Current Search: Clausen, Christian (x)
View All Items
Pages
- Title
- REMEDIATION OF HEAVY METAL CONTAMINATION IN SEDIMENTS: APPLICATION OF IN SITU TREATMENT UTILIZING EMULSIFIED LIQUID MEMBRANE AND ZERO-VALENT METAL TECHNOLOGIES.
- Creator
-
Maxwell, Deborah, Clausen, Christian, University of Central Florida
- Abstract / Description
-
Heavy metal contamination of soils, sediments and groundwater presents an ongoing source of hazardous and persistent environmental pollution. How best to remediate these contaminants is the impetus of continuing research efforts. Methods include containment, ex situ and in situ techniques. A successful in situ method utilizing a combination of emulsified liquid membranes, ELM, and zero-valent metal, ZVM, and bimetals has demonstrated impressive heavy metal reduction in 100 ppm solutions of Cd...
Show moreHeavy metal contamination of soils, sediments and groundwater presents an ongoing source of hazardous and persistent environmental pollution. How best to remediate these contaminants is the impetus of continuing research efforts. Methods include containment, ex situ and in situ techniques. A successful in situ method utilizing a combination of emulsified liquid membranes, ELM, and zero-valent metal, ZVM, and bimetals has demonstrated impressive heavy metal reduction in 100 ppm solutions of Cd, Cu, Ni, Pb, Cr and U. This promising in situ method has been employed by the Industrial Chemistry Laboratory at the University of Central Florida and it has demonstrated considerable success in treating several environmental threats. Contaminated soils, surfaces, sediments and groundwater with offending agents such as trichloroethene, polychorobiphenyls and heavy metals have been treated utilizing emulsified liquid membrane systems containing zero-valent iron or bimetal particles. In vial studies, lead spiked sediments have shown repeatable 60% removal of lead after seven days of treatment. A persistent pattern emerged at ten days whereupon remediation levels began to drop. The current study was established to determine the reason for the decline at ten days and beyond. Questions addressed: Does the formation of an impeding oxide layer diminish the remediation capacity of the iron/magnesium system? Does the emulsion reach a maximum capacity to withdraw the contaminant? Do the soil components or the soil structure interfere with the access to the contaminant? This study has yielded insight into the reasons emulsified liquid membrane systems containing zero-valent metals achieved maximum lead removal at day seven, and thereafter begin to lose their effectiveness. A three part study was implemented to address and to answer the three questions pertaining to the consistent pattern of diminishing remediation levels exhibited at day ten and beyond. Initially, from Study I results it appeared that the formation of an impeding oxide layer on the bi-metal which was inside the emulsion droplet and which plated or precipitated with the lead was not occurring at day ten. Results indicated that the iron/magnesium was still capable of removing lead. Furthermore, from Study II results the emulsion dose injected appeared adequate to remove the lead, meaning that the emulsion had not reached its maximum capacity for remediation. The emulsion dose was not a limiting factor. Lastly, Study III results seemed to indicate that the drop in remediation after day seven pertained to the soil structure. There appeared to be some merit to the idea that with aging of the sediment, the lead was diffusing and migrating to some inaccessible interior sites within the sediment particles. Additionally, indications from day ten and day fourteen delineated that a second emulsion dose injection might restore lead removal levels to approach those first observed at day seven and consequently be a useful field application. In order to explore the effectiveness of injecting a second dose of emulsion, another vial study was implemented. The typical pattern of observing sixty percent maximum lead removal at day seven was observed. In separate groups, a second injection of emulsion was added at day five, and then for another vial series, a second dose was added at day seven. The second emulsion dose treatment for either day five or day seven did not yield any increases in percent lead removal. Another theory emerged after viewing micrographs of recovered iron/magnesium compared with fresh ball-milled bimetal. In addition, scanning electron microscopy appeared to confirm the explanation that the emulsified zero-valent metal system might be compromised after day seven. This would lead to exposure of the iron/magnesium to the air and the elements. Corrosion of the bimetal might be occurring. With time, release of the plated or precipitated lead back into the sediment mixture could follow. The results of Study I had led to the conclusion that an impeding oxide layer had not formed; however, this conclusion may have been premature because the recovered iron/magnesium was exposed to lead solution in the vial study. Perhaps if the recovered iron/magnesium was inserted back into an emulsion and injected into lead spiked sediments the percent lead removed might give a more accurate picture of the iron/magnesium's capability to continue performing remediation. Remediation of sediments contaminated with lead is a complicated task because of the complex nature of sediment components. Emulsified liquid membranes utilizing zero-valent bimetals has repeatedly demonstrated impressive results at day seven; however, this treatment method is not without its limitations. Optimal results appear to be gained at day seven after emulsion injection. The bimetal and plated or precipitated lead must be removed at that point; otherwise the effective remediation of the contaminant is progressively reversed.
Show less - Date Issued
- 2007
- Identifier
- CFE0001786, ucf:47274
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001786
- Title
- REACTION RATES FOR THE DEHALOGENATION OF TRICHLOROETHYLENE USING VARIOUS TYPES OF ZERO-VALENT IRON.
- Creator
-
Stewart, Neil, Clausen, Christian, University of Central Florida
- Abstract / Description
-
Remediation of trichloroethylene (TCE) and other chlorinated solvents is of great concern due to their toxicity and their persistence in the environment. Iron has been used extensively in the past decade as a subsurface reactive agent for the remediation of dense, nonaqueous-phase liquids (DNAPLs). Permeable reactive barrier walls (PRBW) have been installed at many sites around the country to treat contaminated plumes resulting from the presence of DNAPL pools. The use of zero-valent metals,...
Show moreRemediation of trichloroethylene (TCE) and other chlorinated solvents is of great concern due to their toxicity and their persistence in the environment. Iron has been used extensively in the past decade as a subsurface reactive agent for the remediation of dense, nonaqueous-phase liquids (DNAPLs). Permeable reactive barrier walls (PRBW) have been installed at many sites around the country to treat contaminated plumes resulting from the presence of DNAPL pools. The use of zero-valent metals, such as iron, to effectively reductively dechlorinate DNAPLs has been employed as the reactive material in these PRBWs (Gillham et al., 1993). However, limited work has been conducted to compare the kinetics of TCE degradation related to various manufacturing sources of iron and the pretreatment the iron receives prior to subsurface installation. Determination of iron reactivity through kinetic studies makes it possible to compare different types of iron and the effects that pretreatment has on reactivity. This research utilized rate studies, scanning electron microscopy, and BET surface area analysis for iron particles that were obtained from several sources. Peerless Metal Powders and Abrasive, Inc., Connelly-GPM, Inc., and Alfa Aesar Inc., produced the iron particles using various manufacturing techniques, and nanoscale iron was synthesized in our laboratory. By utilizing zero-headspace batch vial experiments and gas chromatography, changes in TCE concentration were determined. The data obtained produced linear first order rate plots from which dehalogenation rate constants were obtained. The rate constants were normalized by iron mass, solution volume, and surface area. The pretreatment techniques employed in this study, including ultrasonication and acid washing, demonstrated a beneficial effect by removing oxide precipitates from the iron surface, thus increasing the reactivity of the iron. Mass loading studies revealed how physical factors, associated with the experimental setup, could influence reaction rates. Surface area studies confirmed that the smaller iron particles, such as the nanoscale iron, have a greater surface area per unit mass. The large mass and volume normalized rate constant, kMV, obtained for the nanoscale iron was a result of this high surface area. However, the calculated surface area normalized rate constant, kSA, for the nanoscale iron was significantly lower than those for the granular iron samples tested. It was concluded that differences in surface area normalized rate constants, between different iron particle types, could be attributed to inherent characteristics of the iron, such as composition and crystal structure.
Show less - Date Issued
- 2005
- Identifier
- CFE0000797, ucf:46583
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000797
- Title
- DEVELOPMENT OF NOVEL DART TOFMS ANALYTICAL TECHNIQUES FOR THE IDENTIFICATION OF ORGANIC CONTAMINATION ON SPACEFLIGHT-RELATED SUBSTRATES AND AQUEOUS MEDIA.
- Creator
-
Loftin, Kathleen, Clausen, Christian, University of Central Florida
- Abstract / Description
-
ABSTRACT Organic contamination on spaceflight hardware is an ongoing concern for spaceflight safety. In addition, for the goal of analyzing for possible evidence of extra-terrestrial life, it is necessary to consider the presence of terrestrial contamination. This paper will introduce and evaluate a new method using a direct analysis real time (DART) ionization source paired with a high resolution time of flight mass spectrometer (TOFMS) for the determination of organic contamination...
