Current Search: DeCampli, William (x)
View All Items
- Title
- Hybrid Multi-Objective Optimization of Left Ventricular Assist Device Outflow Graft Anastomosis Orientation to Minimize Stroke Rate.
- Creator
-
Lozinski, Blake, Kassab, Alain, Mansy, Hansen, DeCampli, William, University of Central Florida
- Abstract / Description
-
A Left Ventricular Assist Device (LVAD) is a mechanical pump that is utilized as a bridge to transplantation for patients with a Heart Failure (HF) condition. More recently, LVADs have been also used as destination therapy and have provided an increase in the quality of life for patients with HF. However, despite improvements in VAD design and anticoagulation treatment, there remains a significant problem with VAD therapy, namely drive line infection and thromboembolic events leading to...
Show moreA Left Ventricular Assist Device (LVAD) is a mechanical pump that is utilized as a bridge to transplantation for patients with a Heart Failure (HF) condition. More recently, LVADs have been also used as destination therapy and have provided an increase in the quality of life for patients with HF. However, despite improvements in VAD design and anticoagulation treatment, there remains a significant problem with VAD therapy, namely drive line infection and thromboembolic events leading to stroke. This thesis focuses on a surgical maneuver to address the second of these issues, guided by previous steady flow hemodynamic studies that have shown the potential of tailoring the VAD outflow graft (VAD-OG) implantation in providing up to 50% reduction in embolization rates. In the current study, multi-scale pulsatile hemodynamics of the VAD bed is modeled and integrated in a fully automated multi-objective shape optimization scheme in which the VAD-OG anastomosis along the Ascending Aorta (AA) is optimized to minimize the objective function which include thromboembolic events to the cerebral vessels and wall shear stress (WSS). The model is driven by a time dependent pressure and flow boundary conditions located at the boundaries of the 3D domain through a 50 degree of freedom 0D lumped parameter model (LPM). The model includes a time dependent multi-scale Computational Fluid Dynamics (CFD) analysis of a patient specific geometry. Blood rheology is modeled as using the non-Newtonian Carreua-Yasuda model, while the hemodynamics are that of a laminar and constant density fluid. The pulsatile hemodynamics are resolved using the commercial CFD solver StarCCM+ while a Lagrangian particle tracking scheme is used to track constant density particles modeling thromobi released from the cannula to determine embolization rated of thrombi. The results show that cannula anastomosis orientation plays a large role when minimizing the objective function for patient derived aortic bed geometry used in this study. The scheme determined the optimal location of the cannula is located at 5.5 cm from the aortic root, cannula angle at 90 degrees and coronal angle at 8 degrees along the AA with a peak surface average WSS of 55.97 dy/cm2 and stroke percentile of 12.51%. A Pareto front was generated showing the range of 9.7% to 44.08% for stroke and WSS of 55.97 to 81.47 dy/cm2 ranged over 22 implantation configurations for the specific case studied. These results will further assist in the treatment planning for clinicians when implementing a LVAD.
Show less - Date Issued
- 2019
- Identifier
- CFE0007833, ucf:52827
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007833
- Title
- Computational Fluid Dynamics Study of Thromboembolism as a Function of Shunt Size and Placement in the Hybrid Norwood Palliative Treatment of Hypoplastic Left Heart Syndrome.
- Creator
-
Seligson, John, Kassab, Alain, DeCampli, William, Mansy, Hansen, University of Central Florida
- Abstract / Description
-
The Hybrid Norwood procedure has emerged as a promising alternative palliative first stage treatment for infants with Hypoplastic Left Heart Syndrome (HLHS). The procedure is done to provide necessary blood flow to the pulmonary and systemic regions of the body. The procedure can affect hemodynamic conditions to be pro-thrombotic, and thrombus particles can form and release from the vessel walls and enter the flow. Assuming these particles are formed and released from the shunt surface, a...
Show moreThe Hybrid Norwood procedure has emerged as a promising alternative palliative first stage treatment for infants with Hypoplastic Left Heart Syndrome (HLHS). The procedure is done to provide necessary blood flow to the pulmonary and systemic regions of the body. The procedure can affect hemodynamic conditions to be pro-thrombotic, and thrombus particles can form and release from the vessel walls and enter the flow. Assuming these particles are formed and released from the shunt surface, a Computational Fluid Dynamics (CFD) model can be used to mimic the patient's vasculature geometry and predict the occurrence of embolization to the carotid or coronary arteries, as well as the other major arteries surrounding the heart. This study used a time dependent, multi-scale CFD analysis on patient-specific geometry to determine the statistical probability of thrombus particles exiting each major artery. The geometries explored were of a nominal and patient specific nature. Cases of 90% and 0% stenosis at the aortic arch were analyzed, including shunt diameters of 3mm, 3.5mm, and 4mm. Three different placements of the shunt were explored as well. The intent of this study was to suggest best methods of surgical planning in the Hybrid Norwood procedure by providing supporting data for optimal stroke and myocardial infarction prevention.
