Current Search: Coffey, Kevin (x)
View All Items
Pages
- Title
- QUANTITATIVE HIGH-ANGLE ANNULAR DARK FIELD SCANNING TRANSMISSION ELECTRON MICROSCOPY FOR MATERIALS SCIENCE.
- Creator
-
Petrova, Rumyana, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
Scanning transmission electron microscopy (STEM) has been widely used for characterization of materials; to identify micro- and nano-structures within a sample and to analyze crystal and defect structures. High-angle annular dark field (HAADF) STEM imaging using atomic number (Z) contrast has proven capable of resolving atomic structures with better than 2 Å lateral resolution. In this work, the HAADF STEM imaging mode is used in combination with multislice simulations. This combination...
Show moreScanning transmission electron microscopy (STEM) has been widely used for characterization of materials; to identify micro- and nano-structures within a sample and to analyze crystal and defect structures. High-angle annular dark field (HAADF) STEM imaging using atomic number (Z) contrast has proven capable of resolving atomic structures with better than 2 Å lateral resolution. In this work, the HAADF STEM imaging mode is used in combination with multislice simulations. This combination is applied to the investigation of the temperature dependence of the intensity collected by the HAADF detector in silicon, and to convergent beam electron diffraction (CBED) to measure the degree of chemical order in intermetallic nanoparticles. The experimental and simulation results on the highangle scattering of 300 keV electrons in crystalline silicon provide a new contribution to the understanding of the temperature dependence of the HAADF intensity. In the case of 300 keV, the average high-angle scattered intensity slightly decreases as the temperature increases from 100 K to 300 K, and this is different from the temperature dependence at 100 keV and 200 keV where HAADF intensity increases with temperature, as had been previously reported by other workers. The L10 class of hard magnetic materials has attracted continuous attention as a candidate for high-density magnetic recording media, as this phase is known to have large magnetocrystalline anisotropy, with magnetocrystalline anisotropy constant, Ku, strongly dependent on the long-range chemical order parameter, S. A new method is developed to assess the degree of chemical order in small FePt L10 nanoparticles by implementing a CBED diffraction technique. Unexpectedly, the degree of order of individual particles is highly variable and not a simple function of particle size or sample composition. The particle-to-particle variability observed is an important new aspect to the understanding of phase transformations in nanoparticle systems.
Show less - Date Issued
- 2006
- Identifier
- CFE0001267, ucf:46931
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001267
- Title
- N MULTILAYER THIN FILM REACTIONS TO FORM L10 FEPT AND EXCHANGE SPRING MAGNETS.
- Creator
-
Yao, Bo, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of n...
Show moreFePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters (substrate temperature, periodicity) have a strong influence on the structure (effective interdiffusivity, L10 phase volume fraction, grain size, and density) and magnetic properties. The correlation of these parameters suggests that the annealed n multilayer films have limited nuclei, and the subsequent growth of L10 phase is very important to the extent of ordered phase formed. A correlation between the grain size of fcc FePt phase, grain size of the L10 FePt phase, the L10 FePt phase fraction, and magnetic properties strongly suggests that the phase transformation of fccL10 is highly dependent on the grain size of the parent fcc FePt phase. A selective phase growth model is proposed to explain the phenomena observed. An investigation of the influence of total film thickness on the phase formation of the L10 FePt phase in n multilayer films and a comparison of this to that of FePt co-deposited alloy films is also conducted. A general trend of greater L10 phase formation in thicker films was observed in both types of films. It was further found that the thickness dependence of the structure and of the magnetic properties in n multilayer films is much stronger than that in FePt alloy films. This is related to the greater chemical energy contained in n films than FePt alloy films, which is helpful for the L10 FePt phase growth. However, the initial nucleation temperature of n multilayers and co-deposited alloy films was found to be similar. An investigation of L10 FePt-based exchange spring magnets is presented based on our understanding of the L10 formation in n multilayer films. It is known that exchange coupling is an interfacial magnetic interaction and it was experimentally shown that this interaction is limited to within several nanometers of the interface. A higher degree of order of the hard phase is shown to increase the length scale slightly. Two approaches can be used to construct the magnets. For samples with composition close to stoichiometric L10 FePt, the achievement of higher energy product is limited by the average saturation magnetization, and therefore, a lower annealing temperature is beneficial to increase the energy product, allowing a larger fraction of disordered phase. For samples with higher Fe concentration, the (BH)max is limited by the low coercivity of annealed sample, and a higher annealing temperature is beneficial to increase the energy product.
Show less - Date Issued
- 2008
- Identifier
- CFE0002416, ucf:47749
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002416
- Title
- INVESTIGATIONS ON RF SPUTTER DEPOSITED SICN THIN FILMS FOR MEMS APPLICATIONS.
- Creator
-
Todi, Ravi, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
With the rapid increase in miniaturization of mechanical components, the need for a hard, protective coatings is of great importance. In this study we investigate some of the mechanical, chemical and physical properties of the SiCN thin films. Thin films of amorphous silicon carbide nitride (a-SiCxNy) were deposited in a RF magnetron sputtering system using a powder pressed SiC target. Films with various compositions were deposited on to silicon substrate by changing the N2/Ar gas ratios...
Show moreWith the rapid increase in miniaturization of mechanical components, the need for a hard, protective coatings is of great importance. In this study we investigate some of the mechanical, chemical and physical properties of the SiCN thin films. Thin films of amorphous silicon carbide nitride (a-SiCxNy) were deposited in a RF magnetron sputtering system using a powder pressed SiC target. Films with various compositions were deposited on to silicon substrate by changing the N2/Ar gas ratios during sputtering. Nano-indentation studies were performed to investigate the mechanical properties such as hardness and reduced modulus of the SiCN films. Surface morphology of the films was characterized by using atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) data indicated that the chemical status is highly sensitive to the nitrogen ratios during sputtering. Further, the films were annealed in dry oxygen ambient in the temperature range of 400 900°C and characterized using XPS to investigate the chemical composition and oxidation kinetics at each annealing temperature. The surface roughness of these films was studied as a function of annealing temperature and film composition with the help of a "Veeco" optical profilometer. Nano-indentation studies indicated that the hardness and the reduced modulus of the film are sensitive to the N2/Ar ratio of gas flow during sputtering. AFM studies revealed that the films become smoother as the N2/Ar ratio is increased. XPS data indicated the existence of C-N phases in the as-deposited films. The study of oxidation kinetics of RF sputter deposited SiCN thin films, using XPS, suggest that N2 co-sputtering helps to suppress the formation of a surface oxide, by allowing un-bonded Si to bond with N and C inside the vacuum chamber as opposed to bonding with O in atmosphere.