Show moreABSTRACT Organic contamination on spaceflight hardware is an ongoing concern for spaceflight safety. In addition, for the goal of analyzing for possible evidence of extra-terrestrial life, it is necessary to consider the presence of terrestrial contamination. This paper will introduce and evaluate a new method using a direct analysis real time (DART) ionization source paired with a high resolution time of flight mass spectrometer (TOFMS) for the determination of organic contamination involved in spaceflight hardware and ground support materials. This novel analytical technique has significant advantages over current methodologies. Materials analyzed in this study were historically considered as probable contaminants in spaceflight related substrates. A user determined library was generated due to the non-traditional mass spectra generated by the DART. Continual improvement of analytical methods for the detection of trace levels of contaminants in potential drinking water sources is of extreme importance to both regulatory communities and concerned citizens. This paper will evaluate a novel analytical method using stir bar sorbtive (SBSE) extraction techniques combined with analysis with a DARTTOFMS. Compounds of interest will include several representative pharmaceutical contaminants of emerging concern listed in EPA method 1694. Optimal SBSE and DART experimental parameters will be investigated along with accuracy, precision, limits of detection and calibration linearity.
Show less - Date Issued
- 2009
- Identifier
- CFE0002714, ucf:48187
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002714
- Title
- The Application of Chemometrics to the Detection and Classification of Ignitable Liquids in Fire Debris Using the Total Ion Spectrum.
- Creator
-
Lewis, Jennifer, Sigman, Michael, Campiglia, Andres, Clausen, Christian, University of Central Florida
- Abstract / Description
-
Current methods in ignitable liquid identification and classification from fire debris rely on pattern recognition of ignitable liquids in total ion chromatograms, extracted ion profiles, and target compound comparisons, as described in American Standards for Testing and Materials E1618-10. The total ion spectra method takes advantage of the reproducibility among sample spectra from the same American Society for Testing and Materials class. It is a method that is independent of the...
Show moreCurrent methods in ignitable liquid identification and classification from fire debris rely on pattern recognition of ignitable liquids in total ion chromatograms, extracted ion profiles, and target compound comparisons, as described in American Standards for Testing and Materials E1618-10. The total ion spectra method takes advantage of the reproducibility among sample spectra from the same American Society for Testing and Materials class. It is a method that is independent of the chromatographic conditions that affect retention times of target compounds, thus aiding in the use of computer-based library searching techniques. The total ion spectrum was obtained by summing the ion intensities across all retention times. The total ion spectrum from multiple fire debris samples were combined for target factor analysis. Principal components analysis allowed the dimensions of the data matrix to be reduced prior to target factor analysis, and the number of principal components retained was based on the determination of rank by median absolute deviation. The latent variables were rotated to find new vectors (resultant vectors) that were the best possible match to spectra in a reference library of over 450 ignitable liquid spectra (test factors). The Pearson correlation between target factors and resultant vectors were used to rank the ignitable liquids in the library. Ignitable liquids with the highest correlation represented possible contributions to the sample. Posterior probabilities for the ASTM ignitable liquid classes were calculated based on the probability distribution function of the correlation values. The ASTM ignitable liquid class present in the sample set was identified based on the class with the highest posterior probability value. Tests included computer simulations of artificially generated total ion spectra from a combination of ignitable liquid and substrate spectra, as well as large scale burns in 20'x8'x8' containers complete with furnishings and flooring. Computer simulations were performed for each ASTM ignitable liquid class across a range of parameters. Of the total number of total ion spectra in a data set, the percentage of samples containing an ignitable liquid was varied, as well as the percent of ignitable liquid contribution in a given total ion spectrum. Target factor analysis was them performed on the computer-generated sample set. The correlation values from target factor analysis were used to calculate posterior probabilities for each ASTM ignitable liquid class. Large scale burns were designed to test the detection capabilities of the chemometric approach to ignitable liquid detection under conditions similar to those of a structure fire. Burn conditions were controlled by adjusting the type and volume of ignitable liquid used, the fuel load, ventilation, and the elapsed time of the burn. Samples collected from the large scale burns were analyzed using passive headspace adsorption with activated charcoal strips and carbon disulfide desorption of volatiles for analysis using gas chromatography-mass spectrometry.
Show less - Date Issued
- 2011
- Identifier
- CFE0004477, ucf:49301
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004477
- Title
- Synthesis, linear and nonlinear photophysical characterization of two symmetrical pyrene-terminated squaraine derivatives in solution.
- Creator
-
Ballestas Barrientos, Alfonso, Belfield, Kevin, Harper, James, Clausen, Christian, University of Central Florida
- Abstract / Description
-
Two indole-based squaraine dyes bonded to two pyrenyl groups through vinyl- and ethynyl- linkers were synthesized with the aim of enhancing the intramolecular charge transfer interaction in addition to improving their optical properties. The absorption and emission properties of these derivatives were determined in order to gain an insight into the intensity of this type of interaction, their aggregation behavior and compare them with results obtained through quantum chemical calculations....
Show moreTwo indole-based squaraine dyes bonded to two pyrenyl groups through vinyl- and ethynyl- linkers were synthesized with the aim of enhancing the intramolecular charge transfer interaction in addition to improving their optical properties. The absorption and emission properties of these derivatives were determined in order to gain an insight into the intensity of this type of interaction, their aggregation behavior and compare them with results obtained through quantum chemical calculations. Both compounds presented high photochemical stability in THF, and the linear spectroscopic characterization revealed high extinction coefficients, large fluorescence quantum yields and relatively low tendency of forming excimers in several solvents. The nonlinear spectroscopic study revealed two-photon absorption cross section maxima greater than 10,000 GM (1 GM = 1 (&)#215; 10-50 cm4 s/photon), which are improved values in comparison with the indole-based squaraine core. The experimental results were compared with time-dependent DFT calculations. These observations propose a new trend in the formulation of highly absorbing organic molecules containing pyrenyl groups for the development of new materials with Organic Light-Emitting Diode (OLED) applications. Moreover, this work contributes to the study of intramolecular charge transfer interaction and its tailoring for the improvement of the linear and nonlinear optical properties.
Show less - Date Issued
- 2015
- Identifier
- CFE0006024, ucf:50999
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006024
- Title
- Application and Optimization of Membrane Processes Treating Brackish and Surficial Groundwater for Potable Water Production.
- Creator
-
Tharamapalan, Jayapregasham, Duranceau, Steven, Cooper, Charles, Randall, Andrew, Clausen, Christian, University of Central Florida
- Abstract / Description
-
The research presented in this dissertation provides the results of a comprehensive assessment of the water treatment requirements for the City of Sarasota. The City's drinking water supply originates from two sources: (1) brackish groundwater from the Downtown well field, and (2) Floridan surficial groundwater from the City's Verna well field. At the time the study was initiated, the City treated the brackish water supply using a reverse osmosis process that relied on sulfuric acid for pH...
Show moreThe research presented in this dissertation provides the results of a comprehensive assessment of the water treatment requirements for the City of Sarasota. The City's drinking water supply originates from two sources: (1) brackish groundwater from the Downtown well field, and (2) Floridan surficial groundwater from the City's Verna well field. At the time the study was initiated, the City treated the brackish water supply using a reverse osmosis process that relied on sulfuric acid for pH adjustment as a pretreatment method. The Verna supply was aerated at the well field before transfer to the City's water treatment facility, either for softening using an ion exchange process, or for final blending before supply.For the first phase of the study to evaluate whether the City can operate its brackish groundwater RO process without acid pretreatment, a three-step approach was undertaken that involved: (1) pilot testing the plan to reduce the dependence on acid, (2) implementing the plan on the full-scale system with conservative pH increments, and (3) continuous screening for scale formation potential by means of a (")canary(") monitoring device. Implementation of the study was successful and the annual savings in operating expenditure to the City is projected to be about $120,000.From the acid elimination study, using the relationship between electrical conductivity in water and total dissolved solids in water samples tested, a dynamic approach to evaluate the performance of the reverse osmosis plant was developed. This trending approach uses the mass transfer coefficient principles of the Homogeneous Solution Diffusion Model. Empirical models were also developed to predict mass transfer coefficients for solutes in terms of total dissolved solids and sodium. In the second phase of the study, the use of nanofiltration technology to treat aerated Verna well field water was investigated. The goal was to replace the City's existing ion exchange process for the removal of hardness and total dissolved solids. Different pretreatment options were evaluated for the nanofiltration pilot to remove colloidal sulfur formed during pre-aeration of the groundwater. Sandfilters and ultrafiltration technology were evaluated as pretreatment. The sandfilter was inadequate as a pre-screen to the nanofiltration pilot. The ultrafiltration pilot (with and without a sandfilter as a pre-screen) proved to be an adequate pretreatment to remove particulates and colloids, especially the sulfur colloids in the surficial groundwater source. The nanofiltration pilot, was shown to be an efficient softening process for the Verna well field water, but it was impacted by biofoulants like algae. The algae growth was downstream of the ultrafiltration process, and so chlorination was used in the feed stream of the ultrafiltration process with dechlorination in the nanofiltration feed stream using excess bisulfite to achieve stable operations. Non-phosphonate based scale inhibitors were also used to reduce the availability of nutrients for biofilm growth on the nanofiltration membranes.The combined ultrafiltration-nanofiltration option for treatment of the highly fouling Verna water samples is feasible with chlorination (to control biofouling) and subsequent dechlorination. Alternatively, the study has shown that the City can also more economically and more reliably use ultrafiltration technology to filter all water from its Verna well field and use its current ion exchange process for removal of excess hardness in the water that it supplies.
