Current Search: Dong, Yajie (x)
View All Items
- Title
- Effects of Surfactant Concentrations on Perovskite Emitters Embedded in Polystyrene.
- Creator
-
Calkins, Eric, Dong, Yajie, Tetard, Laurene, Zhai, Lei, University of Central Florida
- Abstract / Description
-
With their simple fabrication, narrow light spectrum, and color tunability, a class of materials known as perovskites are emerging as promising candidates for light emission applications. These materials, when exposed to normal atmospheric conditions show significant degradation. Improved protection has been demonstrated by embedding perovskites in polymers. Furthermore, the addition of a surfactant into the precursor solution has been shown to increase stability and allow for color tuning by...
Show moreWith their simple fabrication, narrow light spectrum, and color tunability, a class of materials known as perovskites are emerging as promising candidates for light emission applications. These materials, when exposed to normal atmospheric conditions show significant degradation. Improved protection has been demonstrated by embedding perovskites in polymers. Furthermore, the addition of a surfactant into the precursor solution has been shown to increase stability and allow for color tuning by exploiting quantum confinement effects. However, the effects of surfactants typically used to stabilize perovskites in solution have not been explored in this polymer embedding strategy. Here we determine the physical and optical emission changes produced by modifying the concentration of octylamine, butylamine, and oleylamine in the perovskite precursor solution prior to embedding into a polystyrene substrate. Using optical emission spectroscopy, we measure emission spectra of perovskite nanocrystals embedded in the polymer. Changes in morphology and dispersion of the perovskite particles within the polymer are observed using UV illuminated optical microscopy. XRD data suggests increased crystallinity with the addition of short chain surfactant. Our measurements in emission show that the location of the emission peak and overall shape of the emission spectra change when longer chain surfactant is added while short chain surfactant reduces nanorod formation without a significant change in particle dispersion or emission. The work suggests that increased long chain surfactant concentration prohibits perovskite crystal growth within the polymer leading to increased optical transparency and quantum confinement effects observable through photo luminescent emission.
Show less - Date Issued
- 2017
- Identifier
- CFE0007119, ucf:51940
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007119
- Title
- Liquid crystal phase modulation for beam steering and near-eye displays.
- Creator
-
Lee, Yun Han, Wu, Shintson, Moharam, Jim, Likamwa, Patrick, Dong, Yajie, University of Central Florida
- Abstract / Description
-
Liquid crystal spatial phase modulator plays an important role in laser beam steering, wave-front shaping and correction, optical communication, optical computation and holography. One fundamental limitation lays in the response time of liquid crystal reorientation. To achieve fast response time, polymer-network liquid crystals are therefore proposed. By incorporating polymer network in a liquid crystal host, the response time can be reduced by a factor of 100. However, the polymer network...
Show moreLiquid crystal spatial phase modulator plays an important role in laser beam steering, wave-front shaping and correction, optical communication, optical computation and holography. One fundamental limitation lays in the response time of liquid crystal reorientation. To achieve fast response time, polymer-network liquid crystals are therefore proposed. By incorporating polymer network in a liquid crystal host, the response time can be reduced by a factor of 100. However, the polymer network introduces hysteresis, light scattering, and high voltage. The motivation for a fast-response liquid crystal phase modulator will be discussed in the first chapter. In the second chapter, we introduce our discovery that by modifying the polymer network structure with C12A, the hysteresis from the network can be eliminated, while keeping response time at the same order. In the third chapter, we introduce a new route toward fast response time. Instead of randomly generated network, we propose to utilize two-photon-polymerization method to create well-defined polymer scaffold. By introducing polymer scaffold, we demonstrated a 7-fold faster response in comparison with traditional phase modulators, while hysteresis, scattering, and high driving voltage are all eliminated. In the fourth chapter, we introduce phase modulation based on Pancharatnam-Berry (PB) phase principle. In this type of phase modulation, the defect at 2? phase reset in conventional phase modulators can be avoided. Therefore, a higher optical quality can be achieved, making them suitable for display and imaging applications. We demonstrated a fast PB lens with response time less than 1 ms, and using which we realized the first PB lens-based additive light field display to generate true (monocular) 3D content with computationally rendered images. In chapter five, we demonstrate the resolution enhancement based on pixel-shifting of fast PB gratings. By synchronizing display content with shifting pixels, we demonstrated ~2x enhanced resolution and significantly reduced screen-door artifact.In chapter six, we report our discovery of reflective polarization volume gratings (PVGs) based on self-organized liquid crystal helix. We achieved a large deflection angle ((>)50(&)deg; in glass), high diffraction efficiency ((>)95%), and unique polarization selectivity (distinction ratio (>) 100:1). A system integrating PB optical elements is described in chapter seven.Finally, we will summarize our major accomplishments in chapter eight.