Show less - Date Issued
- 2005
- Identifier
- CFE0000839, ucf:46669
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000839
- Title
- MAGNETIC PROPERTIES OF SPUTTER DEPOSITED FE-BASED AMORPHOUS THIN FILMS FOR RESONATOR APPLICATION.
- Creator
-
China, Chaitali, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
In this study we investigate the magnetic properties of Fe-based amorphous thin films. Fe1-x-y-zBxSiyCz, Fe80-xNixB20, Fe80-xMnxB20, and Fe73-xMnxB27 films were deposited on silicon and glass substrates in a DC and RF magnetron sputtering system. Inductive magnetic measurements were performed to investigate the magnetic properties, including induced anisotropy and magnetostriction, of the as-deposited and annealed films using an M-H Looper. The chemical composition of the films was...
Show moreIn this study we investigate the magnetic properties of Fe-based amorphous thin films. Fe1-x-y-zBxSiyCz, Fe80-xNixB20, Fe80-xMnxB20, and Fe73-xMnxB27 films were deposited on silicon and glass substrates in a DC and RF magnetron sputtering system. Inductive magnetic measurements were performed to investigate the magnetic properties, including induced anisotropy and magnetostriction, of the as-deposited and annealed films using an M-H Looper. The chemical composition of the films was characterized using secondary ion mass spectroscopy (SIMS). The physical thickness of the films was determined by use of a stylus profilometer. The M-H Looper studies indicated that the induced anisotropy (Hk) depends strongly on the nickel concentration as well as on the annealing conditions, specifically the time and temperature of the annealing process. For the same metalloid concentration, the induced anisotropy has a maximum as a function of Ni. For the same nickel concentration and annealing time, it was found that the value of Hk decreases with the increase in annealing temperature. For each composition studied, low temperature long time annealing showed a higher value of Hk compared to high temperature short time annealing. From the magnetostriction values of Fe80-xNixB20 alloys, it was found that the sputter deposited films show similar trend but differ in magnitude when compared with ribbon samples. The magnetostriction of annealed thin films is found to be representative of ribbon samples. A potential composition modification to improve the strength of the field induced anisotropy is the addition of low levels of Mn.
Show less - Date Issued
- 2006
- Identifier
- CFE0001275, ucf:46896
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001275
- Title
- CLASSICAL SIZE EFFECT IN CU THIN FILMS: IMPACT OF SURFACE AND GRAIN BOUNDARY SCATTERING ON RESISTIVITY.
- Creator
-
Sun, Tik, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
Surface and grain boundary electron scattering contribute significantly to resistivity as the dimensions of polycrystalline metallic conductors are reduced to, and below, the electron mean free path. A quantitative measurement of the relative contributions of surface and grain boundary scattering to resistivity is very challenging, requiring not only the preparation of suitably small conductors having independent variation of the two relevant length scales, namely, the sample critical...
Show moreSurface and grain boundary electron scattering contribute significantly to resistivity as the dimensions of polycrystalline metallic conductors are reduced to, and below, the electron mean free path. A quantitative measurement of the relative contributions of surface and grain boundary scattering to resistivity is very challenging, requiring not only the preparation of suitably small conductors having independent variation of the two relevant length scales, namely, the sample critical dimension and the grain size, but also independent experimental quantification of these two length scales. In most work to date the sample grain size has been either assumed equal to conductor dimension or measured for only a small number of grains. Thus, the quantification of the classical size effect still suffers from an uncertainty in the relative contributions of surface and grain boundary scattering. In this work, a quantitative analysis of both surface and grain boundary scattering in Cu thin films with independent variation of film thickness (27 nm to 158 nm) and grain size (35 nm to 425 nm) in samples prepared by sub-ambient temperature film deposition followed by annealing is reported. Film resistivities of carefully characterized samples were measured at both room temperature and at 4.2 K and were compared with several scattering models that include the effects of surface and grain boundary scattering. Grain boundary scattering is found to provide the strongest contribution to the resistivity increase. However, a weaker, but significant, role is also observed for surface scattering. Several of the published models for grain boundary and surface scattering are explored and the Matthiessen's rule combination of the Mayadas and Shatzkes' model of grain boundary scattering and Fuchs and Sondheimer's model of surface scattering resistivity contributions is found to be most appropriate. It is found that the experimental data are best described by a grain boundary reflection coefficient of 0.43 and a surface specularity coefficient of 0.52. This analysis finds a significantly lower contribution from surface scattering than has been reported in previous works, which is in part due to the careful quantitative microstructural characterization of samples performed. The data does suggest that there is a roughness dependence to the surface scattering, but this was not conclusively demonstrated. Voids and impurities were found to have negligible impact on the measured resistivities of the carefully prepared films.
Show less - Date Issued
- 2009
- Identifier
- CFE0002959, ucf:47949
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002959
- Title
- REACTION VELOCITIES IN FREE STANDING ALUMINUM AND COPPER OXIDE THIN FILMS.
- Creator
-
Erickson, Matthew, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
In this work we investigate the reaction propagation velocity of aluminum and copper oxide Metastable Intermolecular Composites (MIC's). All samples were deposited in a magnetron sputtering system using 2 aluminum targets and 2 copper targets. The copper is sputtered in an oxygen rich environment in order to obtain copper oxide rich films. Three different layer structures are used for various measurements that are composed of alternating 20 layer pairs, 30 layer pairs, and 40 layer pairs....