Show less - Date Issued
- 2012
- Identifier
- CFE0004609, ucf:49926
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004609
- Title
- Use of an Activated Magnesium/cosolvent System for the Desorption and Degradation of Polycyclic Aromatic Hydrocarbons and Their Oxygenated Derivatives in Contaminated Soils.
- Creator
-
Elie, Marc, Yestrebsky, Cherie, Clausen, Christian, Elsheimer, Seth, Campiglia, Andres, Randall, Andrew, University of Central Florida
- Abstract / Description
-
The contamination of soils, with polycyclic aromatic hydrocarbons (PAHs), remains a widespread environmental concern. In the past two decades, many physical, chemical and biological methods have been developed and evaluated for the degradation of PAHs. However, due to their low aqueous solubility, high sorption affinity, hydrophobicity and recalcitrance, the environmental remediation of PAHs in soil continues to be economically challenging. In addition to PAH contamination, the presence of...
Show moreThe contamination of soils, with polycyclic aromatic hydrocarbons (PAHs), remains a widespread environmental concern. In the past two decades, many physical, chemical and biological methods have been developed and evaluated for the degradation of PAHs. However, due to their low aqueous solubility, high sorption affinity, hydrophobicity and recalcitrance, the environmental remediation of PAHs in soil continues to be economically challenging. In addition to PAH contamination, the presence of oxygenated derivatives of PAHs (OPAHs), in soils, has increasingly become a concern due to their greater toxic properties compared to parent PAH compounds. To date, no investigations on OPAH-remediation methods have been presented in the literature. The use of zero-valent metals (ZVMs) has been reported for several halogenated contaminants in solution systems, but the effectiveness of ZVM to degrade sorbed PAHs and OPAHs has been rarely addressed. This present research focuses on the development of a combined technique for the feasible desorption and degradation of PAHs and OPAHs in soils. PAH and OPAH degradation efficiency, using activated magnesium (Mg) metal combined with an ethanol-ethyl lactate cosolvent (1:1 ratio), was initially examined in soil-free systems. This metal/cosolvent system demonstrated adequate degradation (above 80%) for high-molecular-weight (HMW) PAHs, which were subsequently converted into hydroaromatic compounds; while OPAHs were degraded and converted into hydroxylated or hydrogenated derivatives. Further soil-free studies revealed that the degradation rate was affected by the surface or reactive sites of the metal and that optimum degradation efficiency were obtained with Mg ball milled with graphite (Mg/C).In a bench-scale feasibility test, the efficacy of this system was assessed on a soil spiked with a mixture of three HMW PAHs compounds and three OPAHs compounds with amounts ranging from 0.033 mmol to 0.060 mmol. The experimental results show that 2 mL of an ethanol-ethyl lactate solvent mixture resulted in 58% to 85% extraction efficiency for the selected contaminants in 1 g of spiked soil, followed by 64 - 87% degradation efficiency of the extracted contaminants with 4.11 mmol of the activated metal. This activated-Mg/cosolvent system can be considered as a promising alternative method for ex situ remediation of PAH and OPAH-contaminated soils.
Show less - Date Issued
- 2012
- Identifier
- CFE0004533, ucf:49259
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004533
- Title
- An Evaluation Study of the Effectiveness of Using a Reaction-Based Process for Hydrazine Remediation.
- Creator
-
Oropeza, Cristina, Clausen, Christian, Yestrebsky, Cherie, Miles, Delbert, Elsheimer, Seth, Griffin, Timothy, University of Central Florida
- Abstract / Description
-
Hydrazine (HZ) and monomethylhydrazine (MMH) are used extensively as hypergolic propellants at Kennedy Space Center. These highly reactive fuels are considered highly toxic, and potentially carcinogenic. Consequently, the transport, handling, and disposal of hydrazines is strictly regulated to protect personnel and the environment. Currently, KSC generates large volumes of hydrazine-laden wastewater for disposal. This waste is contained and shipped on public highways for subsequent disposal...
Show moreHydrazine (HZ) and monomethylhydrazine (MMH) are used extensively as hypergolic propellants at Kennedy Space Center. These highly reactive fuels are considered highly toxic, and potentially carcinogenic. Consequently, the transport, handling, and disposal of hydrazines is strictly regulated to protect personnel and the environment. Currently, KSC generates large volumes of hydrazine-laden wastewater for disposal. This waste is contained and shipped on public highways for subsequent disposal by incineration presenting a potentially catastrophic threat to the environment and the general public in the event of an accidental release. Other existing remediation methods include oxidative and reductive pathways as well as biodegradation in fixed film reactors. Each of these methods has associated drawbacks and limitations that make them unsuitable for industrial use. Recently, hydrazine neutralization by reaction with alpha-ketoglutaric acid (AKGA) to form the stabilized pyridazine derivatives PCA and mPCA has been explored. The applicability of this technique for use at KSC has been established and procedural considerations for implementation have been addressed.Experimental evidence based on worst case scenario decontamination processing simulations and reaction characterization has suggested that AKGA can cost effectively function as a drop-in replacement for current neutralizers with minimal modification to existing infrastructure and operating procedures. Further work will be necessary to satisfy permitting requirements and verify that the reaction product stream is non-hazardous in light of limited toxicity data.
Show less - Date Issued
- 2011
- Identifier
- CFE0004148, ucf:49060
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004148
- Title
- The Effect of Recycled Backwash Water Operations on Fouling in a Coagulation-Ultrafiltration Process and Impact of Preozonation on Membrane Productivity.
- Creator
-
Biscardi, Paul, Duranceau, Steven, Sadmani, A H M Anwar, Lee, Woo Hyoung, Clausen, Christian, University of Central Florida
- Abstract / Description
-
This dissertation consists of research that focused on pretreatment strategies to reduce fouling of ultrafiltration (UF) membranes used for drinking water treatment, and was segmented into four key components. (1) In the first component of the work, the long-term fouling behavior of a polyethersulfone (PES) hollow-fiber UF membrane was studied at the pilot-scale for treatment of surface water over a one-year period. Pilot testing of a coagulation-flocculation-sedimentation (CFS) pretreatment...
