High-Speed Mode-locked Quantum Dot Lasers for Next Generation Optical Networks.
-
Creator
-
Ardey, Abhijeet, Delfyett, Peter, Chow, Lee, Peale, Robert, Likamwa, Patrick, University of Central Florida
-
Abstract / Description
-
Monolithic passively mode-locked colliding pulse semiconductor lasers generating pico- to sub-picosecond terahertz optical pulse trains are promising sources for future applications in ultra-high speed data transmission systems and optical measurements. However, in the absence of external synchronization, these passively mode-locked lasers suffer from large amplitude and timing jitter instabilities resulting in broad comb linewidths, which precludes many applications in the field of coherent...
Show moreMonolithic passively mode-locked colliding pulse semiconductor lasers generating pico- to sub-picosecond terahertz optical pulse trains are promising sources for future applications in ultra-high speed data transmission systems and optical measurements. However, in the absence of external synchronization, these passively mode-locked lasers suffer from large amplitude and timing jitter instabilities resulting in broad comb linewidths, which precludes many applications in the field of coherent communications and signal processing where a much narrower frequency line set is needed. In this dissertation, a novel quantum dot based coupled cavity laser is presented, where for the first time, four-wave mixing (FWM) in the monolithically integrated saturable absorber is used to injection lock a monolithic colliding pulse mode-locked (CPM) laser with a mode-locked high-Q ring laser. Starting with a passively mode-locked master ring laser, a stable 30 GHz optical pulse train is generated with more than 10 dB reduction in the RF noise level at 20 MHz offset and close to 3-times reduction in the average optical linewidth of the injection locked CPM slave laser. The FWM process is subsequently verified experimentally and conclusively shown to be the primary mechanism responsible for the observed injection locking. Other linear scattering effects are found to be negligible, as predicted in the orthogonal waveguide configuration. The novel injection locking technique is further exploited by employing optical hybrid mode-locking and increasing the Q of the master ring cavity, to realize an improved stabilization architecture. Dramatic reduction is shown with more than 14-times reduction in the photodetected beat linewidth and almost 5-times reduction in the optical linewidth of the injection locked slave laser with generation of close to transform limited pulses at ~ 30 GHz. These results demonstrate the effectiveness of the novel injection locking technique for an all-on-chip stability transfer and provides a new way of stabilizing monolithic optical pulse sources for applications in future high speed optical networks.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005299, ucf:50518
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005299
-
-
Title
-
High Pressure Micro-Spectroscopy of Biological Assemblies and Cells.
-
Creator
-
Park, Sang, Schulte, Alfons, Chow, Lee, Luo, Weili, Phanstiel, Otto, University of Central Florida
-
Abstract / Description
-
Functional properties of living cells depend on the thermodynamic variables such as temperature and pressure. A unique tool to investigate volume effects on structure and metabolism of the cell and biomolecules is pressure perturbation. We have developed a new setup that enables micro-spectroscopy and optical imaging of individual live cells at variable pressure from 0.1 to 400 MPa. Following characterization of the setup, pressure and temperature effects on the secondary structure of the...
Show moreFunctional properties of living cells depend on the thermodynamic variables such as temperature and pressure. A unique tool to investigate volume effects on structure and metabolism of the cell and biomolecules is pressure perturbation. We have developed a new setup that enables micro-spectroscopy and optical imaging of individual live cells at variable pressure from 0.1 to 400 MPa. Following characterization of the setup, pressure and temperature effects on the secondary structure of the peptide Poly-L-glutamic acid (PGA) in deuterated water buffer solution were investigated. The amide I band of PGA is sensitive to pressure and temperature, and by spectral deconvolution, we determined the relative contributions due to the ?-helix and random coil conformations. The population of ?-helix increases with increasing pressure. Pressure effects on single red blood cells and the intracellular protein hemoglobin were studied by micro-Raman spectroscopy. In particular, we observed a shift in the frequency of the iron-histidine vibrational band in both the intracellular hemoglobin and hemoglobin in solutions. The iron-histidine mode is a sensitive structural marker of the crucial iron-protein linkage in heme proteins. The pressure dependent shift suggests a conformational change of the heme environment. This finding was further supported by micro-absorption measurements at variable pressure.In additional experiments, Raman spectroscopy was employed to probe molecular changes that occurred in hemoglobin in erythrocytes infected with the malaria parasite Plasmodium falciparum. The spectra of infected cells indicated that hemoglobin degradation can be correlated with the stages of the parasite multiplication cycle. The research was further extended towards probing size and shape changes of individual cells with pressure. The lateral diameter in yeast cells was observed to decrease with pressure in a reversible way. These results suggest that transport of the intra-cellular water may play a significant role for volume changes.In summary, pressure changes were shown to induce conformational changes in proteins and shape changes in yeast cells. A Raman technique was developed to monitor the states of Plasmodium falciparum multiplication cycle within a red blood cell.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004637, ucf:49909
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004637
-
-
Title
-
GaN Power Devices: Discerning Application-Specific Challenges and Limitations in HEMTs.