Show less - Date Issued
- 2017
- Identifier
- CFE0006655, ucf:51232
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006655
- Title
- Multi-scale fluid-structure interaction model analysis of patient-specific geometry for optimization of lvad outflow graft implantation: an investigation aimed at reducing stroke risk.
- Creator
-
Prather, Ray, Kassab, Alain, Mansy, Hansen, Bai, Yuanli, Divo, Eduardo, DeCampli, William, University of Central Florida
- Abstract / Description
-
A Left Ventricular Assist Device (LVAD), is a mechanical pump capable of(&)nbsp;providing circulatory myocardium relief when used as bridge-to-transplantation by reducing the workload of a failing heart, with the additional bonus of allowing for cardiac recovery when used as destination therapy. The newer generations of continuous flow VADs are essentially axial or radial flow pumps, and while these devices are capable their efficiency depends upon fluid composition and flow field patterns....
Show moreA Left Ventricular Assist Device (LVAD), is a mechanical pump capable of(&)nbsp;providing circulatory myocardium relief when used as bridge-to-transplantation by reducing the workload of a failing heart, with the additional bonus of allowing for cardiac recovery when used as destination therapy. The newer generations of continuous flow VADs are essentially axial or radial flow pumps, and while these devices are capable their efficiency depends upon fluid composition and flow field patterns. The most devastating complication of VAD therapy is caused by embolization of thrombi formed within the LVAD or inside the heart into the brain leading to stroke. Anticoagulation management and improved LVADs design has reduced stroke incidence, however, investigators have recently reported the incidence of thromboembolic cerebral events is still significant and ranges from 14% to 47% over a period of 6-12 months. Blood clots may cause obstruction of critical vessels, such as cerebral arteries, reducing brain oxygenation and resulting in devastating consequences like major neurocognitive malfunction and complications which can be fatal.The hypothesis that incidence of stroke can be significantly reduced by adjusting the VAD outflow cannula implantation to direct dislodged thrombi away from the cerebral vessels has been recently supported by a series of steady flow computations assuming rigid vessel walls for the vasculature. Such studies have shown as much as a 50% reduction in embolization rates depending on outflow cannula implantation. In this study, a pulsatile fully compliant vessel wall model is developed to further establish this hypothesis. A time-dependent multi-scale Eulerian Computational Fluid Dynamics (CFD) analysis of patient-specific geometry models of the VAD-bed vasculature is coupled with a 3D Finite Element Analysis (FEA) of the mechanical response of the vascular walls to establish the VAD assisted hemodynamics. A Lagrangian particle tracking algorithm is used to determine the embolization rates of thrombi emanating from the cannula or other possible thrombogenic locations such as the aortic root. This multiscale Eulerian-Lagrangian pulsatile fluid-structure coupled paradigm allows for a fully realistic model of the hemodynamics of interest. The patient-specific geometries obtained from CT scan are implemented into the numerical domain in two modes. In the 3D CFD portion of the problem, the geometry accounts solely for the flow volume where the fluid is modelled as constant density and non-Newtonian under laminar pulsatile flow conditions. The blood-thrombus ensemble in treated as a two-phase flow, handled by an Eulerian-Lagrangian coupled scheme to solve the flow field and track particle transport. Thrombi are modelled as constant density spherical particles. Particle interactions are limited to particle-to-wall and particle-to-fluid, while particle-to-particle interaction are neglected for statistical purposes. On the other hand, with the help of Computer Aided Design (CAD) software a patient-specific aortic wall geometry with variable wall thickness is brought into the numerical domain. FEA is applied to determine the aortic wall cyclic displacement under hydrodynamic loads. To properly account for wall deformation, the arterial wall tissue incorporates a hyperelastic material model based on the anisotropic Holzapfel model for arteries. This paradigm is referred to as Fluid Structure Interaction (FSI) and allows structural analysis in conjunction with flow investigation to further monitor pathological flow patterns. The FSI model is driven by time dependent flow and pressure boundary conditions imposed at the boundaries of the 3D computational domain through a 50 degree of freedom 0D lumped parameter model (LPM) electric circuit analog of the peripheral VAD-assisted circulation.Results are presented for a simple vessel model of the ascending aorta to validate the anisotropic fiber orientation implementation. Arterial wall dilation is measured between 5-20% in the range reported in literature. Hemodynamics of the VAD assisted flow in a patient-derived geometry computed using rigid vessels walls are compared to those for a linearly elastic vessel wall model and a hyperelastic anisotropic vessel wall model. Moreover, the thromboembolization rates are presented and compared for pulsatile hemodynamics in rigid and compliant wall models. Pulsatile flow solutions for embolization probabilities corroborate the hypothesis that tailoring the LVAD cannula implantation configuration can significantly reduce thromboembolization rates, and this is consistent with indications from previous steady-flow calculations.