Show moreThis dissertation consists of research that focused on pretreatment strategies to reduce fouling of ultrafiltration (UF) membranes used for drinking water treatment, and was segmented into four key components. (1) In the first component of the work, the long-term fouling behavior of a polyethersulfone (PES) hollow-fiber UF membrane was studied at the pilot-scale for treatment of surface water over a one-year period. Pilot testing of a coagulation-flocculation-sedimentation (CFS) pretreatment system revealed that chemically irreversible fouling was poorly correlated with turbidity and total organic carbon. It was also shown that recycled backwash water may have impacted membrane process performance, and that chemically irreversible fouling was responsive to changes in pretreatment configuration. (2) In the second component, pre-oxidation with ozone (preozonation) was then studied as a pretreatment process to reduce natural organic matter (NOM) fouling at the pilot-scale. This work suggested that preozonation reduced long-term chemically irreversible fouling. The chemically reversible fouling index increased by 59%, indicating that preozonation changed the characteristics of the foulants, yielding more effective chemically enhanced backwashes. (3) Bench-scale work that studied changes in NOM characteristics associated with the improved process performance were performed using fluorescent excitation-emission (EEM) spectroscopy and high-performance size-exclusion chromatography (HPSEC). Specifically, ozone was applied prior to a CFS-UF process and compared to a CFS-UF condition without ozone as the control. Although CFS reduced turbidity by 29%, ozone, when integrated with CFS increased turbidity by 58%, impacting downstream UF performance. As expected, ozone, when integrated with CFS and UF reduced filtrate true color by 40%, UV254 absorbance by 11%, and SUVA by 30%, relative to the control, indicating that preozonation changed the characteristics of the dissolved organic carbon present in the source water. (4) Follow-up bench-scale research using fluorescent EEM spectroscopy and HPSEC assessed operational strategies that impacted organic fouling. Specifically, the fate of fluorescing substances during the recycling of membrane backwash water (MBWW) ahead of CFS-UF process was investigated. Bench-scale UF membranes were used to generate MBWW from a CFS-treated surface water containing 21 mg/L dissolved organic carbon (DOC) registering a 0.95 cm-1 UV254 absorbance that had been coagulated with 100 mg/L with polyaluminum chloride. CFS settled water, when processed with UF, produced MBWW containing 9 mg/L DOC registering a 0.25 cm-1 UV254 absorbance. HPSEC with UV254 detection demonstrated an analogous UV254 reduction as measured by detector response. However, fluorescence EEM spectroscopy revealed that protein-like substances, known to be associated with irreversible fouling, had been concentrated in the MBWW. In order to evaluate recycling operations on overall DOC removal in a CFS-UF process, a blend of 30% MBWW with 70% of raw water was treated, resulting in an overall DOC removal of 73%. However, without MBWW recycle, the CFS-UF process removed less of the influent DOC (63%). In summary, this research demonstrated that NOM characteristics within MBWW should be considered when recycling backwash water in PES membrane operations, and that preozonation reduces chemically irreversible fouling when incorporated into a CSF-UF system.
Show less - Date Issued
- 2016
- Identifier
- CFE0006074, ucf:50951
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006074
- Title
- Optimization of Molecular Beacon-Based Multicomponent Probes for Analysis of Nucleic Acids.
- Creator
-
Stancescu, Maria, Kolpashchikov, Dmitry, Clausen, Christian, Koculi, Eda, Balaeff, Alexander, Shuler, Michael, University of Central Florida
- Abstract / Description
-
Detection of single nucleotide substitutions (SNS) in DNA and RNA has a growing importance in biology and medicine. One traditional approach for recognition of SNS takes advantage of hybridization probes that bind target nucleic acids followed by measuring ?Tm, the difference in melting temperatures of matched and mismatched hybrids. The approach enables SNS differentiation at elevated temperatures (usually 40-65oC) often only in a narrow range of (
Show moreDetection of single nucleotide substitutions (SNS) in DNA and RNA has a growing importance in biology and medicine. One traditional approach for recognition of SNS takes advantage of hybridization probes that bind target nucleic acids followed by measuring ?Tm, the difference in melting temperatures of matched and mismatched hybrids. The approach enables SNS differentiation at elevated temperatures (usually 40-65oC) often only in a narrow range of (<)10oC and requires high-resolution melting devices. Here we demonstrate that a specially designed DNA probe (X sensor) can broaden ?Tm from ~10oC to ~16oC and distinguish SNS in the interval of ~5-40oC. Therefore, there is no need for heating or measuring Tm for accurate SNS differentiation. Our data indicate that this wide differentiation range is in part due to the non-equilibrium hybridization conditions. Further we explored the idea that it is possible to improve the performance of an X sensor operable in close to equilibrium conditions by shifting its operability to non-equilibrium conditions. One way to achieve this is to introduce as many as possible structured ligands in analyte's dissociated state. Here we show that by introducing the maximum possible conformational constraints in X probe it is possible to shift its operation to non-equilibrium conditions and to improve its selectivity at temperatures (<)15oC. Thus, this work points towards a new strategy for the design of highly selective hybridization sensors which operate in non-equilibrium conditions at close to room temperature. The X sensors could be utilized in qPCR, microarrays, as well as RNA analysis in living cells and for ambient temperature point-of-care diagnostics. In the last part of this work, X sensors were used in real time detection of PCR products. The sensors were optimized to operate in PCR buffer with optimal Mg2+ concentration. They were able to detect the target amplicon together with nonspecific products. The results presented here suggest that X sensors might be adopted for real time PCR format.
Show less - Date Issued
- 2015
- Identifier
- CFE0006009, ucf:51006
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006009
- Title
- Investigation of a Novel Magnesium and Acidified Ethanol System for the Degradation of Persistent Organic Pollutants.
- Creator
-
Maloney, Phillip, Yestrebsky, Cherie, Clausen, Christian, Elsheimer, Seth, Frazer, Andrew, Quinn, Jacqueline, University of Central Florida
- Abstract / Description
-
For centuries chemists have sought to improve humankind's quality of life and address many of society's most pressing needs through the development of chemical processes and synthesis of new compounds, often with phenomenal results. Unfortunately, there also are many examples where these chemicals have had unintended, detrimental consequences that are not apparent until years or decades after their initial use. There are numerous halogenated molecules in this category that are globally...
Show moreFor centuries chemists have sought to improve humankind's quality of life and address many of society's most pressing needs through the development of chemical processes and synthesis of new compounds, often with phenomenal results. Unfortunately, there also are many examples where these chemicals have had unintended, detrimental consequences that are not apparent until years or decades after their initial use. There are numerous halogenated molecules in this category that are globally dispersed, resistant to natural degradation processes, bioaccumulative, and toxic to living organisms. Chemicals such as these are classified as persistent organic pollutants (POPs), and due to their negative environmental and health effects, they require safe, effective, and inexpensive means of remediation.This research focuses on the development and optimization of a reaction matrix capable of reductively dehalogenating several POPs. Initial experiments determined that powdered magnesium and 1% V/V acetic acid in absolute ethanol was the most effective system for degrading polychlorinated biphenyl (PCB), an extraordinarily recalcitrant environmental contaminant. Further studies showed that this matrix also was capable of degrading polychlorinated dibenzo-p-dioxins (PCDDs), polybrominated diphenyl ethers (PBDEs), and four organochlorine pesticides (OCPs); dieldrin, heptachlor, heptachlor epoxide, and chlordane. During this phase of testing, field samples contaminated with chlordane were washed with ethanol and this ethanol/chlordane solution was degraded using the same reaction matrix, thereby demonstrating this technology's potential for (")real-world(") remediation projects. Finally, a set of experiments designed to provide some insight into the mechanism of dechlorination seems to indicate that two distinct processes are necessary for degradation to occur. First, the passivated outer layer of the magnesium must be removed in order to expose the zero-valent magnesium core. Next, an electron is transferred from the magnesium to the target molecule, causing the cleavage of the halide bond and the subsequent abstraction of either a hydrogen or proton from a solvent molecule. It is anticipated that an understanding of these fundamental chemical processes will allow this system to be tailored to a wide range of complex environmental media.
Show less - Date Issued
- 2013
- Identifier
- CFE0005109, ucf:50723
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005109
- Title
- On the Capillary Electrophoresis of Monohydroxy Metabolites of Polycyclic Aromatic Hydrocarbons and its Application to the Analysis of Biological Matrices.
- Creator
-
Knobel, Gaston, Campiglia, Andres, Clausen, Christian, Belfield, Kevin, Liao, Yi, Bhattacharya, Aniket, University of Central Florida
- Abstract / Description
-
Polycyclic aromatic hydrocarbons (PAH) are a class of environmental pollutants consisting of a minimum of two fused aromatics rings originating from the incomplete combustion of organic matter and/or anthropogenic sources. Numerous possible anthropogenic and natural sources make the presence of PAH ubiquitous in the environment. The carcinogenic nature of some PAH and their ubiquitous presence makes their chemical analysis a topic of environmental and toxicological importance. Although...