Show moreIn this work we investigate the reaction propagation velocity of aluminum and copper oxide Metastable Intermolecular Composites (MIC's). All samples were deposited in a magnetron sputtering system using 2 aluminum targets and 2 copper targets. The copper is sputtered in an oxygen rich environment in order to obtain copper oxide rich films. Three different layer structures are used for various measurements that are composed of alternating 20 layer pairs, 30 layer pairs, and 40 layer pairs. All layer pairs maintain a constant total thickness of 3.2 microns. Each layer structure can be prepared independent of a substrate and is measured with the use of photodiodes or with direct device contact. Aluminum and copper oxide structures have potential use as propellants and additives to explosives, thus, accurate propagation velocity or burn rate measurements are important. The developed measurement system for burn rate measurements of Al/CuO MIC's can achieve and accuracy of 0.1 m/s. In order to determine the velocity limiting characteristics, MIC's on glass and silicon substrates were measured as well as free standing Al/CuO MIC's. Separate burn rate measurement devices were created in order to handle the variety of substrates. In addition, the ignition energy of the Al/CuO MIC was studied to further characterize the samples. This was done using both voltage and current probes of a reacting sample. Rutherford backscattering spectroscopy (RBS) was used for sample composition calibration. The pre- and post-reaction Al/CuO MIC's were also characterized by transmission electron microscopy (TEM).
Show less - Date Issued
- 2009
- Identifier
- CFE0002786, ucf:48093
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002786
- Title
- Microstructure and Chemistry Evaluation of Direct Metal Laser Sintered 15-5 PH Stainless Steel.
- Creator
-
Coffy, Kevin, Sohn, Yongho, Coffey, Kevin, Richardson, Martin, University of Central Florida
- Abstract / Description
-
15-5PH stainless steel is an important alloy in the aerospace, chemical, and nuclear industries for its high strength and corrosion resistance at high temperature. Thus, this material is a good candidate for processing development in the direct metal laser sintering (DMLS) branch of additive manufacturing. The chemistry and microstructure of this alloy processed via DMLS was compared to its conventionally cast counterpart through various heat treatments as part of a characterization effort....
Show more15-5PH stainless steel is an important alloy in the aerospace, chemical, and nuclear industries for its high strength and corrosion resistance at high temperature. Thus, this material is a good candidate for processing development in the direct metal laser sintering (DMLS) branch of additive manufacturing. The chemistry and microstructure of this alloy processed via DMLS was compared to its conventionally cast counterpart through various heat treatments as part of a characterization effort. The investigation utilized optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffractometry (XRD), energy dispersive X-Ray spectroscopy (EDS) and glow discharge atomic emission spectrometry (GDS) techniques. DMLS processed samples contained a layered microstructure in which the prior austenite grain sizes were relatively smaller than the cast and annealed prior austenite grain size. The largest of the quantifiable DMLS prior austenite grains had an ASTM grain size of approximately 11.5-12 (6.7?m to 5.6?m, respectively) and the cast and annealed prior austenite grain size was approximately 7-7.5 (31.8?m to 26.7?m, respectively), giving insight to the elevated mechanical properties of the DMLS processed alloy. During investigation, significant amounts of retained austenite phase were found in the DMLS processed samples and quantified by XRD analysis. Causes of this phase included high nitrogen content, absorbed during nitrogen gas atomization of the DMLS metal powder and from the DMLS build chamber nitrogen atmosphere. Nitrogen content was quantified by GDS for three samples. DMLS powder produced by nitrogen gas atomization had a nitrogen content of 0.11 wt%. A DMLS processed sample contained 0.08 wt% nitrogen, and a conventionally cast and annealed sample contained only 0.019 wt% nitrogen. In iron based alloys, nitrogen is a significant austenite promoter and reduced the martensite start and finish temperatures, rendering the standard heat treatments for the alloy ineffective in producing full transformation to martensite. Process improvements are proposed along with suggested future research.
Show less - Date Issued
- 2014
- Identifier
- CFE0005317, ucf:50507
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005317
- Title
- Catalytic Role of Boron Nitride in the Thermal Decomposition of Ammonium Perchlorate.
- Creator
-
Grossman, Kevin, Seal, Sudipta, Coffey, Kevin, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
The decomposition of Ammonium Perchlorate (AP), a strong oxidizer used in solid rocket propellant, is widely studied in an attempt to increase the burn characteristics of propellants. Many materials have been shown to catalyze its decomposition, but little is known about the mechanism by which AP decomposition becomes catalyzed. In this study, Boron Nitride (BN) nanostructures, a material previously unknown to act as a catalyst, is studied. The decomposition reaction is studied by thermo...
Show moreThe decomposition of Ammonium Perchlorate (AP), a strong oxidizer used in solid rocket propellant, is widely studied in an attempt to increase the burn characteristics of propellants. Many materials have been shown to catalyze its decomposition, but little is known about the mechanism by which AP decomposition becomes catalyzed. In this study, Boron Nitride (BN) nanostructures, a material previously unknown to act as a catalyst, is studied. The decomposition reaction is studied by thermo-gravimetric analysis / differential scanning calorimetry, X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. The goal of this study is to discover the activation energy of this catalyst reaction, intermediary products of the reaction, mechanism of reaction and end state of the boron nitride nanostructures (ie, if the BN acts as a true catalyst, or participates on the overall reaction and has some end state that's different from the initial state). Four variations of BN have been synthesized using a hydrothermal process; BN nanoribbons, Boron Rich BN, Nitrogen-Rich BN, and high surface area BN. It is shown that the decomposition of AP is significantly altered when in the presence of BN and the mechanism through which BN catalyzes the decomposition is most likely the presence of oxidized nitrogen species on the BN material.
Show less - Date Issued
- 2015
- Identifier
- CFE0005801, ucf:50027
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005801
- Title
- Chemistry and(&)nbsp;Structure of Ru/SiO2(&)nbsp;and Ru/Al2O3 Interfaces.