-
Creator
-
Binder, Andrew, Yuan, Jiann-Shiun, Sundaram, Kalpathy, Roy, Tania, Kapoor, Vikram, Chow, Lee, University of Central Florida
-
Abstract / Description
-
GaN power devices are typically used in the 600 V market, for high efficiency, high power-density systems. For these devices, the lateral optimization of gate-to-drain, gate, and gate-to-source lengths, as well as gate field-plate length are critical for optimizing breakdown voltage and performance. This work presents a systematic study of lateral scaling optimization for high voltage devices to minimize figure of merit and maximize breakdown voltage. In addition, this optimization is...
Show moreGaN power devices are typically used in the 600 V market, for high efficiency, high power-density systems. For these devices, the lateral optimization of gate-to-drain, gate, and gate-to-source lengths, as well as gate field-plate length are critical for optimizing breakdown voltage and performance. This work presents a systematic study of lateral scaling optimization for high voltage devices to minimize figure of merit and maximize breakdown voltage. In addition, this optimization is extended for low voltage devices ((<) 100 V), presenting results to optimize both lateral features and vertical features. For low voltage design, simulation work suggests that breakdown is more reliant on punch-through as the primary breakdown mechanism rather than on vertical leakage current as is the case with high-voltage devices. A fabrication process flow has been developed for fabricating Schottky-gate, and MIS-HEMT structures at UCF in the CREOL cleanroom. The fabricated devices were designed to validate the simulation work for low voltage GaN devices. The UCF fabrication process is done with a four layer mask, and consists of mesa isolation, ohmic recess etch, an optional gate insulator layer, ohmic metallization, and gate metallization. Following this work, the fabrication process was transferred to the National Nano Device Laboratories (NDL) in Hsinchu, Taiwan, to take advantage of the more advanced facilities there. Following fabrication, a study has been performed on defect induced performance degradation, leading to the observation of a new phenomenon: trap induced negative differential conductance (NDC). Typically NDC is caused by self-heating, however by implementing a substrate bias test in conjunction with pulsed I-V testing, the NDC seen in our fabricated devices has been confirmed to be from buffer traps that are a result of poor channel carrier confinement during the dc operating condition.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007885, ucf:52786
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007885
-
-
Title
-
Prediction of survival of early stages lung cancer patients based on ER beta cellular expressions and epidemiological data.
-
Creator
-
Martinenko, Evgeny, Shivamoggi, Bhimsen, Chow, Lee, Peale, Robert, Brandenburg, John, University of Central Florida
-
Abstract / Description
-
We attempted a mathematical model for expected prognosis of lung cancer patients based ona multivariate analysis of the values of ER-interacting proteins (ERbeta) and a membranebound, glycosylated phosphoprotein MUC1), and patients clinical data recorded at the timeof initial surgery. We demonstrate that, even with the limited sample size available to use,combination of clinical and biochemical data (in particular, associated with ERbeta andMUC1) allows to predict survival of lung cancer...
Show moreWe attempted a mathematical model for expected prognosis of lung cancer patients based ona multivariate analysis of the values of ER-interacting proteins (ERbeta) and a membranebound, glycosylated phosphoprotein MUC1), and patients clinical data recorded at the timeof initial surgery. We demonstrate that, even with the limited sample size available to use,combination of clinical and biochemical data (in particular, associated with ERbeta andMUC1) allows to predict survival of lung cancer patients with about 80% accuracy whileprediction on the basis of clinical data only gives about 70% accuracy. The present work canbe viewed as a pilot study on the subject: since results conrm that ER-interacting proteinsindeed inuence lung cancer patients' survival, more data is currently being collected.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004134, ucf:49120
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004134
-
-
Title
-
STUDY OF DESIGN FOR RELIABILITY OF RF AND ANALOG CIRCUITS.