Show less - Date Issued
- 2018
- Identifier
- CFE0007760, ucf:52389
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007760
- Title
- Freestanding Holey Thin Films for Renewable Energy Storage.
- Creator
-
Marcus, Kyle, Yang, Yang, Zhai, Lei, Dong, Yajie, University of Central Florida
- Abstract / Description
-
The rapid advancement of portable and wearable technologies has challenged research to improve upon current renewable battery energy storage systems. By using nanotechnology, it is now possible to access more of the energy storage theoretical values that have been unattainable thus far. We have developed a method to create freestanding holey thin films through combinations of electrochemical and chemical vapor deposition (CVD) techniques to be used in renewable energy storage systems....
Show moreThe rapid advancement of portable and wearable technologies has challenged research to improve upon current renewable battery energy storage systems. By using nanotechnology, it is now possible to access more of the energy storage theoretical values that have been unattainable thus far. We have developed a method to create freestanding holey thin films through combinations of electrochemical and chemical vapor deposition (CVD) techniques to be used in renewable energy storage systems. Freestanding thin films promote excellent contact between the residual conductive framework and any functionalized active component specific to the designed material. Without requiring any other additives, the as-prepared freestanding thin films can be mechanically and chemically tuned to allow for use in a wide range of applications. Incorporation of micro- and nano-sized holey structures dramatically enhances the electrochemically active surface area, which is essential for facilitating appropriate reactions in conversion type energy storage systems. Combining the freestanding and holey components with an active layer effectively enhances conductivity and reduces the electron transfer distance at the electrode-electrolyte interface. Herein, two separately designed freestanding holey thin films were successfully used as cathode materials for lithium-sulfur battery (Li-S) and magnesium-ion battery (MIB) energy storage systems.
Show less - Date Issued
- 2017
- Identifier
- CFE0007127, ucf:52304
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007127
- Title
- Advanced liquid crystal displays with supreme image qualities.
- Creator
-
Chen, Haiwei, Wu, Shintson, Moharam, Jim, Likamwa, Patrick, Dong, Yajie, University of Central Florida
- Abstract / Description
-
Several metrics are commonly used to evaluate the performance of display devices. In this dissertation, we analyze three key parameters: fast response time, wide color gamut, and high contrast ratio, which affect the final perceived image quality. Firstly, we investigate how response time affects the motion blur, and then discover the 2-ms rule. With advanced low-viscosity materials, new operation modes, and backlight modulation technique, liquid crystal displays (LCDs) with an unnoticeable...
Show moreSeveral metrics are commonly used to evaluate the performance of display devices. In this dissertation, we analyze three key parameters: fast response time, wide color gamut, and high contrast ratio, which affect the final perceived image quality. Firstly, we investigate how response time affects the motion blur, and then discover the 2-ms rule. With advanced low-viscosity materials, new operation modes, and backlight modulation technique, liquid crystal displays (LCDs) with an unnoticeable image blur can be realized. Its performance is comparable to an impulse-type display, like cathode ray tube (CRT). Next, we propose two novel backlight configurations to improve an LCD's color gamut. One is to use a functional reflective polarizer (FRP), acting as a notch filter to block the unwanted light, and the other is to combine FRP with a patterned half-wave plate to suppress the crosstalk between blue and green/red lights. In experiment, we achieved 97.3% Rec. 2020 in CIE 1976 color space, which is approaching the color gamut of a laser projector. Finally, to enhance an LCD's contrast ratio, we proposed a novel device configuration by adding an in-cell polarizer between LC layer and color filter array. The CR for a vertically-aligned LCD is improved from 5000:1 to 20,000:1, and the CR for a fringe field switching LCD is improved from 2000:1 to over 3000:1. To further enlarge CR to fulfill the high dynamic range requirement, a dual-panel LCD system is proposed and the measured contrast ratio exceeds 1,000,000:1. Overall speaking, such an innovated LCD exhibits supreme image qualities with motion picture response time comparable to CRT, vivid color to laser projector, and contrast ratio to OLED. Along with other outstanding features, like high peak brightness, high resolution density, long lifetime, and low cost, LCD would continue to maintain its dominance in consumer electronics in the foreseeable future.