- Creator
-
Ezzat, Sameer, Campiglia, Andres, Coffey, Kevin, Zou, Shengli, Frazer, Andrew, Harper, James, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The resistivity size effect in nanoscale metals is of both scientific and technological interest, the latter due to its importance to interconnects between transistors in integrated circuits. In this work we report the variation of resistivity associated with surface scattering of ex-situ annealed single crystal Ru thin films grown on sapphire substrates by sputter deposition. A set of samples were overcoated with dielectric and subjected to a variety of reducing and oxidizing anneals. The...
Show moreThe resistivity size effect in nanoscale metals is of both scientific and technological interest, the latter due to its importance to interconnects between transistors in integrated circuits. In this work we report the variation of resistivity associated with surface scattering of ex-situ annealed single crystal Ru thin films grown on sapphire substrates by sputter deposition. A set of samples were overcoated with dielectric and subjected to a variety of reducing and oxidizing anneals. The changes in the chemistry and structure of the dielectric interface induced by the anneals, as determined by x-ray reflectivity and x-ray photoelectron spectroscopy measurements, are related to the changes in the specularity of the surface for electron scattering in the context of the Fuchs-Sondheimer semi-classical model of the resistivity size effect.
Show less - Date Issued
- 2019
- Identifier
- CFE0007454, ucf:52727
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007454
- Title
- Cell Printing: An Effective Advancement for the Creation of um Size Patterns for Integration into Microfluidic BioMEMs Devices.
- Creator
-
Aubin, Megan, Hickman, James, Coffey, Kevin, Lambert, Stephen, University of Central Florida
- Abstract / Description
-
The Body-on-a-Chip (BoaC) is a microfluidic BioMEMs project that aims to replicate major organs of the human body on a chip, providing an in vitro drug testing platform without the need to resort to animal model testing. Using a human model also provides significantly more accurate drug response data, and may even open the door to personalized drug treatments. Microelectrode arrays integrated with human neuronal or human cardiac cells that are positioned on the electrodes are essential...
Show moreThe Body-on-a-Chip (BoaC) is a microfluidic BioMEMs project that aims to replicate major organs of the human body on a chip, providing an in vitro drug testing platform without the need to resort to animal model testing. Using a human model also provides significantly more accurate drug response data, and may even open the door to personalized drug treatments. Microelectrode arrays integrated with human neuronal or human cardiac cells that are positioned on the electrodes are essential components for BoaC systems. Fabricating these substrates relies heavily on chemically patterned surfaces to control the orientation and growth of the cells. Currently, cells are plated by hand onto the surface of the chemically patterned microelectrode arrays. The cells that land on the cytophobic 2-[Methoxy(Polyethyleneoxy)6-9Propyl]trimethoxysilane (PEG) coating die and detach from the surface, while the cells that land on the cytophilic diethylenetriamine (DETA) coating survive and attach to the surface exhibiting normal physiology and function. The current technique wastes a significant amount of cells, some of which are extremely expensive, and is labor intensive. Cell printing, the process of dispensing cells through a 3D printer, makes it possible to pinpoint the placement of cells onto the microelectrodes, drastically reducing the number of cells utilized. Scaled-up manufacturing is also possible due to the automation capabilities provided by printing. In this work, the specific conditions for printing each cell type is unique, the printing of human motoneurons, human sensory neurons and human cardiac cells was investigated. The viability and functionality of the printed cells are demonstrated by phase images, immunostaining and electrical signal recordings. The superior resolution of cell printing was then taken one step further by successfully printing two different cell types in close proximity to encourage controlled innervation and communication.
Show less - Date Issued
- 2017
- Identifier
- CFE0007390, ucf:52074
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007390
- Title
- INFRARED SURFACE PLASMON POLARITONS ON SEMICONDUCTOR, SEMIMETAL AND CONDUCTING POLYMER.
- Creator
-
Shahzad, Monas, Peale, Robert, Heinrich, Helge, Coffey, Kevin, Diaz, Diego, University of Central Florida
- Abstract / Description
-
Conductors with IR (infrared) plasma frequencies are potentially useful hosts of surface plasmon polaritons (SPPs) with subwavelength mode confinement for sensing applications. The underlying aim of this work is to identify such conductors that also have sharp SPP excitation resonances for biosensor applications at infrared (3-11 ?m) wavelengths, where biological analytes are strongly differentiated by their IR absorption spectra. In this work, various materials were investigated such as a...
Show moreConductors with IR (infrared) plasma frequencies are potentially useful hosts of surface plasmon polaritons (SPPs) with subwavelength mode confinement for sensing applications. The underlying aim of this work is to identify such conductors that also have sharp SPP excitation resonances for biosensor applications at infrared (3-11 ?m) wavelengths, where biological analytes are strongly differentiated by their IR absorption spectra. In this work, various materials were investigated such as a heavily doped semiconductor, a semimetal, a conducting polymer and its composite.Heavily doped silicon was investigated by tuning its plasma frequency to the infrared region by heavily doping. The measured complex permittivity spectra for p-type silicon with a carrier concentration of 6 (&)#215; 1019 and 6 (&)#215; 1020 cm-3 show that these materials support SPPs beyond 11 and 6 ?m wavelengths, respectively. SPP generation was observed in angular reflection spectra of doped-silicon gratings. Photon-to-plasmon coupling resonances, a necessary condition for sensing, were demonstrated near 10 ?m wavelength for the heaviest doped, and the observed resonances were confirmed theoretically using analytic calculations. The permittivity spectra were also used to calculate SPP mode heights above the silicon surface and SPP propagation lengths. Reasonable merit criteria applied to these quantities suggest that only the heaviest doped material has sensor potential, and then mainly within the wavelength range of 6 to 10 ?m. The semimetal bismuth (Bi) has an infrared plasmon frequency less than the infrared plasma frequency of noble metals such as gold and silver, which is one order of magnitude lower than their plasma frequencies. The excitation of IR surface plasmons on Bi lamellar gratings in the wavelength range of 3.4 (&)#181;m to 10.6 (&)#181;m was observed. Distinct SPP resonances were observed although the usual condition for bound SPP is not satisfied in this wavelength range because the real part of the permittivity is positive. The excitation of these resonances agrees theoretically with the electromagnetic surface waves called surface polaritons (SPs). The measured permittivity spectra were used to calculate the SP mode heights above the bismuth surface and SP propagation length, which satisfied our criteria for sensors.A conducting polymer and its composite with graphite were also investigated since their plasma frequency may lie in the infrared region. Polyaniline was chemically synthesized and doped with various acids to prepare its salt form. A composite material of polyaniline with colloidal and nano-graphite was also prepared. Optical constants were measured in the long wave infrared region (LWIR) and were used to calculate SPP propagation length and penetration depth. SPP resonance spectra were calculated and suggested that polyaniline and its composite can be used as a host with sufficient mode confinement for IR sensor application.