Show morePolycyclic aromatic hydrocarbons (PAH) are a class of environmental pollutants consisting of a minimum of two fused aromatics rings originating from the incomplete combustion of organic matter and/or anthropogenic sources. Numerous possible anthropogenic and natural sources make the presence of PAH ubiquitous in the environment. The carcinogenic nature of some PAH and their ubiquitous presence makes their chemical analysis a topic of environmental and toxicological importance. Although environmental monitoring of PAH is an important step to prevent exposure to contaminated sites, it provides little information on the actual uptake and subsequent risks. Parent PAH are relatively inert and need metabolic activation to express their carcinogenicity. Covalent binding to DNA appears to be the first critical step in the initiation of the tumor formation process.To this end, the determination of short term biomarkers (-) such as monohydroxy-PAH metabolites (OH-PAH) - fills an important niche to interpret actual PAH exposure levels, prevent extreme body burdens and minimize cancer risk. One would certainly prefer an early warning parameter over a toxicological endpoint (-) such as DNA-adducts (-) indicating that extensive damage has already been done. Several methods have been developed to determine OH-PAH in specific tissue or excreta and food samples. The general trend for the analysis of OH-PAH follows the pattern of sample collection, sample clean-up and pre-concentration, chromatographic separation and quantification. Popular approaches for sample clean-up and pre-concentration include liquid-liquid extraction (LLE) and solid-phase extraction (SPE). Chromatographic separation and quantification has been based on high-performance liquid chromatography-room temperature fluorescence detection (HPLC) and gas chromatography-mass spectrometry (GC-MS).Although chromatographic techniques provide reliable results in the analysis of OH-PAH, their experimental procedures are time consuming and expensive. Elution times of 30-60 minutes are typical and standards must be run periodically to verify retention times. If the concentrations of target species are found to lie outside the detector's response range, the sample must be diluted and the process repeated. On the other end of the concentration range, many samples are (")zeroes,(") i.e. the concentrations are below detection limits. Additional problems arise when laboratory procedures are scaled up to handle thousands of samples under mass screening conditions. Under the prospective of a sustainable environment, the large usage of organic solvents is one of the main limitations of the current chromatographic methodology.This dissertation focuses on the development of a screening methodology for the analysis of OH-PAH in urine and milk samples. Screening techniques capable of providing a (")yes or no(") answer to OH-PAH contamination prevent unnecessary scrutiny of un-contaminated samples via conventional methods, reduce analysis cost and expedite the turnaround time for decision making purposes. The proposed methodology is based on capillary zone electrophoresis (CZE) and synchronous fluorescence spectroscopy (SFS). Metabolites extraction and pre-concentration is achieved with optimized SPE, LLE and/or QuEChERS (quick, easy, cheap, effective, rugged and safe) procedures. The small sample and extracting solvent volumes facilitate the simultaneous extraction of numerous samples via an environmentally friendly procedure, which is well-suited for routine monitoring of numerous samples. Sample stacking is successfully implemented to improve CZE limits of detection by two orders of magnitude. The unique electrophoretic pattern of positional isomers of OH-PAH demonstrates the potential of CZE for the unambiguous determination of metabolites with similar chromatographic behaviors and virtually similar fragmentation patterns. The direct determination of OH-PAH without chromatographic separation is demonstrated via SFS. The non-destructive nature of SFS provides ample opportunity for further metabolite confirmation via chromatographic techniques.
Show less - Date Issued
- 2013
- Identifier
- CFE0005102, ucf:50761
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005102
- Title
- Degradation of Hexachlorobenzene, Pentachlorophenol and Pentachloroanisole using Activated Magnesium in an Acidified Ethanol/Ethyl Lactate Cosolvent System.
- Creator
-
Garbou, Amel, Yestrebsky, Cherie, Clausen, Christian, Zou, Shengli, Chumbimuni Torres, Karin, Randall, Andrew, University of Central Florida
- Abstract / Description
-
For many centuries, chemists have dedicated many labor-intensive hours to improving the quality of life for mankind by developing synthetic methods for the production of compounds which fulfill the needs and meet the demands of society. However, the innovation of such compounds has frequently come at the cost of detrimental side-effects that do not always present themselves until many years, or even decades, following their initial application. Many compounds in this category come in the form...
Show moreFor many centuries, chemists have dedicated many labor-intensive hours to improving the quality of life for mankind by developing synthetic methods for the production of compounds which fulfill the needs and meet the demands of society. However, the innovation of such compounds has frequently come at the cost of detrimental side-effects that do not always present themselves until many years, or even decades, following their initial application. Many compounds in this category come in the form of globally-distributed halogenated molecules which are toxic to many living organisms, susceptible to bioaccumulation and resistant to biodegradation processes. Such compounds are classified as persistent organic pollutants (POPs), and require safe, sustainable and economically viable remediation techniques due to their destructive effects on organisms and the environment In the work done for this dissertation study, three particular POPs, which can be further classified as Polychlorinated Aromatic Hydrocarbons (PCAHs), were studied: pentachlorophenol (PCP), hexachlorobenzene (HCB) and pentachloroanisole (PCA).Chlorophenols are highly toxic compounds, usually found in soils, water, and effluents resulting from industrial activities. These environmentally-persistent compounds have been found to exhibit probable carcinogenic properties by the United States Environmental Protection Agency and the International Agency for Research on Cancer. The most toxic chlorophenol is PCP, which has a regulated maximum contaminant level (MCL) of 0.03 mg/L in water. Due to the high toxicity of PCP, it is necessary to treat water and soils that have tested positive for concentrations above the MCL. The aim of this work is to demonstrate the capabilities of using ball-milled zero-valent magnesium powder with various amendments, such as acetic acid (as an activator) and ethanol for the dechlorination of PCP. The dechlorination processes of these various combinations wereivcompared in an attempt to determine the most effective system for the degradation of PCP to phenol. Three systems with powerful capabilities of treatment were studied: ball-milled magnesium powder, ball-milled magnesium carbon (Mg/C), and mechanically alloyed magnesium with palladium. The results of these studies indicate that the most rapid and complete PCP dechlorination is achieved using mechanically alloyed Mg/Pd and a matrix consisting of at least 0.02 g Mg0/mL of ethanol and 10 ?L acetic acid/mL of ethanol, in which case 20 ng/?L of PCP was dechlorinated to phenol in approximately 15 min. with a carbon mass balance of 94.89%. Hexachlorobenzene (HCB), like many chlorinated organic compounds, has accumulated in the environment from agricultural and industrial activity. After its introduction as a fungicide in 1945, the extensive use of this toxic chemical has instigated its infiltration into all food types. Prohibition from commercial use was enforced in the United States in 1966 due to animal, and possible human, carcinogenic effects. Because of the health risks and the adverse impact on various ecosystems, remediation of this contaminant is of vital concern. The objective of this study is to evaluate the proficiency of activated-magnesium metal in a protic solvent system to enhance the reductive dechlorination of HCB. Experimental results were compared with those predicted by quantum chemical calculations based on Density Functional Theory (DFT). Multivariate analysis detected complete degradation of HCB within 30 minutes, having a rate constant of 0.222 min-1, at room temperature. Dechlorination was hypothesized to proceed via an ionic mechanism, and the main dechlorination pathways of HCB in 1:1 ethanol/ethyl lactate were HCB ? PCBz ? 1,2,4,5-TCB; 1,3,4,5-TCB ? 1,2,4-TriCB; 1,3,5-TriCB ? 1,4-DiCB; 1,3-DiCB. The direct relationship between the decreasing number of Cl substituents and dechlorination reaction kinetics agrees with the ?G values predicted by the computational model. Therefore, the lowest energy pathway for C-vCl bond dissociation predicted computationally agrees with the experimentally determined kinetic data. The experimental results from these studies have helped to improve our understanding of the dechlorination mechanisms, thereby offering insight into the most efficient pathways for remediation in the environment. This methodology shows promise for the development of an economic and sustainable field application for the treatment of other chlorinated aromatic compounds. In further work, developments will be made in the modification of the system to allow for the implemetation of field-scale applications.Chloroanisoles are compounds that have similar properties to chlorophenols, but have a higher tendency to bioaccumulate and resist degradation because of their lipophilicity. They are not manufactured for commercial use, but exist in equilibrium with chlorophenols in the environment through biological transformation. Due to the toxicity of both compounds, a strategy for remediation is highly sought after. This study has served to develop an approach to meet the needs for this treatment, based on the successful treatment of PCPs using zero-valent magnesium (ZVMg) discussed in Chapter 1. The results of the method, which makes use of ZVMg/C in acidified ethanol, are compared for both target analytes. Both substrates were degraded to less-chlorinated byproducts within the first four hours; however PCP vanished at a faster rate with no detection at seven minutes. The more heavily-chlorinated byproducts showed faster degradation rates for both compounds, which also had 2,4-dichlorinated congeners in common as major byproducts. The mole balances of PCA and PCP were 92.6% and 94.8%, respectively. Further studies were done to enhance degradation kinetics by re-spiking with acetic acid after two weeks. Although complete degradation was still not achieved, a slight improvement was observed for bothvicompounds, more so with respect to PCP. Kinetic data followed pseudo first-order trends for the degradation of both PCA and PCP.