Show less - Date Issued
- 2017
- Identifier
- CFE0006864, ucf:51758
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006864
- Title
- The Formation and Characterization of Mesoscopic J- and H-aggregates with Controlled Morphologies by the Co- and Templated Assembly of Cyanine Dyes.
- Creator
-
Rhodes, Samuel, Fang, Jiyu, Jiang, Tengfei, Dong, Yajie, Florczyk, Stephen, Pang, Sean, University of Central Florida
- Abstract / Description
-
The supramolecular aggregates of ?-conjugated molecules have become an area of great interest to the scientific community in recent years for their promise in biosensors and optoelectronic devices. Among various supramolecular aggregates, J- and H-aggregates of ?-conjugated dye molecules are particularly interesting because of their unique optical and excitonic properties that are not given by individual molecules. H-aggregates are composed of dye molecules in a face-to-face stacking, giving...
Show moreThe supramolecular aggregates of ?-conjugated molecules have become an area of great interest to the scientific community in recent years for their promise in biosensors and optoelectronic devices. Among various supramolecular aggregates, J- and H-aggregates of ?-conjugated dye molecules are particularly interesting because of their unique optical and excitonic properties that are not given by individual molecules. H-aggregates are composed of dye molecules in a face-to-face stacking, giving rise to a blue-shifted absorption band compared with the monomer band and a strong emission quenching. In contrast, J-aggregates represent an edge-to-edge stacking of dye molecules, showing a red-shifted absorption band with respect to the monomer band and a strong fluorescence emission. However, the use of J- and H-aggregates in biosensors and optoelectronic devices remains a challenge because of the difficulty of controlling their sizes and morphologies. In this dissertation, we develop two different paths for controlling the size and morphology of J- and H-aggregates. First, we show that the co-assembly of cyanine dyes and lithocholic acid (LCA) in ammonia solution can lead to the formation of mesoscopic J- and H-aggregate fibers, depending on the condition under which the co-assembly occurs. Second, we report the formation of mesoscopic J-aggregate tubes by using the preformed LCA tubes as a template. The structure, optical, and electronic properties of these J- and H-aggregate fiber and tubes are studied as a function of temperature. Finally, we exploit their applications as photo-induced electron transfer supramolecular probes for the detection of dopamine, an important neurotransmitter in central and peripheral nervous systems.
Show less - Date Issued
- 2018
- Identifier
- CFE0007412, ucf:52718
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007412
- Title
- Stochastic-Based Computing with Emerging Spin-Based Device Technologies.
- Creator
-
Bai, Yu, Lin, Mingjie, DeMara, Ronald, Wang, Jun, Jin, Yier, Dong, Yajie, University of Central Florida
- Abstract / Description
-
In this dissertation, analog and emerging device physics is explored to provide a technology plat- form to design new bio-inspired system and novel architecture. With CMOS approaching the nano-scaling, their physics limits in feature size. Therefore, their physical device characteristics will pose severe challenges to constructing robust digital circuitry. Unlike transistor defects due to fabrication imperfection, quantum-related switching uncertainties will seriously increase their sus-...