Show less - Date Issued
- 2018
- Identifier
- CFE0007077, ucf:52017
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007077
- Title
- Investigation of a Self-powered Fontan Concept Using a Multiscale Computational Fluid-Structure Interaction Model.
- Creator
-
Beggs, Kyle, Kassab, Alain, Steward, Robert, Mansy, Hansen, DeCampli, William, University of Central Florida
- Abstract / Description
-
Congenital Heart Disease (CHD) occurs in about 1\% (40,000) of newborn babies each year in the United States alone. About 10.9\% (960) of whom suffer from Hypoplastic Left Heart Syndrome (HLHS) - a subset of CHD where children are born with a single-ventricle (SV). A series of three surgeries are carried out to correct HLHS culminating in the Fontan procedure where venous flow returns passively to the lungs. The current configuration for the Fontan results in elevated Central Venous Pressure ...
Show moreCongenital Heart Disease (CHD) occurs in about 1\% (40,000) of newborn babies each year in the United States alone. About 10.9\% (960) of whom suffer from Hypoplastic Left Heart Syndrome (HLHS) - a subset of CHD where children are born with a single-ventricle (SV). A series of three surgeries are carried out to correct HLHS culminating in the Fontan procedure where venous flow returns passively to the lungs. The current configuration for the Fontan results in elevated Central Venous Pressure (CVP), inadequate ventricular preload, and elevated Pulmonary Vascular Resistance (PVR) leading to a barrage of disease. To alleviate these complications, a `self-powered' Fontan is suggested where an Injection Jet Shunt (IJS) emanating from the aorta is anastomosed to each pulmonary artery. The IJS attempts to reduce the central venous pressure, increase preload, and aid in pulmonary arterial growth by entraining the flow with a high energy source provided by the aorta. Previous computational studies on this concept with rigid vessel walls show mild success, but not enough to be clinically relevant. It is hypothesized that vessel wall deformation may play an important role in enhancing the jet effect to provide a larger exit area for the flow to diffuse while also being more physiologically accurate. A multiscale 0D-3D tightly coupled Computational Fluid Dynamics (CFD) with Fluid-Structure Interaction (FSI) model is developed to investigate the efficacy of the proposed `self-powered' Fontan modification. Several runs are made varying the PVR to investigate the sensitivity of IVC pressure on PVR. IVC pressure decreased by 2.41 mmHg while the rigid wall study decreased the IVC pressure by 2.88 mmHg. It is shown that IVC pressure is highly sensitive to changes in PVR and modifications to the Fontan procedure should target aiding pulmonary arterial growth as it is the main indicator of Fontan success.
Show less - Date Issued
- 2018
- Identifier
- CFE0007311, ucf:52107
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007311
- Title
- Computational Fluid Dynamics Investigation of A Novel Hybrid Comprehensive Stage II Operation For Single Ventricle Palliation.
- Creator
-
Hameed, Marwan, Kassab, Alain, DeCampli, William, Chow, Louis, Mansy, Hansen, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
Single ventricle (SV) anomalies account for one(&)#226;€"fourth of all cases of congenital heart disease. The existingthree hybrid staged surgical approach serving as a palliative treatment for this anomaly entails multiple complicationsand achieves a survival rate of only 50%. To reduce trauma associated with the second stage of the hybrid procedure,the hybrid comprehensive stage 2 (HCS2) operation was introduced in 2014 at Arnold Palmer Hospital in Orlando as anovel palliation alternative...