Show less - Date Issued
- 2016
- Identifier
- CFE0006456, ucf:51433
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006456
- Title
- Modeling Mass Transfer and Assessing Cost and Performance of a Hollow Fiber Nanofiltration Membrane Process.
- Creator
-
Yonge, David, Duranceau, Steven, Sadmani, A H M Anwar, Lee, Woo Hyoung, Clausen, Christian, University of Central Florida
- Abstract / Description
-
Bench-scale water treatment testing of three next generation hollow-fiber (HF) nanofiltration (NF) membranes was conducted to characterize divalent ion rejection capabilities and investigate removal mechanisms. Existing mathematical models were investigated to describe solute transport using synthetic magnesium sulfate solutions including the size exclusion model, homogenous solution diffusion (HSD) model, dimensional analysis, and the HSD model incorporating film theory. Solute transport for...
Show moreBench-scale water treatment testing of three next generation hollow-fiber (HF) nanofiltration (NF) membranes was conducted to characterize divalent ion rejection capabilities and investigate removal mechanisms. Existing mathematical models were investigated to describe solute transport using synthetic magnesium sulfate solutions including the size exclusion model, homogenous solution diffusion (HSD) model, dimensional analysis, and the HSD model incorporating film theory. Solute transport for two of the membranes were described by HSD theory and were predictive of their 90% divalent ion removal. A third membrane was more accurately modeled using size exclusion and was found to be predictive of its 40% divalent ion rejection. Feed ionic strength variation was shown to significantly impact rejection. In this work, semi-empirical models were developed to describe solute transport under varying feed ionic strength conditions. Bench-scale testing of aerated groundwater confirmed the HFNF membrane divalent ion rejection capabilities. Pilot testing of a commercially available HFNF membrane was shown to remove divalent ions and dissolved organic carbon (DOC) by 10% and 25%, respectively. Financial evaluations indicated that HFNF offered cost savings over traditional spiral-wound (SW) NF, $0.60/kgal versus $0.85/kgal operating costs, respectively. Traditional SWNF membranes produced superior water quality achieving 90% divalent ion removal and 96% DOC removal but required media and membrane filtration pretreatment. When considering the costs of constructing a new 2 million gallon per day (permeate) HFNF process, conceptual cost comparisons revealed that HFNF technologies could reduce capital costs by approximately $1 million, and operating costs by $0.27/kgal for an 85% recovery plant.
Show less - Date Issued
- 2016
- Identifier
- CFE0006549, ucf:51346
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006549
- Title
- Study of Polychlorinated Biphenyl Dechlorination by Zero Valent Magnesium With and Without Activated Carbon in Acidified Ethanol-Ethyl Lactate System.
- Creator
-
Zullo, Fiona, Yestrebsky, Cherie, Clausen, Christian, Campiglia, Andres, Zou, Shengli, Duranceau, Steven, University of Central Florida
- Abstract / Description
-
Polychlorinated biphenyls (PCBs) are synthetic organic chemicals that ca de detected in the environment worldwide. PCBs were banned in the U.S in 1979 owing to their toxicity and persistence in the environment. Today PCBs are classified as human carcinogens and are among the top ten of the U.S Environmental Protection Agency's (EPA) most toxic chemicals. Many researchers have shown soil to be contaminated with PCBs at concentrations as high as 750 ppm. Given the toxicity of PCBs, there is an...
Show morePolychlorinated biphenyls (PCBs) are synthetic organic chemicals that ca de detected in the environment worldwide. PCBs were banned in the U.S in 1979 owing to their toxicity and persistence in the environment. Today PCBs are classified as human carcinogens and are among the top ten of the U.S Environmental Protection Agency's (EPA) most toxic chemicals. Many researchers have shown soil to be contaminated with PCBs at concentrations as high as 750 ppm. Given the toxicity of PCBs, there is an urgent need to extract and degrade such chemicals from contaminated soil in a cost effective way. Prior work revealed a novel method of degradation of PCBs via hydrodehalogenation with zero-valent magnesium in acidified ethanol and ethyl lactate as a solvent system. Even though this degradation method gave satisfactory results for PCB degradation, this system cannot tolerate more than 3% water in order to degrade PCBs, limiting its application to wet soil field samples. In the present work a new system of acidified ethanol and ethyl lactate with ZVMg over activated carbon was developed which shows promising results on the degradation process of PCBs even with water present in the system. A detailed study of the byproducts formed in the dechlorination process and a degradation pathway, along with the activity of the system over time, are presented in this research.Also, a study of the mechanism involved in this reaction was done via computational methods to elucidate a mechanism pathway. It was demonstrated that these reactions are exothermic and involved two transition states, the formation of the first transition state being the limiting step of this reaction.The torsion angle of the PCB congeners was also shown to be an extremely important factor in order to be able to use activated carbon as part of the remediation process. These findings allow a greater understanding of the reductive dechlorination assisted by ZVMg and will help to improve the remediation process in field samples.
Show less - Date Issued
- 2016
- Identifier
- CFE0006205, ucf:51105
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006205
- Title
- Trace Contaminant Control: An In-Depth Study of a Silica-Titania Composite for Photocatalytic Remediation of Closed-Environment Habitat Air.
- Creator
-
Coutts, Janelle, Yestrebsky, Cherie, Clausen, Christian, Sigman, Michael, Elsheimer, Seth, Wheeler, Raymond, University of Central Florida
- Abstract / Description
-
This collection of studies focuses on a photocatalytic oxidation (PCO) system for the oxidation of a model compound, ethanol (EtOH), using an adsorption-enhanced silica-titania composite (STC) as the photocatalyst. Studies are aimed at addressing the optimization of various parameters including light source, humidity, temperature, and possible poisoning events for use as part of a system for gaseous trace contaminant control in closed-environment habitats.The first goal was to distinguish the...
Show moreThis collection of studies focuses on a photocatalytic oxidation (PCO) system for the oxidation of a model compound, ethanol (EtOH), using an adsorption-enhanced silica-titania composite (STC) as the photocatalyst. Studies are aimed at addressing the optimization of various parameters including light source, humidity, temperature, and possible poisoning events for use as part of a system for gaseous trace contaminant control in closed-environment habitats.The first goal was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the PCO of ethanol. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp (?peak = 365 nm) at its maximum light intensity or a UV-C germicidal lamp (?peak = 254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM s-1) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and photonic efficiency (63.3 vs. 50.1 nmol CO2 (&)#181;mol photons-1). UV-C irradiation also led to decreased intermediate concentration in the effluent compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy.The effect of temperature and relative humidity on the STC-catalyzed degradation of ethanol was also determined using the UV-A light source at its maximum intensity. Increasing temperature from 25(&)deg;C to 65(&)deg;C caused a significant decrease in ethanol adsorption (47.1% loss in adsorption capacity); minimal changes in EtOH removal; and a dramatic increase in mineralization (37.3 vs. 74.8%), PCO rate (25.8 vs. 53.2 nM s-1), and photonic efficiency (42.7 vs. 82.5 nmol CO2 (&)#181;mol photons-1); as well as a decrease in intermediate acetaldehyde (ACD) evolution in the effluent. By elevating the reactor temperature to 45(&)deg;C, an ~32% increase in photonic efficiency was obtained over the use of UV-C irradiation at room temperature. Increasing the reactor temperature also allowed for increased energy usage efficiency by utilizing both the light and heat energy of the UV-A light source. Higher relative humidity (RH) also caused a significant decrease (16.8 vs. 6.0 mg EtOH g STC-1) in ethanol adsorption and dark adsorption 95% breakthrough times (48.5 vs.16.8 hours). Trends developed for ethanol adsorption correlated well with studies using methanol as the target VOC on a molar basis. At higher RH, ethanol removal and ACD evolution were increased while mineralization, PCO rate, and photonic efficiency were decreased. These studies allowed for the development of empirical formulas to approximate EtOH removal, PCO rate, mineralization, and ACD evolution based on the parameters (light intensity, temperature, and RH) assessed.Poisoning events included long-term exposure to low-VOC laboratory air and episodic spikes of either Freon 218 or hexamethylcyclotrisiloxane. To date, all poisoning studies have shown minimal (0-6%) decreases in PCO rates, mineralization, and minimal increases in ACD evolution, with little change in EtOH removal. These results show great promise for this technology as part of a trace contaminant control system for niche applications such as air processing onboard the ISS or other new spacecrafts.