Show less - Date Issued
- 2012
- Identifier
- CFE0004598, ucf:49215
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004598
- Title
- Process-Dependent Microstructure And Severe Plastic Deformation In SiCp Reinforced Aluminum Metal Matrix Composites.
- Creator
-
Uribe Restrepo, Catalina, Sohn, Yongho, Coffey, Kevin, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Discontinuously reinforced MMCs with optimized microstructure are sought after for exceptional high strain rate behavior. The microstructure evolution of a stir-cast A359 aluminum composite reinforced with 30 vol.% SiCp after isothermal anneal, successive hot-rolling, and high strain rate deformation has been investigated. Quantitative microstructural analysis was carried out for the as-cast, annealed (470(&)deg;C, 538(&)deg;C and 570(&)deg;C) and successively hot rolled specimens (64, 75, 88...
Show moreDiscontinuously reinforced MMCs with optimized microstructure are sought after for exceptional high strain rate behavior. The microstructure evolution of a stir-cast A359 aluminum composite reinforced with 30 vol.% SiCp after isothermal anneal, successive hot-rolling, and high strain rate deformation has been investigated. Quantitative microstructural analysis was carried out for the as-cast, annealed (470(&)deg;C, 538(&)deg;C and 570(&)deg;C) and successively hot rolled specimens (64, 75, 88, and 96% rolling reductions). Selected composites were also examined after high strain rate deformation. X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy were employed for microstructural characterization. The strength and ductility of the A359 Al alloys, and the composite, were greatly influenced by the brittle eutectic silicon phase and its morphology. Lamellar eutectic silicon spheroidized with isothermal anneal and successive hot rolling with a corresponding decrease in hardness. The hot rolling process also considerably decreased the SiC particle size (approximately 20% after 96% reduction) by breaking-up the hard SiC particles. However, this break-up of particles increased the homogeneity of SiCp size distribution. Successive hot rolling also healed voids due to solidification shrinkage, incomplete infiltration of molten Al and defects originating from fractured particles. Four selected specimens of composites were examined after high strain rate deformation. Fractography and metallographic analysis for the craters, voids, and relevant regions affected by the high velocity impact were carried out. The deposition of impact residuals was frequently observed on the exposed fracture surfaces. These residuals were typically observed as (")molten-and-solidified(") as a consequence of excessive heat generated during and after the damage. Particularly in regions of entry and exit of impact, intermixing of residuals and composite constituents were observed, demonstrating that the Al matrix of the composite also had melted.In all samples examined, cracks were observed to propagate through the eutectic Si network while a small number of broken reinforcement particles were observed. A slight variation in failure mechanisms was observed (e.g., radial, fragmentation, petalling) corresponding to the variation in ductility against high strain rate deformation. In selected specimens, parallel sub-cracks at the exit were observed at 45(&)deg; and 30(&)deg;. These sub-cracks were again filled with intermixed constituents from projectile residuals and composites. This observation suggests that the melting of composite constituents that leads to intermixing occured after the crack propagation and other damage.
Show less - Date Issued
- 2011
- Identifier
- CFE0004172, ucf:49056
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004172
- Title
- Microstructual Characteristics of Magnesium Metal Matrix Composites.
- Creator
-
Shin, Dongho, Sohn, Yongho, Coffey, Kevin, Suryanarayana, Challapalli, University of Central Florida
- Abstract / Description
-
Magnesium (Mg) Metal matrix composites (MMCs) reinforced by ceramic reinforcements are being developed for a variety of applications in automotive and aerospace because of their strength-to-weight ratio. Reinforcement being considered includes SiC, Al2O3, Carbon fiber and B4C in order to improve the mechanical properties of MMCs. Microstructural and interfacial characteristics of MMCs can play a critical role in controlling the MMCs' mechanical properties. This study was carried out to...
Show moreMagnesium (Mg) Metal matrix composites (MMCs) reinforced by ceramic reinforcements are being developed for a variety of applications in automotive and aerospace because of their strength-to-weight ratio. Reinforcement being considered includes SiC, Al2O3, Carbon fiber and B4C in order to improve the mechanical properties of MMCs. Microstructural and interfacial characteristics of MMCs can play a critical role in controlling the MMCs' mechanical properties. This study was carried out to understand the microstructural and interfacial development between Mg-9wt.Al-1wt.Zn (AZ91) alloy matrix and several reinforcements including SiC, Al2O3, Carbon fibers and B4C. X-ray diffraction, scanning electron microscopy and transmission electron microscopy was employed to investigate the microstructure and interfaces. Al increase in hardness due to the presence of reinforcements was also documented via Vicker's hardness measurements. Thermodynamic consideration based on Gibbs free energy was employed along with experimental results to describe the interfacial characteristics of MMCs. Reaction products from AZ91-SiC and AZ91-Al2O3 interfaces were identified as MgO, since the surface of SiC particles is typically covered with SiO2 and the MgO is the most thermodynamically stable phase in these systems. The AZ91-Carbon fiber interface consist of Al4C3 and this carbide phase is considered detrimental to the mechanical toughness of MMCs. The AZ91-B4C interface was observed to contain MgB2 and MgB2C2. In general, Vicker's hardness increased by 3X due to the presence of these reinforcements.