Show moreIn this dissertation, analog and emerging device physics is explored to provide a technology plat- form to design new bio-inspired system and novel architecture. With CMOS approaching the nano-scaling, their physics limits in feature size. Therefore, their physical device characteristics will pose severe challenges to constructing robust digital circuitry. Unlike transistor defects due to fabrication imperfection, quantum-related switching uncertainties will seriously increase their sus- ceptibility to noise, thus rendering the traditional thinking and logic design techniques inadequate. Therefore, the trend of current research objectives is to create a non-Boolean high-level compu- tational model and map it directly to the unique operational properties of new, power efficient, nanoscale devices.The focus of this research is based on two-fold: 1) Investigation of the physical hysteresis switching behaviors of domain wall device. We analyze phenomenon of domain wall device and identify hys- teresis behavior with current range. We proposed the Domain-Wall-Motion-based (DWM) NCL circuit that achieves approximately 30x and 8x improvements in energy efficiency and chip layout area, respectively, over its equivalent CMOS design, while maintaining similar delay performance for a one bit full adder. 2) Investigation of the physical stochastic switching behaviors of Mag- netic Tunnel Junction (MTJ) device. With analyzing of stochastic switching behaviors of MTJ, we proposed an innovative stochastic-based architecture for implementing artificial neural network (S-ANN) with both magnetic tunneling junction (MTJ) and domain wall motion (DWM) devices, which enables efficient computing at an ultra-low voltage. For a well-known pattern recognition task, our mixed-model HSPICE simulation results have shown that a 34-neuron S-ANN imple- mentation, when compared with its deterministic-based ANN counterparts implemented with dig- ital and analog CMOS circuits, achieves more than 1.5 ? 2 orders of magnitude lower energy consumption and 2 ? 2.5 orders of magnitude less hidden layer chip area.
Show less - Date Issued
- 2016
- Identifier
- CFE0006680, ucf:51921
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006680
- Title
- Polyelectrolyte complexes based on poly(acrylic acid): mechanics and applications.
- Creator
-
Lu, Xiaoyan, Zhai, Lei, Zou, Shengli, Chumbimuni Torres, Karin, Kolpashchikov, Dmitry, Dong, Yajie, University of Central Florida
- Abstract / Description
-
Poly(acrylic acid) (PAA) is a weak polyelectrolyte presenting negative charge at basic conditionwhen the carboxylic group loses a proton. These carboxylate group can interact with polycationsand metal ions to form stable polyelectrolyte complexes (PECs), leading to tunable propertiesand multifunctional nanoscale structures through chemical reactions. This research focuses onnanofiber and nanoparticle fabricated by PAA-based PECs. We demonstrated the effect of ferricion concentration on the...
Show morePoly(acrylic acid) (PAA) is a weak polyelectrolyte presenting negative charge at basic conditionwhen the carboxylic group loses a proton. These carboxylate group can interact with polycationsand metal ions to form stable polyelectrolyte complexes (PECs), leading to tunable propertiesand multifunctional nanoscale structures through chemical reactions. This research focuses onnanofiber and nanoparticle fabricated by PAA-based PECs. We demonstrated the effect of ferricion concentration on the mechanical properties of PAA-based single naonofiber by using dark fieldmicroscopy imaging and persistence length analysis. The application of PAA-based nanofibermats loaded with MnO2 for supercapacitors was also explored. As a free-standing and flexiblesupercapacitor electrode, the nanofiber mat exhibited outstanding properties including high specificcapacitance, excellent reversible redox reactions, and fast charge/discharge ability. Since PAA is abiocompatible polymer, PAA-based PEC was applied as a drug-carrier in a drug delivery system.In this project, core-shell nanoparticles were fabricated with chitosan as the core and PAA as theshell to incorporate with the drug gemcitabine. Several parameters were investigated to obtainthe optimal nanoparticle size. The as-prepared drug delivery system shows prolonged releasingprofile.
Show less - Date Issued
- 2018
- Identifier
- CFE0007045, ucf:52004
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007045
- Title
- nanoengineered energy harvesting and storage devices.
- Creator
-
Li, Chao, Thomas, Jayan, Zhai, Lei, Yang, Yang, Gesquiere, Andre, Dong, Yajie, Sun, Wei, University of Central Florida
- Abstract / Description
-
Organic and perovskite solar cells have recently attracted significant attention due to itsflexibility, ease of fabrication and excellent performance. In order to realize even betterperformance for organic and perovskite solar cells, rejuvenated effort towards developingnanostructured electrodes and high quality active layer is necessary.In this dissertation, several strategic directions of enhancing the performance of organicand perovskite solar cells are investigated. An introduction and...