Show less - Date Issued
- 2013
- Identifier
- CFE0005092, ucf:50741
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005092
- Title
- A Study of the Degradative Capabilities of the Bimetallic System: Mg(Pd/C) as Applied in the Destruction of Decafluoropentane, an Environmental Contaminant.
- Creator
-
Tomlin, Douglas, Clausen, Christian, Yestrebsky, Cherie, Hampton, Michael, Elsheimer, Seth, Griffin, Timothy, University of Central Florida
- Abstract / Description
-
Pollution from hydrofluorocarbons (HFCs) poses a serious challenge to the environmental community. Released from industrial operations, they have contaminated both the atmosphere and groundwater and are considered persistent in both media. For over the past 20 years, the practice of synthesizing HFCs as alternatives to chlorofluorocarbons (CFCs) has been conducted in an effort to reverse the effects of stratospheric ozone layer depletion. HFCs also exhibit desirable properties as precision...
Show morePollution from hydrofluorocarbons (HFCs) poses a serious challenge to the environmental community. Released from industrial operations, they have contaminated both the atmosphere and groundwater and are considered persistent in both media. For over the past 20 years, the practice of synthesizing HFCs as alternatives to chlorofluorocarbons (CFCs) has been conducted in an effort to reverse the effects of stratospheric ozone layer depletion. HFCs also exhibit desirable properties as precision cleaning solvents due to their low surface energies but that use has lead to releases contaminating groundwater resulting in recalcitrant pollution in the form of dense non-aqueous phase liquids (DNAPLs). Results from studies requested by the EPA have shown HFCs to exhibit developmental and neurological damage in animal life along with their impact to humans remaining not completely understood. Therefore, the potential hazards of HFCs to human health and the environment necessitates the development of an effective and environmentally responsible technology for their remediation from groundwater. The National Aeronautics and Space Administration (NASA) has employed the use of various halogenated solvents in its spacecraft cleaning operations at its facilities for many years and in that time experienced accidental releases which eventually resulted in environmental contamination. Many of the organic solvents employed in these operations consisted of halogenated compounds with most being partially chlorinated and fluorinated hydrocarbons. Through normal use and operation, releases of these materials found their way into the environs of atmosphere, soil and groundwater. Remediation of fluorinated compounds has not followed the successful path laid by clean-up technologies developed for their chlorinated counterparts. Fluorinated compounds are resistant however to those methods due to their unreactive nature stemming from the properties of the strong carbon-fluorine bond. This unique bonding property also ensures that their environmental persistence endures. One particular fluorinated groundwater contaminant, the HFC 1,1,1,2,2,3,4,5,5,5-decafluoropentane (DFP), which has been used by NASA since the late 1990's was selected as the focus of this study. For this study, various reductive metal systems were evaluated for their capability towards effective degradation of DFP. These included the metals: iron, magnesium, aluminum and zinc and several bimetallic alloys as well as on carbon support. Variations in protic solvent reaction media and acidic metal activation were also explored. The bimetallic reductive catalytic alloy Magnesium with Palladium on Carbon, Mg(Pd/C), in aqueous media proved to be the successful candidate with 100% conversion to simple hydrocarbons. Mechanistic evaluation for degradation is proposed via a series of stepwise catalytic hydrodefluorination reactions. Kinetic studies revealed degradation to obey second order reaction kinetics. Further study should be conducted optimizing an in situ groundwater delivery method for field application. Additionally, the developed technology should be assessed against other groundwater fluorocarbon pollutants; either as a method for remediating multiple fluorinated polluted sites or as a polishing agent where all other pollutants have been abated.
Show less - Date Issued
- 2012
- Identifier
- CFE0004798, ucf:49742
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004798
- Title
- Mechanochemistry for Solid-State Syntheses and Catalysis.
- Creator
-
Restrepo, David, Blair, Richard, Kuebler, Stephen, Miles, Delbert, Clausen, Christian, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Traditional methods of synthesizing inorganic materials, such as hydrothermal, sol-gel, calcination and grinding steps, can typically require use of high temperatures, expensive precursors or use of solvents. Because of the energy-intensive nature or environmental impact these techniques, there is a push, especially from an industrial perspective, to move towards greener approaches. Mechanochemistry is a solvent-free alternative technique that can be used to synthesize a variety of materials...
Show moreTraditional methods of synthesizing inorganic materials, such as hydrothermal, sol-gel, calcination and grinding steps, can typically require use of high temperatures, expensive precursors or use of solvents. Because of the energy-intensive nature or environmental impact these techniques, there is a push, especially from an industrial perspective, to move towards greener approaches. Mechanochemistry is a solvent-free alternative technique that can be used to synthesize a variety of materials under ambient conditions. Due to this, there is an increase in attention towards the use of this approach in both solid-state inorganic and organic chemistry.This dissertation reports the mechanochemical synthesis of a few inorganic materials without the need of using high temperatures or solvents. Additionally, examples are presented in which mechanochemistry is used in conjunction with a secondary technique. This mechanical activation of the precursors lead to a decrease in calcination temperature and reactions times, as well as alteration of properties or unique reaction products. The synthesis of kaolinite, vanadia nanostructures, and spinels were carried out in this fashion. Mechanical activation of the precursors allowed for reduced hydrothermal treatment times in case of both kaolinite and vanadia nanostructures and the spinels are calcined at lower temperature for shorter periods of time. In addition, we report alternative template agents than previously reported for the formation of vanadia nanotubes, and report the formation of nanorods. Choosing the appropriate amine template can alter the structure and size of the material.Isomorphously substituted mixed oxides, kaolinite and spinels (MgAl2O4 and ZnAl2O4) were synthesized through a mechanically assisted process. Kaolinites are treated hydrothermally for 1 week at 250 (&)#186;C to produce an X-ray pure crystalline material. The spinels undergo calcination as low as 500 (&)#186;C to produce a nanocrystalline material. Rare-earth metals and transition metals were used as the substitutional atom. The substituted kaolinites exhibit strong order along the c axis, but less ordering along the a and b axes. Trivalent chromium and trivalent rare-earth metals, such as La, Ce, Pr, Nd, Eu, Gd, Ho, and Er, are used to replace aluminum in the structure. Likewise, divalent and trivalent transition, such as Mn, Ni, Cu and Cr, are used as the substitutional atoms in MgAl2O4 and ZnAl2O4. Cathodoluminescence studies on the substituted Spinel structure show that Mn2+ ions can occupy both the tetrahedral or octahedral holes to give a green and red emission, respectively. On the other hand, Cr3+ ions only occupy the octahedral holes to yield a red emission, similar to that in ruby. These isomorphously substituted materials may have potential applications in catalysis or glaze materials in ceramics.Oxidized graphite, an alternative to graphite oxide and graphene, can be synthesized rapidly by mechanochemical means. Grinding urea hydrogen peroxide adduct with graphite without the need of a solvent produces a product with an oxygen content of 5-15 wt%. The byproducts of this reaction are urea and water. This material is oxidized along the edges of the sheets, allowing it to be hydrophilic while retaining the conductivity. The material can suspend in water and processing allows for films of resistivities between 50 ? cm-2 and 10 k? cm-2. It was determined that the edges are fully oxidized to yield (-)COOH groups. This process offers a scalable, environmentally benign route to large quantities of oxidized graphite.An alternative method for the synthesis of nanostructured vanadia is reported. This process involves mechanical grinding of vanadium pentoxide, V2O5, with an amine template, such as diphenylamine, theophylline, rhodamine 6G and rhodamine, prior to hydrothermal treatment. This allows for the synthesis of VOx nanotubes and nanorods dependent on which template is used. Diphenylamine, theophylline, and rhodamine B produce nanorods. Use of rhodamine 6G produces asymmetric VOx nanorods.In addition to the mixed metals oxides mentioned above, sodium and calcium tantalates are synthesized mechanically. This route does not require the need of elevated temperatures or expensive and hazardous materials. X-ray diffraction analysis of NaTaO3, Ca2Ta2O7, Ca4Ta2O9 and CaTa2O6 shows that these are the only phases detected after 4 h, 10 h, 27 h and 10 h of milling, respectively. During the synthesis of Ca2Ta2O7, an intermediate phase, Ca4Ta2O9, forms within 1 h, which reacts after 5 h to form the desired product. Reference Intensity Ratio analysis shows that the material synthesized mechanically is nanocrystalline Ca2Ta2O7.Nanocrystalline ZrSi2 can also be obtained through mechanochemical synthesis. This method allows for size control and results in crystallites ranging from 9 to 30 nm. Dilution with CaCl2 enables the size control process. A linear relationship exists between