-
Creator
-
Tang, Hongxia, Yuan, Jiann-Shiun, Wu, Xinzhang, Sundaram, Kalpathy, Chow, Lee, University of Central Florida
-
Abstract / Description
-
Due to continued device dimensions scaling, CMOS transistors in the nanometer regime have resulted in major reliability and variability challenges. Reliability issues such as channel hot electron injection, gate dielectric breakdown, and negative bias temperature instability (NBTI) need to be accounted for in the design of robust RF circuits. In addition, process variations in the nanoscale CMOS transistors are another major concern in today's circuits design.An adaptive gate-source biasing...
Show moreDue to continued device dimensions scaling, CMOS transistors in the nanometer regime have resulted in major reliability and variability challenges. Reliability issues such as channel hot electron injection, gate dielectric breakdown, and negative bias temperature instability (NBTI) need to be accounted for in the design of robust RF circuits. In addition, process variations in the nanoscale CMOS transistors are another major concern in today's circuits design.An adaptive gate-source biasing scheme to improve the RF circuit reliability is presented in this work. The adaptive method automatically adjusts the gate-source voltage to compensate the reduction in drain current subjected to various device reliability mechanisms. A class-AB RF power amplifier shows that the use of a source resistance makes the power-added efficiency robust against threshold voltage and mobility variations, while the use of a source inductance is more reliable for the input third-order intercept point.A RF power amplifier with adaptive gate biasing is proposed to improve the circuit device reliability degradation and process variation. The performances of the power amplifier with adaptive gate biasing are compared with those of the power amplifier without adaptive gate biasing technique. The adaptive gate biasing makes the power amplifier more resilient to process variations as well as the device aging such as mobility and threshold voltage degradation. Injection locked voltage-controlled oscillators (VCOs) have been examined. The VCOs are implemented using TSMC 0.18 (&)#181;m mixed-signal CMOS technology. The injection locked oscillators have improved phase noise performance than free running oscillators.A differential Clapp-VCO has been designed and fabricated for the evaluation of hot electron reliability. The differential Clapp-VCO is formed using cross-coupled nMOS transistors, on-chip transformers/inductors, and voltage-controlled capacitors. The experimental data demonstrate that the hot carrier damage increases the oscillation frequency and degrades the phase noise of Clapp-VCO.A p-channel transistor only VCO has been designed for low phase noise. The simulation results show that the phase noise degrades after NBTI stress at elevated temperature. This is due to increased interface states after NBTI stress. The process variability has also been evaluated.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004223, ucf:49000
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004223
-
-
Title
-
Optimization of Process Parameters for Faster Deposition of CuIn1-xGaxS2 and CuIn1-xGaxSe2-ySy Thin Film Solar Cells.
-
Creator
-
Kaul, Ashwani, Dhere, Neelkanth, Heinrich, Helge, Kar, Aravinda, Chow, Lee, Sundaram, Kalpathy, University of Central Florida
-
Abstract / Description
-
Thin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. Among all the thin film technologies, CuInGaSe2 (CIGS) thin film solar cells have achieved the highest efficiency. However, the high price of photovoltaic (PV) modules has been a major factor impeding their growth for terrestrial applications. Reduction in cost of PV modules can be realized by several ways including choosing scalable processes amenable to large area...