Show moreSingle ventricle (SV) anomalies account for one(&)#226;€"fourth of all cases of congenital heart disease. The existingthree hybrid staged surgical approach serving as a palliative treatment for this anomaly entails multiple complicationsand achieves a survival rate of only 50%. To reduce trauma associated with the second stage of the hybrid procedure,the hybrid comprehensive stage 2 (HCS2) operation was introduced in 2014 at Arnold Palmer Hospital in Orlando as anovel palliation alternative for a select subset of SV patients with adequate antegrade aortic flow. It avoids dissection ofthe pulmonary arteries by introducing a stented intrapulmonary baffle and avoids reconstruction of the aortic arch bymaintaining patency of the ductus arteriosus. This dissertation aims to provide better insight on the post-operativehemodynamics of HCS2 patients. A multi-scale Computational Fluid Dynamics (CFD) analysis of a synthetic,patient-derived HCS2 geometry based on unsteady laminar flow conditions and a non(&)#226;€"Newtonian blood model isutilized to quantify the resultant hemodynamics. The 3D CFD model is coupled to a 0D lumped parameter modelof the peripheral circulation that supplies the boundary conditions necessary to run the CFD analyses of the HCS2. Based on clinical parameters suggesting the baffle related narrowing to be at minimum 10mm and the pressuregradient not surpassing 20mmHg, hemodynamic analysis reveals that for even a 7.23mm narrowing the averagepressure drop across the baffle is 0.53mmHg. A peak pressure drop of 2.96mmHg was computed over the investigatedrange of clearances over the pulmonary baffle. Vortex shedding presents no concerns as the distance between the baffleand the aortic arch is much smaller compared to the length required for full vortices to form. Uneven contour distributionof the wall shear stress was observed due to the bend presented by the baffle that strongly affects the velocity profile inthe lumen across the pulmonary trunk and into the ductus arteriosus. Moreover, an oxygen transport model was derived,and the results showed consistency with the published data of Glenn patients. Particle residence time was also reported toidentify any blood recirculation or flow stagnation that may lead to platelet activation leading to clot formation rate.The study provides a range of main pulmonary artery geometries that, following multi-scale CFD analysis, present noconcerns regarding excessive pressure gradients or vortex formation. Moreover, the model identifies locations ofpotentially problematic hemodynamics that could be mitigated by shape optimization of the reconstruction.
Show less - Date Issued
- 2019
- Identifier
- CFE0007813, ucf:52340
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007813
- Title
- A COUPLED CFD-LUMPED PARAMETER MODEL OF THE HUMAN CIRCULATION: ELUCIDATING THE HEMODYNAMICS OF THE HYBRID NORWOOD PALLIATIVE TREATMENT AND EFFECTS OF THE REVERSE BLALOCK-TAUSSIG SHUNT PLACEMENT AND DIAMETER.
- Creator
-
Ceballos, Andres, Kassab, Alain, Bai, Yuanli, Deng, Weiwei, DeCampli, William, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
The Hybrid Norwood (HN) is a relatively new first stage procedure for neonates with Hypoplastic Left Heart Syndrome (HLHS), in which a sustainable univentricular circulation is established in a less invasive manner than with the standard procedure. A computational multiscale model of such HLHS circulation following the HN procedure was used to obtain detailed hemodynamics. Implementation of a reverse-BT shunt (RBTS), a synthetic bypass from the main pulmonary to the innominate artery placed...
Show moreThe Hybrid Norwood (HN) is a relatively new first stage procedure for neonates with Hypoplastic Left Heart Syndrome (HLHS), in which a sustainable univentricular circulation is established in a less invasive manner than with the standard procedure. A computational multiscale model of such HLHS circulation following the HN procedure was used to obtain detailed hemodynamics. Implementation of a reverse-BT shunt (RBTS), a synthetic bypass from the main pulmonary to the innominate artery placed to counteract aortic arch stenosis, and its effects on local and global hemodynamics were studied.A synthetic and a 3D reconstructed, patient derived anatomy after the HN procedure were utilized, with varying degrees of distal arch obstruction, or stenosis, (nominal and 90% reduction in lumen) and varying RBTS diameters (3.0, 3.5, 4.0 mm). A closed lumped parameter model (LPM) for the peripheral or distal circulation coupled to a 3D Computational Fluid Dynamics (CFD) model that allows detailed description of the local hemodynamics was created for each anatomy. The implementation of the RBTS in any of the chosen diameters under severe stenosis resulted in a restoration of arterial perfusion to near-nominal levels. Shunt flow velocity, vorticity, and overall wall shear stress levels are inverse functions of shunt diameter, while shunt perfusion and systemic oxygen delivery correlates positively with diameter. No correlation of shunt diameter with helicity was recorded.In the setting of the hybrid Norwood circulation, our results suggest: (1) the 4.0mm RBTS may be more thrombogenic when implemented in the absence of severe arch stenosis and (2) the 3.0mm and 3.5mm RBTS may be a more suitable alternative, with preference to the latter since it provides similar hemodynamics at lower levels of wall shear stress.
Show less - Date Issued
- 2015
- Identifier
- CFE0005772, ucf:50068
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005772