Show less - Date Issued
- 2012
- Identifier
- CFE0004441, ucf:49324
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004441
- Title
- Phase Field Modeling of Thermotransport in Multicomponent Systems.
- Creator
-
Bush, Joshua, Sohn, Yongho, Suryanarayana, Challapalli, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
Nuclear and gas turbine power plants, computer chips, and other devices and industries are running hotter than ever for longer than ever. With no apparent end to the trend, the potential arises for a phenomenon known as thermotransport to cause undesirable changes in these high temperature materials. The diffuse-interface method known as the phase-field model is a useful tool in the simulation and prediction of thermotransport driven microstructure evolution in materials. The objective of...
Show moreNuclear and gas turbine power plants, computer chips, and other devices and industries are running hotter than ever for longer than ever. With no apparent end to the trend, the potential arises for a phenomenon known as thermotransport to cause undesirable changes in these high temperature materials. The diffuse-interface method known as the phase-field model is a useful tool in the simulation and prediction of thermotransport driven microstructure evolution in materials. The objective of this work is to develop a phase-field model using practical and empirical properties of thermodynamics and kinetics for simulating the interdiffusion behavior and microstructural evolution of single and multiphase binary alloy system under composition and/or temperature gradients. Simulations are carried out using thermodynamics and kinetics of real systems, such as the U-Zr solid metallic fuel, with emphasis on the temperature dependencies of the kinetics governing diffusional interactions in single-phase systems and microstructural evolution in the presence of multiple driving forces in multi-phase systems.A phase field model is developed describing thermotransport in the ? phase of the U-Zr alloy, a candidate for advanced metallic nuclear fuels. The model is derived using thermodynamics extracted from the CALPHAD database and temperature dependent kinetic parameters associated with thermotransport from the literature. Emphasis is placed upon the importance of the heat of transport, Q*, and atomic mobility, ?. Temperature dependencies of each term are estimated from empirical data obtained directly from the literature, coupled with the textbook phenomenological formulae of each parameter. A solution is obtained via a finite volume approach with the aid of the FiPy(&)#174; partial differential equation solver. Results of the simulations are described based on individual flux contributions from the gradients of both composition and temperature, and are found to be remarkably similar to experimental results from the literature.In an additional effort the thermotransport behavior of a binary two-phase alloy is modeled, for the first time, via the phase-field method for a two-phase (? + ?) U-Zr system. The model is similarly built upon CALPHAD thermodynamics describing the ? and ? phases of the U-Zr system and thermotransport parameters for the ? phase from literature. A parametric investigation of how the heats of transport for U and Zr in the ? phase affect the redistribution is performed, and the interplay between system kinetics and thermodynamics are examined. Importantly, a strict control over the microstructure that is placed into the temperature gradient (at t=0) is used to eliminate the randomness associated with microstructural evolution from an initially unstable state, allowing an examination of exactly how the ? phase thermotransport parameters affect the redistribution behavior of the system. Results are compared to a control scenario in which the system evolves only in the presence of thermodynamic driving forces, and the kinetic parameters that are associated with thermotransport are negligible. In contrast to the single-phase simulations, in the presence of a large thermodynamic drive for phase transformation and stability, the constituent redistribution caused by the thermotransport effect is comparatively smaller.
Show less - Date Issued
- 2012
- Identifier
- CFE0004363, ucf:49436
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004363
- Title
- Effects of Allotropic Transformations on Interdiffusion Behavior in Binary Systems.
- Creator
-
Ewh, Ashley, Sohn, Yongho, Suryanarayana, Challapalli, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
Diffusion plays a significant role in most materials systems by controlling microstructural development. Consequently, the overall properties of a material can be largely dependent upon diffusion. This study investigated the interdiffusion behavior of three binary systems, namely, Mo-Zr, Fe-Mo, and Fe-Zr. The main interest in these particular metals is for application in nuclear fuel assemblies. Nuclear fuel plates generally consist of two main components which are the fuel and the cladding....
Show moreDiffusion plays a significant role in most materials systems by controlling microstructural development. Consequently, the overall properties of a material can be largely dependent upon diffusion. This study investigated the interdiffusion behavior of three binary systems, namely, Mo-Zr, Fe-Mo, and Fe-Zr. The main interest in these particular metals is for application in nuclear fuel assemblies. Nuclear fuel plates generally consist of two main components which are the fuel and the cladding. Due to diffusional interactions that can occur between these two components, a third is sometimes added between the fuel and cladding to serve as a diffusion barrier layer. Fe, Mo, and Zr can act as either cladding or barrier layer constituents and both Mo and Zr also serve as alloying additions in uranium based metallic fuels. Therefore, a fundamental understanding of the diffusional interactions in these systems is critical in predicting the performance and lifetime of these fuels. In order to study this diffusion behavior, a series of solid-to-solid diffusion couples were assembled between Fe, Mo, and Zr. These couples were then diffusion annealed isothermally for various predetermined times over a range of temperatures, including some both above and below the allotropic transformation temperatures for Fe and Zr. Following the diffusion anneal, the couples were water quenched, cross-sectioned, and prepared for microstructural and compositional characterization. A combination of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electron probe microanalysis (EPMA) were used to obtain micrographs showing the microstructure and to collect compositional data for identifying intermediate phases and determining concentration profiles across the interdiffusion zone.Based on this characterization, the phases that developed in the diffusion zones were identified. In the Mo-Zr system, a large Zr solid solution layer developed in the couples annealed at and above 850(&)deg;C and a thin (~1-2 ?m) layer of Mo2Zr formed in all couples. Growth constants and concentration dependent interdiffusion coefficients were calculated for the Mo2Zr and Zr solid solution phases, respectively. In the Fe-Mo system, both the ?-Fe2Mo and ?-Fe7Mo6 phases were observed in couples annealed at 900(&)deg;C and below while ?-Fe7Mo6 and ?-Fe solid solution layers were observed in couples annealed above 900(&)deg;C. The relevant growth constants and activation energies for growth were calculated. In the Fe-Zr system, the couple annealed at 750(&)deg;C developed an FeZr2 and an FeZr3 layer while the couple annealed at 850(&)deg;C developed an Fe2Zr and Fe23Zr6 layer in the diffusion zone. The results of this analysis were then compared to available information from literature and the corresponding binary phase diagrams for each system. The results are discussed with respect to the effects of the allotropic transformations of Fe and Zr on the interdiffusion behavior in these systems.