Show moreThin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. Among all the thin film technologies, CuInGaSe2 (CIGS) thin film solar cells have achieved the highest efficiency. However, the high price of photovoltaic (PV) modules has been a major factor impeding their growth for terrestrial applications. Reduction in cost of PV modules can be realized by several ways including choosing scalable processes amenable to large area deposition, reduction in the materials consumption of active layers, and attaining faster deposition rates suitable for in-line processing. Selenization-sulfurization of sputtered metallic Cu-In-Ga precursors is known to be more amenable to large area deposition. Sputter-deposited molybdenum thin film is commonly employed as a back contact layer for CIGS solar cells. However, there are several difficulties in fabricating an optimum back contact layer. It is known that molybdenum thin films deposited at higher sputtering power and lower gas pressure exhibit better electrical conductivity. However, such films exhibit poor adhesion to the soda-lime glass substrate. On the other hand, films deposited at lower discharge power and higher pressure although exhibit excellent adhesion show lower electrical conductivity. Therefore, a multilayer structure is normally used so as to get best from the two deposition regimes. A multi-pass processing is not desirable in high volume production because it prolongs total production time and correspondingly increases the manufacturing cost. In order to make manufacturing compliant with an in-line deposition, it is justifiable having fewer deposition sequences. Thorough analysis of pressure and power relationship of film properties deposited at various parameters has been carried out. It has been shown that it is possible to achieve a molybdenum back contact of desired properties in a single deposition pass by choosing the optimum deposition parameters. It is also shown that the film deposited in a single pass is actually a composite structure. CIGS solar cells have successfully been completed on the developed single layer back contact with National Renewable Energy Laboratory (NREL) certified device efficiencies (>)11%. The optimization of parameters has been carried out in such a way that the deposition of back contact and metallic precursors can be carried out in identical pressure conditions which is essential for in-line deposition without a need for load-lock. It is know that the presence of sodium plays a very critical role during the growth of CIGS absorber layer and is beneficial for the optimum device performance. The effect of sodium location during the growth of the absorber layer has been studied so as to optimize its quantity and location in order to get devices with improved performance. NREL certified devices with efficiencies (>)12% have been successfully completed.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004559, ucf:49261
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004559
-
-
Title
-
Development of Polymer Derived SiAlCN Ceramic and Its Applications for High-Temperature Sensors.
-
Creator
-
Shao, Gang, An, Linan, Fang, Jiyu, Xu, Chengying, Chow, Lee, Deng, Weiwei, University of Central Florida
-
Abstract / Description
-
Polymer-derived ceramic (PDC) is the name for a class of materials synthesized by thermal decomposition of polymeric precursors which excellent thermomechanical properties, such as high thermal stability, high oxidation/corrosion resistance and high temperature multifunctionalities. Direct polymer-to-ceramic processing routes of PDCs allow easier fabrication into various components/devices with complex shapes/structures. Due to these unique properties, PDCs are considered as promising...
Show morePolymer-derived ceramic (PDC) is the name for a class of materials synthesized by thermal decomposition of polymeric precursors which excellent thermomechanical properties, such as high thermal stability, high oxidation/corrosion resistance and high temperature multifunctionalities. Direct polymer-to-ceramic processing routes of PDCs allow easier fabrication into various components/devices with complex shapes/structures. Due to these unique properties, PDCs are considered as promising candidates for making high-temperature sensors for harsh environment applications, including high temperatures, high stress, corrosive species and/or radiation. The SiAlCN ceramics were synthesized using the liquid precursor of polysilazane (HTT1800) and aluminum-sec-tri-butoxide (ASB) as starting materials and dicumyl peroxide (DP) as thermal initiator. The as-received SiAlCN ceramics have very good thermal-mechanical properties and no detectable weight loss and large scale crystallization. Solid-state NMR indicates that SiAlCN ceramics have the SiN4, SiO4, SiCN3, and AlN5/AlN6 units. Raman spectra reveals that SiAlCN ceramics contain (")free carbon(") phase with two specific Raman peaks of (")D(") band and (")G(") band at 1350 cm-1 and 1600 cm-1, respectively. The (")free carbon(") becomes more and more ordered with increasing the pyrolysis temperature. EPR results show that the defects in SiAlCN ceramics are carbon-related with a g-factor of 2.0016(&)#177;0.0006. Meanwhile, the defect concentration decreases with increasing sintered temperature, which is consistent with the results obtained from Raman spectra.Electric and dielectric properties of SiAlCN ceramics were characterized. The D.C. conductivity of SiAlCN ceramics increases with increasing sintered temperature and the activation energy is about 5.1 eV which higher than that of SiCN ceramics due to the presence of oxygen. The temperature dependent conductivity indicates that the conducting mechanism is a semiconducting band-gap model and follows the Arrhenius equation with two different sections of activation energy of 0.57 eVand 0.23 eV, respectively. The temperature dependent conductivity makes SiAlCN ceramics suit able for high temperature sensor applications. The dielectric properties were carried out by the Agilent 4298A LRC meter. The results reveal an increase in both dielectric constant and loss with increasing temperature (both pyrolysis and tested). Dielectric loss is dominated by the increasing of conductivity of SiAlCN ceramics at high sintered temperatures.SiAlCN ceramic sensors were fabricated by using the micro-machining method. High temperature wire bonding issues were solved by the integrity embedded method (IEM). It's found that the micro-machining method is a promising and cost-effective way to fabricate PDC high temperature sensors. Moreover IEM is a good method to solve the high temperature wire bonding problems with clear bonding interface between the SiAlCN sensor head and Pt wires. The Wheatstone bridge circuit is well designed by considering the resistance relationship between the matching resistor and the SiAlCN sensor resistor. It was found that the maximum sensitivity can be achieved when the resistance of matching resistor is equal to that of the SiAlCN sensor. The as-received SiAlCN ceramic sensor was tested up to 600 degree C with the relative output voltage changing from -3.932 V to 1.153 V. The results indicate that the relationship between output voltage and test temperature is nonlinear. The tested sensor output voltage agrees well with the simulated results. The durability test was carried out at 510 degree C for more than two hours. It was found that the output voltage remained constant for the first 30 min and then decreased gradually afterward by 0.02, 0.04 and 0.07 V for 1, 1.5 and 2 hours.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004937, ucf:49602
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004937
-
-
Title
-
Nano-pipette as nanoparticle analyzer and capillary gated ion transistor.