Show moreOrganic and perovskite solar cells have recently attracted significant attention due to itsflexibility, ease of fabrication and excellent performance. In order to realize even betterperformance for organic and perovskite solar cells, rejuvenated effort towards developingnanostructured electrodes and high quality active layer is necessary.In this dissertation, several strategic directions of enhancing the performance of organicand perovskite solar cells are investigated. An introduction and background of organic andperovskite solar cells, which includes motivation, classification and working principles,nanostructured electrode materials and solvent effect on active materials, and devices fabrication,are presented. A facile method, called Spin-on Nanoprinting (SNAP), to fabricate highly orderedZnO-AgNW-ZnO electrode is introduced to enhance the performance of organic solar cell.Subsequently, a ternary solvent method is developed to fabricate high Voc thieno[3,4-b]thiophene/benzodithiophene (PTB7) and indene-C60 bisadduct (ICBA)solar cells. Theperformance of the devices improved about 20% compared to those made by binary solventmethod. In order to understand the fundamental properties of the materials ruling theperformance of the PSCs tested, AFM-based nanoscale characterization techniques includingPulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFM (MSAFM) are introduced.These methods are used to study the morphology and physical properties of the structuresconstitutive of the active layers of the PSCs. Conductive-AFM (cAFM) studies reveal localvariations in conductivity in the donor and acceptor phases as well as an increase in photocurrentmeasured in the PTB7:ICBA sample obtained with the ternary solvent processing technique.Moreover, efficient perovskite solar cells with good transparency in the visible wavelength rangehave been developed by a facile and low-temperature PCBM-assisted perovskite growth method.This method results in the formation of perovskite-PCBM hybrid material at the grain boundaries which is observed by EELS mapping and confirmed by steady-state photoluminescence (PL)spectra and transient photocurrent (TP) measurements. This method involves fewer steps andtherefore is less expensive and time consuming than other reported methods. In addition, wereport an all solid state, energy harvesting and storing (ENHANS) filament which integratesperovskite solar cell (PSC) on top of a symmetric supercapacitor (SSC) via a copper filamentwhich works as a shared electrode for direct charge transfer. Developing ENHANS on a copperfilament provides a low-cost solution for flexible self-sufficient energy systems for wearablesand other portable devices. Finally, a summary of this dissertation as well as some potentialfuture directions are presented.
Show less - Date Issued
- 2016
- Identifier
- CFE0006693, ucf:51912
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006693
- Title
- Development of in vitro point of care diagnostics (IVPCD) based on Aptamers integrated Biosensors.(&)nbsp;.
- Creator
-
Saraf, Nileshi, Seal, Sudipta, Fang, Jiyu, Florczyk, Stephen, Dong, Yajie, Self, William, University of Central Florida
- Abstract / Description
-
The global market for the medical diagnostic industry is worth 25 billion dollars in the United States and is expected to grow exponentially each year. Presently available methods for biodetection, such as immunoassays, chemiluminescence and fluorescent based assays are expensive, time consuming and require skilled labor with high-end instruments. Therefore, development of novel, passive colorimetric sensors and diagnostic technologies for detection and surveillance is of utmost importance...