Show less - Date Issued
- 2012
- Identifier
- CFE0004374, ucf:49422
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004374
- Title
- Interdiffusion reaction between uranium-zirconium and iron.
- Creator
-
Park, Young Joo, Sohn, Yongho, Coffey, Kevin, Fang, Jiyu, University of Central Florida
- Abstract / Description
-
U-Zr metallic fuels cladded in Fe-alloys are being considered for application in an advanced Sodium-Cooled Fast Reactor (SFR) that can recycle the U-Zr fuels and minimize the long-lived actinide waste. To understand the complex fuel-cladding chemical interaction of the U-Zr metallic fuel with Fe-alloys, a systematic multicomponent diffusion study was carried out using solid-to-solid diffusion couples. The U-10 wt.% Zr vs. pure Fe diffusion couples were assembled and annealed at temperatures,...
Show moreU-Zr metallic fuels cladded in Fe-alloys are being considered for application in an advanced Sodium-Cooled Fast Reactor (SFR) that can recycle the U-Zr fuels and minimize the long-lived actinide waste. To understand the complex fuel-cladding chemical interaction of the U-Zr metallic fuel with Fe-alloys, a systematic multicomponent diffusion study was carried out using solid-to-solid diffusion couples. The U-10 wt.% Zr vs. pure Fe diffusion couples were assembled and annealed at temperatures, 630, 650 and 680(&)deg;C for 96 hours. Development of microstructure, phase constituents, and compositions developed during the thermal anneals were examined by scanning electron microscopy, transmission electron microscopy and X-ray energy dispersive spectroscopy. A complex microstructure consisting of several layers that include phases such as U6Fe, UFe2, ZrFe2, ?-U, ?-U, Zr-precipitates, ?, ?, and ? was observed. Multi-phase layers were grouped based on phase constituents and microstructure, and the layer thicknesses were measured to calculate the growth constant and activation energy. The local average compositions through the interaction layer were systematically determined, and employed to construct semi-quantitative diffusion paths on isothermal U-Zr-Fe ternary phase diagrams at respective temperatures. The diffusion paths were examined to qualitatively estimate the diffusional behavior of individual components and their interactions. Furthermore, selected area diffraction analyses were carried out to determine, for the first time, the exact crystal structure and composition of the ?, ? and ?-phases. The ?, ? and ?-phases were identified as Pnma(62) Fe(Zr,U), I4/mcm(140) Fe(Zr,U)2, and I4/mcm(140) U3(Zr,Fe), respectively.
Show less - Date Issued
- 2013
- Identifier
- CFE0004908, ucf:49616
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004908
- Title
- Chemistry and dissipation at mineral surfaces in the space environment.
- Creator
-
Tucker, William, Schelling, Patrick, Britt, Daniel, Kara, Abdelkader, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation,...
Show moreThe composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation, experimental results are first presented which demonstrate that mineral grains subjected to high temperatures in a reducing environment lead to iron nanoparticles which are strongly catalytic for the formation of complex organic species. Next, results obtained using molecular-dynamics simulations demonstrate that uncoordinated surface atoms in metallic nanoparticles result in plastic deformation, strong dissipation and adhesion during collisions. This can be contrasted with previous simulations which demonstrate significantly weaker dissipation when surface atoms are passivated. Calculations of critical sticking velocities demonstrate that simple coarse- grain models are insufficient for predicting the adhesive behavior of sub-micron sized grains. Next, results are presented describing a computational study illuminating the role of surface chemistry on adhesion and dissipation for iron nanoparticle collisions, which in the case of free radical adsorbates may also contribute to the creation of more complex species. Lastly, to further elucidate dissipation, the direct coupling of harmonic vibrational modes in the dissipation process is established. The results demonstrate broad participation of low and high-frequency modes during a collision during a timescale less than time required for particles to rebound. Hence, our results demonstrate extremely strong likelihood of adhesion during collisions. This approach provides a way to use density-functional theory calculations to directly compute dissipative couplings at mineral interfaces.
Show less - Date Issued
- 2019
- Identifier
- CFE0007545, ucf:52592
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007545
- Title
- Reactive sputter deposition of lithium phosphorus oxynitride thin films, a Li battery solid state electrolyte.
- Creator
-
Mani, Prabhu Doss, Coffey, Kevin, Heinrich, Helge, Hickman, James, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
Lithium phosphorus oxy-nitride (LiPON) thin films are widely studied and used as a thin film electrolyte for lithium ion battery applications. LiPON thin films may be prepared by many techniques, but RF sputter deposition is most frequently used and was investigated in this dissertation, in spite of its low deposition rate, because of it offers more reliable and controllable processing. This dissertation includes the methodologies of sputter deposition and materials characterization of the...
Show moreLithium phosphorus oxy-nitride (LiPON) thin films are widely studied and used as a thin film electrolyte for lithium ion battery applications. LiPON thin films may be prepared by many techniques, but RF sputter deposition is most frequently used and was investigated in this dissertation, in spite of its low deposition rate, because of it offers more reliable and controllable processing. This dissertation includes the methodologies of sputter deposition and materials characterization of the LiPON thin film electrolytes.The LiPON thin films were deposited under varying conditions of process gas, substrate bias, and deposition temperature. To understand the variations in ionic conductivity observed, the films were extensively characterized to examine structural and compositional differences, including examination by x-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP/OES), and spectroscopic ellipsometry. In addition, film density, and the intrinsic stress of the deposited films were also studied.The highest ionic conductivity of 9.8 x 10-6 S/cm was obtained at elevated deposition temperature and is correlated to a reduced density of defects, as indicated from the optical characterization.