-
Creator
-
Rudzevich, Yauheni, Chow, Lee, Heinrich, Helge, Schulte, Alfons, Yuan, Jiann-Shiun, University of Central Florida
-
Abstract / Description
-
The ability to precisely count inorganic and organic nanoparticles and to measure their size distribution plays a major role in various applications such as drug delivery, nanoparticles counting, and many others. In this work I present a simple resistive pulse method that allows translocations, counting, and measuring the size and velocity distribution of silica nanoparticles and liposomes with diameters from 50 nm to 250 nm. This technique is based on the Coulter counter technique, but has...
Show moreThe ability to precisely count inorganic and organic nanoparticles and to measure their size distribution plays a major role in various applications such as drug delivery, nanoparticles counting, and many others. In this work I present a simple resistive pulse method that allows translocations, counting, and measuring the size and velocity distribution of silica nanoparticles and liposomes with diameters from 50 nm to 250 nm. This technique is based on the Coulter counter technique, but has nanometer size pores. It was found that ionic current drops when nanoparticles enter the nanopore of a pulled micropipette, producing a clear translocation signal. Pulled borosilicate micropipettes with opening 50 ~ 350 nm were used as the detecting instrument. This method provides a direct, fast and cost-effective way to characterize inorganic and organic nanoparticles in a solution. In this work I also introduce a newly developed Capillary Ionic Transistor (CIT). It is presented as a nanodevice which provides control of ionic transport through nanochannel by gate voltage. CIT is Ionic transistor, which employs pulled capillary as nanochannel with a tip diameter smaller than 100 mm. We observed that the gate voltage applied to gate electrode, deposited on the outer wall of a capillary, affect a conductance of nanochannel, due to change of surface charge at the solution/capillary interface. Negative gate voltage corresponds to lower conductivity and positive gate increases conductance of the channel. This effect strongly depends on the size of the channel. In general, at least one dimension of the channel has to be small enough for electrical double layer to overlap.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005880, ucf:50882
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005880
-
-
Title
-
Resistive Pulse study of Vesicles and Liposomes.
-
Creator
-
Lin, Yuqing, Chow, Lee, Schulte, Alfons, Tatulian, Suren, Yuan, Jiann-Shiun, University of Central Florida
-
Abstract / Description
-
In this work, the properties of the liposomes, the artificially created vesicles by various methods, are explored by a resistive pulse method using micropipettes. The fact that vesicles are fundamental in the wide range of functionalities they fulfill as organelles strengthen the desire of understanding the properties of them. The motivation of this work comes from the significant roles that liposomes play in the development of targeted drug delivery systems. Among other significant variables...
