Current Search: Clymer, Bradley (x)
-
-
Title
-
Microwave Radiometer (MWR) Evaluation of Multi-Beam Satellite Antenna Boresight Pointing Using Land-Water Crossings, for the Aquarius/SAC-D Mission.
-
Creator
-
Clymer, Bradley, Jones, W Linwood, Mikhael, Wasfy, Flitsiyan, Elena, University of Central Florida
-
Abstract / Description
-
This research concerns the CONAE Microwave Radiometer (MWR), on board the Aquarius/SAC-D platform. MWR's main purpose is to provide measurements that are simultaneous and spatially collocated with those of NASA's Aquarius radiometer/scatterometer. For this reason, knowledge of the MWR antenna beam footprint geolocation is crucial to mission success.In particular, this thesis addresses an on-orbit validation of the MWR antenna beam pointing, using calculated MWR instantaneous field of view ...
Show moreThis research concerns the CONAE Microwave Radiometer (MWR), on board the Aquarius/SAC-D platform. MWR's main purpose is to provide measurements that are simultaneous and spatially collocated with those of NASA's Aquarius radiometer/scatterometer. For this reason, knowledge of the MWR antenna beam footprint geolocation is crucial to mission success.In particular, this thesis addresses an on-orbit validation of the MWR antenna beam pointing, using calculated MWR instantaneous field of view (IFOV) centers, provided in the CONAE L-1B science data product. This procedure compares L-1B MWR IFOV centers at land/water crossings against high-resolution coastline maps. MWR IFOV locations versus time are computed from knowledge of the satellite's instantaneous location relative to an earth-centric coordinate system (provided by on-board GPS receivers), and a priori measurements of antenna gain patterns and mounting geometry.Previous conical scanning microwave radiometer missions (e.g., SSM/I) have utilized observation of rapid change in brightness temperatures (T_B) to estimate the location of land/water boundaries, and subsequently to determine the antenna beam-pointing accuracy. In this thesis, results of an algorithm to quantify the geolocation error of MWR beam center are presented, based upon two-dimensional convolution between each beam's gain pattern and land-water transition. The analysis procedures have been applied to on-orbit datasets that represent land-water boundaries bearing specific desirable criteria, which are also detailed herein. The goal of this research is to gain a better understanding of satellite radiometer beam-pointing error and thereby to improve the geolocation accuracy for MWR science data products.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005591, ucf:50269
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005591