Show less - Date Issued
- 2015
- Identifier
- CFE0005835, ucf:50929
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005835
- Title
- Phase Transformations and Microstructural Evolution in the U-10 wt.% Mo Alloy with Various Zr Additions at 900C and 650C.
- Creator
-
Eriksson, Nicholas, Sohn, Yongho, Challapalli, Suryanarayana, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The Reduced Enrichment for Research and Test Reactor (RERTR) now known as the Material Minimization and Management Reactor Control program (MMMRC) seeks to replace the use of highly enriched uranium (HEU) fuels used in research and test nuclear reactors around the world. The low enriched uranium (LEU) fuels must have fissionable uranium densities comparable to the HEU fuels. After extensive investigation by various researchers around the world, the U-Mo alloys were selected as a promising...
Show moreThe Reduced Enrichment for Research and Test Reactor (RERTR) now known as the Material Minimization and Management Reactor Control program (MMMRC) seeks to replace the use of highly enriched uranium (HEU) fuels used in research and test nuclear reactors around the world. The low enriched uranium (LEU) fuels must have fissionable uranium densities comparable to the HEU fuels. After extensive investigation by various researchers around the world, the U-Mo alloys were selected as a promising candidate. The Mo alloyed with U allows for the stabilization of the face-centered cubic ?-U phase, which demonstrated favorable irradiation behavior. However, deleterious diffusional interaction between the fuel and the cladding, typically Al-base alloy, remain a challenge to overcome for application of U-Mo alloys as the LEU fuel. Zr has been identified as a potential diffusion barrier between monolithic U-10 wt.% Mo (U10Mo) metallic fuel and AA6061 cladding alloys for the development of a LEU fuel system. However, interdiffusion and reaction between the Zr barrier and U10Mo fuel can produce phases such as Mo2Zr, and promote the destabilization of ?-U phase into ?'-U (U2Mo) and ?-U. In order to better understand this phenomenon, this study examined the phases that are present in the U10Mo alloys with varying Zr concentration, 0, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0 wt.% at room temperature after heat treatment at 900(&)deg;C for 168 hours and 650(&)deg;C for 3 hours. These two temperatures are relevant to fuel plate fabrication process of homogenization and hot-rolling, respectively. Scanning electron microscopy and X-ray diffraction were employed to identify and quantitatively document the constituent phases and microstructure to elucidate the nature of phase transformations. For U10Mo alloys containing less than 1.0 wt.% Zr, there was no significant formation of Mo2Zr after 900?C homogenization and subsequent heat treatment at 650?C for 3 hours. The ?-U phase also remained stable correspondingly for these alloys containing less than 1.0 wt.% Zr. For U10Mo alloys containing 2 wt.% or more Zr, a significant amount of Mo2Zr formation was observed after 900?C homogenization and subsequent heat treatment at 650?C for 3 hours. For these alloys, destabilization of ?-U into ?'-U (U2Mo), UZr2 and ?-U was observed. The alloy containing 20 wt.% Zr, however, did not demonstrate ?-U decomposition even though Mo2Zr was observed after heat treatments. The formation of Mo2Zr effectively reduced the stability of the metastable ?-U phase by depleting the ?-stabilizing Mo. The destabilization of ?-U phase into the ?-U phase is not favorable due to anisotropic and poor irradiation behavior of ?-U phase. Therefore the formation of Mo2Zr at the interface between U10Mo fuel and Zr diffusion barrier must be carefully controlled during the fabrication of monolithic LEU fuel system for successful implementation.
Show less - Date Issued
- 2015
- Identifier
- CFE0005943, ucf:50812
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005943
- Title
- Porosity Removal of CM247 Ni-base Superalloy using Thermal Heat Treatment without Applied Pressure.
- Creator
-
Heinrich, Chad, Sohn, Yongho, Coffey, Kevin, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
Blade and vane components made with Ni-base superalloys play a vital role in hot section of gas turbine engines. Removal of porosity in cast Ni-base superalloys is a critical process consideration since porosity from casting process can have deleterious effects on the performance and integrity of superalloy component. Still, the cost-efficient processing of Ni-base superalloys that are technologically acceptable, or superior, can contribute significantly to the life-cycle cost of gas turbine...
Show moreBlade and vane components made with Ni-base superalloys play a vital role in hot section of gas turbine engines. Removal of porosity in cast Ni-base superalloys is a critical process consideration since porosity from casting process can have deleterious effects on the performance and integrity of superalloy component. Still, the cost-efficient processing of Ni-base superalloys that are technologically acceptable, or superior, can contribute significantly to the life-cycle cost of gas turbine engines. The purpose of this thesis was to explore the possibility of eliminating the hot isostatic pressing cycle in a CM247 Ni-base superalloy processing. For cast CM247, conventional processing includes a hot isostatic pressing, which is primarily used to densify cast alloys by eliminating porosity. Two modified heat treatments without any applied pressure for CM247 were explored. Following these heat treatments, the porosity within each the sample was analyzed by electron microscopy. Results showed that HIP'ing removed 67.4% of the porosity from the as-cast CM247. The modified heat treatment examined in this study removed 97.9% of the porosity from the as-cast CM247. These experimental results were analyzed by considering the energetics of the HIP and modified heat treatments. Analysis demonstrated that most of the energy imparted on the casting for porosity removal can be due to temperature and not pressure, and justified how the modified heat treatments reduced porosity more effectively than the standard HIP cycle. Findings of this study can be immediately implemented for easier and more cost-effective processing of CM247 Ni-base superalloy.
Show less - Date Issued
- 2015
- Identifier
- CFE0006322, ucf:51558
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006322