Show moreIn this work, the properties of the liposomes, the artificially created vesicles by various methods, are explored by a resistive pulse method using micropipettes. The fact that vesicles are fundamental in the wide range of functionalities they fulfill as organelles strengthen the desire of understanding the properties of them. The motivation of this work comes from the significant roles that liposomes play in the development of targeted drug delivery systems. Among other significant variables, the size of liposomes is found to be one of the dominating parameters in liposome based drug delivery, and the correlation between liposome size and delivery efficiency is discussed. To help improving the size evaluation ability, a few mainstream methods for liposome size detection and measurements are reviewed. As a reliable and accessible alternative method for liposomes detection, the resistive pulse method is introduced and the measurement on liposomes size change upon pH gradient was performed using this method. With our current liposome composition, we found the size increases as environmental pH increases. Further investigation is performed with vesicular pH=6, 7, and 8, respectively. Lastly, the stability of the small unilamellar vesicles (SUV) was studied via resistive pulse method, by monitoring the size change of 50nm liposomes as function of time. A significant size change in freshly prepared 50nm liposomes is recorded. This information will provide invaluable knowledge for targeting tumor with tight tissues, where small size liposomes are needed.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005826, ucf:50933
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005826
-
-
Title
-
Model Nanocatalysts with Tunable Reactivity: Tailoring the Structure and Surface Chemistry of Nanomaterials for Energy and Alternative Fuels Catalysis.
-
Creator
-
Mistry, Hemma, Roldan Cuenya, Beatriz, Chow, Lee, Stolbov, Sergey, Zhai, Lei, University of Central Florida
-
Abstract / Description
-
One of the most pressing challenges of our time is meeting growing global energy demands while limiting human impact on the environment. To meet this challenge, new catalysts are needed to enable carbon neutral energy production processes and low cost synthesis of alternative fuels. In order to design new catalysts for such processes, fundamental understanding is needed on how the structural and chemical properties of nanostructured materials influences their surface chemistry. In this...
Show moreOne of the most pressing challenges of our time is meeting growing global energy demands while limiting human impact on the environment. To meet this challenge, new catalysts are needed to enable carbon neutral energy production processes and low cost synthesis of alternative fuels. In order to design new catalysts for such processes, fundamental understanding is needed on how the structural and chemical properties of nanostructured materials influences their surface chemistry. In this dissertation, I explore how the properties of nanoparticles, such as particle size, shape, composition, and chemical state, can be used to tune their reactivity. For this work, model nanoparticles were synthesized with well-defined structural and chemical properties, and a variety of surface science approaches were used for catalyst characterization. In particular, emphasis was placed on understanding the changes which may occur in the catalyst structure and chemical state during a reaction using advanced in situ techniques and correlating these changes to reactivity. After exploring how nanostructuring the catalyst surface can be used to tune reactivity and how dynamic changes can occur to nanocatalysts in reactive environments, these general principles are applied to a model reaction, the electroreduction of carbon dioxide, which is a promising process for synthesizing valuable products using renewable energy while consuming waste carbon dioxide. I explore the mechanisms behind how catalyst particle size, composition, and oxidation state can be used to improve activity and tune selectivity towards different carbon dioxide reduction products. Such fundamental mechanistic insights are critically needed to design efficient catalysts for this reaction.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006482, ucf:51440
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006482
-
-
Title
-
RF Circuit Designs for Reliability and Process Variability Resilience.
-
Creator
-
Kritchanchai, Ekavut, Yuan, Jiann-Shiun, Sundaram, Kalpathy, Wei, Lei, Lin, Mingjie, Chow, Lee, University of Central Florida
-
Abstract / Description
-
Complementary metal oxide semiconductor (CMOS) radio frequency (RF) circuit design has been an ever-lasting research field. It has gained so much attention since RF circuits offer high mobility and wide-band efficiency, while CMOS technology provides the advantage of low cost and high integration capability. At the same time, CMOS device size continues to scale to the nanometer regime. Reliability issues with RF circuits have become more challenging than ever before. Reliability mechanisms,...