the concentration of CaCl2 and the crystallite size. Contrary to a typical self-propagating metathesis reaction, this process does not allow for self-propagation and requires continuous input of mechanical energy to continue. However, this method allows for non-passivated nanoparticles of ZrSi2, which can be incorporated into composites as a reinforcement material for several applications.Hard and ultra-compressible borides, such as ReB2 and OsB2, can be synthesized mechanically. The traditional synthesis of ReB2 requires excess boron due to treatment at high temperatures. This can lead to amorphous boron aggregating at the grain boundaries, which in turn, this would degrade the properties of the material. The mechanochemical approach requires mechanical treatment of Re and B powders in stoichiometric quantities for 80 h. Mechanical synthesis of OsB2 powders requires a 1:3 ratio of Os and B powders. After 12 h of milling time, h-OsB2 begins to form, and is the major phase present after 18 h. The lattice parameters corresponding to the hexagonal OsB2 were determined to be a = b = 2.9047 (&)#197;, c = 7.4500 (&)#197;, ? = ? = 90(&)#186;, ? = 120(&)#186;. Treatment of the OsB2 powder at 1050 (&)#186;C under vacuum for 6 days did not induce a phase change, suggesting the hexagonal phase is very stable.Mechanocatalysis of the depolymerization of cellulose and hydrogenation of olefins over BN are reported as well. Heterogeneous catalysis is difficult to apply to solids, such as cellulose. However, mechanical grinding of kaolin and cellulose allows for the catalysis to occur in the solid state. This process allows for a variety of different biomasses to be used as feedstock without inhibition. Kaolinite was found to be the best acid catalyst due to high surface acidity and its layered structure, allowing for up to 84% conversion of the cellulose to water-soluble compounds. This process allows for reduction of waste, insensitivity of feedstock, multiple product pathways and scalability.Hydrogenation reactions are carried out using transition-metals catalysts. These metals have desirable catalytic properties not seen in main group elements, but there is growing concern over their use. A metal-free heterogeneous hydrogenation catalyst based on frustrated Lewis pairs would significantly reduce the health, environmental, and economic concerns associated with these metal-based catalysts. We report the first metal-free heterogeneous hydrogenation catalyst. Hydrogenation of trans-cinnamic acid is carried out over defect-laden h-BN. The reactor we use is designed to maximize the defects produced in BN sheets. The introduction of defects in BN creates frustrated Lewis pairs. DFT calculations show that the carbon double bond is weakened over boron substitution for nitrogen sites, vacancies of both boron and nitrogen, and Stone-Wales defects.A new method for crystalline germanium deposition occurring at lower temperatures (210-260 (&)#186;C) is reported. This method involves mechanical treatment of the precursors to reduce the particle size. A ground mixture of Ge and CuI are heated under vacuum to synthesize GeI2. In situ disproportionation of this compound at 210 (&)#186;C allows for the deposition of polycrystalline Ge films onto a both glass and polymer substrates. The rate of deposition is found to be 25 ng min-1. The byproducts of this process are GeI2, GeI4 and Cu3Ge, which are valuable precursors for the synthesis of germanium nanostructures and organogermanium compounds.Mechanochemistry is also utilized for the synthesis of trisubstituted pnictides. Mechanochemical treatment of bromobenzene with either Na3Sb or Na3Bi allows for the formation of triphenylstibine or triphenylbismuthine, respectively. The synthesis of the alkali metals pnictide precursors is reported as well. The synthesis of triphenylstibine produces SbPh3 as the major product from the reaction. The synthesis of triphenylbismuthine produces more Wurtz-type coupling products, which are due to the BiPh3 acting as a catalyst. Tributyl and triphenyl analogues are reported as well. The trialkylated analogues for both Sb and Bi produce more Wurtz type coupling products. This would allow for a more cost effective and scalable, alternative methods than what is currently in use today.
Show less - Date Issued
- 2013
- Identifier
- CFE0004741, ucf:49785
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004741
- Title
- Mass Spectral Studies to Investigate Butylbenzene Fragmentation Pathway and Pyrolysis Products.
- Creator
-
Lingam, Balasubramaniam, Sigman, Michael, Clausen, Christian, Campiglia, Andres, Miles, Delbert, Schulte, Alfons, University of Central Florida
- Abstract / Description
-
In this dissertation research, two fundamental studies involving gas chromatography mass spectrometry of n-butylbenzene and pyrolysis products are presented. In the first study, fragmentation pathways of n-butylbenzene in quadrupole ion trap have been investigated. At low energy, product ion corresponding to m/z 92 and m/z 91 are formed via competitive parallel dissociation. Studies have also shown that at higher energy m/z 92 has sufficient internal energy to undergo further fragmentation...
Show moreIn this dissertation research, two fundamental studies involving gas chromatography mass spectrometry of n-butylbenzene and pyrolysis products are presented. In the first study, fragmentation pathways of n-butylbenzene in quadrupole ion trap have been investigated. At low energy, product ion corresponding to m/z 92 and m/z 91 are formed via competitive parallel dissociation. Studies have also shown that at higher energy m/z 92 has sufficient internal energy to undergo further fragmentation yielding m/z 91 via consecutive dissociation. Thus in order to discern the fragmentation pathways of n-butylbenzene, the technique of two-dimensional correlation spectroscopy (2DCOS) was applied to the mass spectral data. Application of 2DCOS resulted in two 2D correlation spectra namely synchronous and asynchronous. A third spectra known as coherence spectra was obtained from the ration of asynchronous to synchronous correlation intensities. For the elucidation of n-butylbenzene fragmentation pathways, all the three spectra were utilized in this study. The second study in this dissertation involves investigation of pyrolysis products to aid in fire debris analysis. One of the major concerns in fire debris analysis is that pyrolysis products can mask the patterns of compounds of interest and make the chromatographic results interpretation extremely difficult. One of the approaches for investigating the formation of pyrolysis products is to subject the commonly found building materials to controlled heating in laboratory. In this study, new heating methodologies for controlled heating of substrates involving furnace, paint-cans and flat steel pans have been developed. The substrates used for investigating pyrolysis products were polystyrene, polyvinylchloride, polybutadiene, yellow-pine, nylon carpet and padding. Experiments were also performed to investigate the influence of hydrocarbons on the formation of pyrolysis.
Show less - Date Issued
- 2015
- Identifier
- CFE0005651, ucf:50167
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005651
- Title
- Action potentials as indicators of metabolic perturbations for temporal proteomic analysis.
- Creator
-
Kolli, Aditya Reddy, Hickman, James, Clausen, Christian, Ballantyne, John, Gesquiere, Andre, Jha, Sumit, University of Central Florida
- Abstract / Description
-
The single largest cause of compound attrition during drug development is due to inadequate tools capable of predicting and identifying protein interactions. Several tools have been developed to explore how a compound interferes with specific pathways. However, these tools lack the potential to chronically monitor the time dependent temporal changes in complex biochemical networks, thus limiting our ability to identify possible secondary signaling pathways that could lead to potential...
Show moreThe single largest cause of compound attrition during drug development is due to inadequate tools capable of predicting and identifying protein interactions. Several tools have been developed to explore how a compound interferes with specific pathways. However, these tools lack the potential to chronically monitor the time dependent temporal changes in complex biochemical networks, thus limiting our ability to identify possible secondary signaling pathways that could lead to potential toxicity. To overcome this, we have developed an in silico neuronal-metabolic model by coupling the membrane electrical activity to intracellular biochemical pathways that would enable us to perform non-invasive temporal proteomics. This model is capable of predicting and correlating the changes in cellular signaling, metabolic networks and action potential responses to metabolic perturbation.The neuronal-metabolic model was experimentally validated by performing biochemical and electrophysiological measurements on NG108-15 cells followed by testing its prediction capabilities for pathway analysis. The model accurately predicted the changes in neuronal action potentials and the changes in intracellular biochemical pathways when exposed to metabolic perturbations. NG108-15 cells showed a large effect upon exposure to 2DG compared to cyanide and malonate as these cells have elevated glycolysis. A combinational treatment of 2DG, cyanide and malonate had a much higher and faster effect on the cells. A time-dependent change in neuronal action potentials occurred based on the inhibited pathway. We conclude that the experimentally validated in silico model accurately predicts the changes in neuronal action potential shapes and proteins activities to perturbations, and would be a powerful tool for performing proteomics facilitating drug discovery by using action potential peak shape analysis to determine pathway perturbation from an administered compound.
Show less - Date Issued
- 2014
- Identifier
- CFE0005822, ucf:50037
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005822