Show moreThe global market for the medical diagnostic industry is worth 25 billion dollars in the United States and is expected to grow exponentially each year. Presently available methods for biodetection, such as immunoassays, chemiluminescence and fluorescent based assays are expensive, time consuming and require skilled labor with high-end instruments. Therefore, development of novel, passive colorimetric sensors and diagnostic technologies for detection and surveillance is of utmost importance especially in resource constrained communities. The present work focusses on developing novel and advanced in vitro biodiagnostic tools based on aptamer integrated biosensors for an early detection of specific viral proteins or small biomolecules used as potential markers for deadly diseases. Aptamers are short single stranded deoxyribonucleic acid (DNA) which are designed to bind to a specific target biomolecule. These are readily synthesized in laboratory and offers several advantages over antibodies/enzymes such as stable in harsh environment, easily functionalized for immobilization, reproducibility etc. These undergo conformational changes upon target binding and produces physical or chemical changes in the system which are measured as colorimetric or electrochemical signals. Here, we have explored the aptamer-analyte interaction on different platforms such as microfluidic channel, paper based substrate as well as organic electrochemical transistor to develop multiple compact, robust and self-contained diagnostic tools. These testing tools exhibit high sensitivity (detection limit in picomolar) and selectivity against the target molecule, require no sophisticated instruments or skilled labor to implement and execute, leading a way to cheaper and more consumer driver health care. These innovative platforms provide flexibility to incorporate additional or alternative targets by simply designing aptamers to bind to the specific biomolecule.
Show less - Date Issued
- 2018
- Identifier
- CFE0007766, ucf:52388
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007766
- Title
- High performance liquid crystal devices for augmented reality and virtual reality.
- Creator
-
Talukder, Md Javed Rouf, Wu, Shintson, Moharam, Jim, Amezcua Correa, Rodrigo, Dong, Yajie, University of Central Florida
- Abstract / Description
-
See-through augmented reality and virtual reality displays are emerging due to their widespread applications in education, engineering design, medical, retail, transportation, automotive, aerospace, gaming, and entertainment. For augmented reality and virtual reality displays, high-resolution density, high luminance, fast response time and high ambient contrast ratio are critically needed. High-resolution density helps eliminate the screen-door effect, high luminance and fast response time...
Show moreSee-through augmented reality and virtual reality displays are emerging due to their widespread applications in education, engineering design, medical, retail, transportation, automotive, aerospace, gaming, and entertainment. For augmented reality and virtual reality displays, high-resolution density, high luminance, fast response time and high ambient contrast ratio are critically needed. High-resolution density helps eliminate the screen-door effect, high luminance and fast response time enable low duty ratio operation, which plays a key role for suppressing image blurs. A dimmer placed in front of AR display helps to control the incident background light, which in turn improves the image contrast. In this dissertation, we have focused three crucial display metrics: high luminance, fast motion picture response time (MPRT) and high ambient contrast ratio.We report a fringe-field switching liquid crystal display, abbreviated as d-FFS LCD, by using a low viscosity material and new diamond-shape electrode configuration. Our proposed device shows high transmittance, fast motion picture response time, low operation voltage, wide viewing angle, and indistinguishable color shift and gamma shift. We also investigate the rubbing angle effects on transmittance and response time. When rubbing angle is 0 degree, the virtual wall effect is strong, resulting in fast response time but compromised transmittance. When rubbing angle is greater than 1.2 degree, the virtual walls disappear, as a result, the transmittance increases dramatically, but the tradeoff is in slower response time. We also demonstrate a photo-responsive guest-host liquid crystal (LC) dimmer to enhance the ambient contrast ratio in augmented reality displays. The LC composition consists of photo-stable chiral agent, photosensitive azobenzene, and dichroic dye in a nematic host with negative dielectric anisotropy. In this device, transmittance changes from bright state to dark state by exposing a low intensity UV or blue light. Reversal process can be carried out by red light or thermal effect. Such a polarizer-free photo-activated dimmer can also be used for wide range of applications, such as diffractive photonic devices, portable information system, vehicular head-up displays, and smart window for energy saving purpose. A dual-stimuli polarizer-free dye-doped liquid crystal (LC) device is demonstrated as a dimmer. Upon UV/blue light exposure, the LC directors and dye molecules turn from initially vertical alignment (high transmittance state) to twisted fingerprint structure (low transmittance state). The reversal process is accelerated by combining a longitudinal electric field to unwind the LC directors from twisted fingerprint to homeotropic state, and a red light to transform the cis azobenzene back to trans. Such an electric-field-assisted reversal time can be reduced from ~10s to a few milliseconds, depending on the applied voltage. Considering power consumption, low manufacturing cost, and large fabrication tolerance, this device can be used as a smart dimmer to enhance the ambient contrast ratio for augmented reality displays.