Show moreComplementary metal oxide semiconductor (CMOS) radio frequency (RF) circuit design has been an ever-lasting research field. It has gained so much attention since RF circuits offer high mobility and wide-band efficiency, while CMOS technology provides the advantage of low cost and high integration capability. At the same time, CMOS device size continues to scale to the nanometer regime. Reliability issues with RF circuits have become more challenging than ever before. Reliability mechanisms, such as gate oxide breakdown, hot carrier injection, negative bias temperature instability, have been amplified as the device size shrinks. In addition, process variability becomes a new design paradigm in modern RF circuits.In this Ph.D. work, a class F power amplifier (PA) was designed and analyzed using TSMC 180nm process technology. Its pre-layout and post-layout performances were compared. Post-layout parasitic effect decreases the output power and power-added efficiency. Physical insight of hot electron impact ionization and device self-heating was examined using the mixed-mode device and circuit simulation to mimic the circuit operating environment. Hot electron effect increases the threshold voltage and decreases the electron mobility of an n-channel transistor, which in turn decreases the output power and power-added efficiency of the power amplifier, as evidenced by the RF circuit simulation results. The device self-heating also reduces the output power and power-added efficiency of the PA. The process, voltage, and temperature (PVT) effects on a class AB power amplifier were studied. A PVT compensation technique using a current-source as an on-chip sensor was developed. The adaptive body bias design with the current sensing technique makes the output power and power-added efficiency much less sensitive to process variability, supply voltage variation, and temperature fluctuation, predicted by our derived analytical equations which are also verified by Agilent Advanced Design System (ADS) circuit simulation.Process variations and hot electron reliability on the mixer performance were also evaluated using different process corner models. The conversion gain and noise figure were modeled using analytical equations, supported by ADS circuit simulation results. A process invariant current source circuit was developed to eliminate process variation effect on circuit performance. Our conversion gain, noise figure, and output power show robust performance against PVT variations compared to those of a traditional design without using the current sensor, as evidenced by Monte Carlo statistical simulation.Finally, semiconductor process variations and hot electron reliability on the LC-voltage controlled oscillator (VCO) performance was evaluated using different process models. In our newly designed VCO, the phase noise and power consumptions are resilient against process variation effect due to the use of on-chip current sensing and compensation. Our Monte-Carlo simulation and analysis demonstrate that the standard deviation of phase noise in the new VCO design reduces about five times than that of the conventional design.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006131, ucf:51182
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006131
-
-
Title
-
Electronic Transport Investigation of Chemically Derived Reduced Graphene Oxide Sheets.
-
Creator
-
Joung, Daeha, Khondaker, Saiful, Chow, Lee, Leuenberger, Michael, Zhai, Lei, University of Central Florida
-
Abstract / Description
-
Reduced graphene oxide (RGO) sheet, a chemically functionalized atomically thin carbon sheet, provides a convenient pathway for producing large quantities of graphene via solution processing. The easy processibility of RGO sheet and its composites offer interesting electronic, chemical and mechanical properties that are currently being explored for advanced electronics and energy based materials. However, a clear understanding of electron transport properties of RGO sheet is lacking which is...
Show moreReduced graphene oxide (RGO) sheet, a chemically functionalized atomically thin carbon sheet, provides a convenient pathway for producing large quantities of graphene via solution processing. The easy processibility of RGO sheet and its composites offer interesting electronic, chemical and mechanical properties that are currently being explored for advanced electronics and energy based materials. However, a clear understanding of electron transport properties of RGO sheet is lacking which is of great significance for determining its potential application. In this dissertation, I demonstrate fabrication of high-yield solution based graphene field effects transistor (FET) using AC dielectrophoresis (DEP) and investigate the detailed electronic transport properties of the fabricated devices. The majority of the devices show ambipolar FET properties at room temperature. However, the mobility values are found to be lower than pristine graphene due to a large amount of residual defects in RGO sheets. I calculate the density of these defects by analyzing the low temperature (295 to 77K) charge transport data using space charge limited conduction (SCLC) with exponential trap distribution. At very low temperature (down to 4.2 K), I observe Coulomb blockade (CB) and Efros-Shklovskii variable range hopping (ES VRH) conduction in RGO implying that RGO can be considered as a graphene quantum dots (GQD) array, where graphene domains act like QDs while oxidized domains behave like tunnel barriers between QDs. This was further confirmed by studying RGO sheets of varying carbon sp2 fraction from 55 (-) 80 % and found that both the localization length and CB can be tuned. From the localization length and using confinement effect, we estimate tunable band gap of RGO sheets with varying carbon sp2 fraction. I then studied one dimensional RGO nanoribbon (RGONR) and found ES VRH and CB models are also applicable to the RGONR. However, in contrast to linear behavior of decrease in threshold voltage (Vt) with increasing temperature (T) in the RGO, sub linear dependence of Vt on T was observed in RGONR due to reduced transport pathways. Finally, I demonstrate synthesis and transport studies of RGO/nanoparticles (CdS and CeO2) composite and show that the properties of RGO can be further tuned by attaching the nanoparticles.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004785, ucf:49743
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004785
Pages