Show less - Date Issued
- 2019
- Identifier
- CFE0007731, ucf:52425
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007731
- Title
- Redox-Active Solid State Materials and its Biomedical and Biosensing Applications.
- Creator
-
Gupta, Ankur, Seal, Sudipta, Dong, Yajie, Cho, Hyoung Jin, Zhai, Lei, Schulte, Alfons, University of Central Florida
- Abstract / Description
-
Reactive oxygen species (ROS) are byproducts of physiological processes in human body, and strengthened production of ROS is known to cause acute conditions such as inflammation, aging, Alzheimer's disease, melanoma and ovarian cancer, fibrosis and multiple sclerosis. Therefore, early detection of ROS at nanomolar concentration (at cellular level) and developing more potent antioxidants is essential for regular health monitoring. As an example, ROS are also responsible for inflammation...
Show moreReactive oxygen species (ROS) are byproducts of physiological processes in human body, and strengthened production of ROS is known to cause acute conditions such as inflammation, aging, Alzheimer's disease, melanoma and ovarian cancer, fibrosis and multiple sclerosis. Therefore, early detection of ROS at nanomolar concentration (at cellular level) and developing more potent antioxidants is essential for regular health monitoring. As an example, ROS are also responsible for inflammation reactions at orthopedic implants-tissue interface triggered by wear debris. Inflammation induced by ROS results in revision surgery. Coatings of redox-active materials exhibiting antioxidant properties on implants have potential to mitigate the inflammation and delay the need of revision surgery. This dissertation focus on developing advanced functional nanomaterials by tailoring the surface chemistry of existing materials. Surface chemistry of materials can be altered by introducing surface and edge defects in the lattice structure Three materials system doped cerium oxide nanoparticles (d-CNPs), cerium oxide thin films (CeOx) and molybdenum disulfide (MoS2) nanoparticles, have been studied for its surface and edge contributions in potential biomedical and biosensing applications. Surface (d-CNPs and CeOx thin films) and edge chemistry (MoS2) have been tailored to understand its role and specific response.Surface Ce3+/Ce4+ oxidation state in CNPs controls the bio-catalytic activity. Higher superoxide dismutase (SOD) is demonstrated by high Ce3+/Ce4+ oxidation state. On the other hand, improved catalase mimetic activity is observed for low Ce3+/Ce4+ CNPs. Different CNPs preparation results in different Ce3+ to Ce4+ ratio, particle size, surface coating, and agglomeration, thus significantly varying the antioxidant properties of CNPs. In the first section of the dissertation, sustainable one-step room temperature synthesis of rare earth element (La, Sm, and Er) d-CNPs have been developed to effectively control the Ce3+ to Ce4+ ratio for specific biological application. Substitution of Ce4+ ions by trivalent dopants from ceria lattice increases the oxygen vacancies and density of catalytic sites. Uniform distribution of trivalent dopant in ceria lattice confirmed by EFTEM is attributed to enhanced SOD mimetic activity, ROS scavenging and tuning surface Ce3+/Ce4+ oxidation state in CNPs. Surface chemistry of redox-active cerium oxide coating on orthopedic implants also plays a vital role in scavenging ROS and mitigating inflammation. Thus, surface chemistry of CeOx thin films deposited by atomic layer deposited (ALD), have also been tailored by controlling the film thickness. CeOx film of 2 nm thickness has high Ce3+/Ce4+ (ratio 1) whereas higher thickness films (6-33 nm) have lower Ce3+/Ce4+ (ratio 0.30-0.37). These films have been further tested for catalase mimetic activity and hydrogen peroxide (H2O2) detection. Sensor selectivity is always a key issue. Most often, ascorbic acid found in the biological system, interfere in the electrochemical detection of H2O2 resulting in selectivity issue, thus protective Nafion layer is required to prevent cerium oxide-ascorbic acid interaction.To improve the selectivity of electrochemical sensors, Sulfur-deficient redox-active MoS2 have been utilized for electrochemical detection of pharmaceutically relevant chemical species. S-deficient MoS2 nanoparticles have been prepared by liquid exfoliation method to increase Mo-edge density and tested as sensing materials for detection of pharmaceutically relevant H2O2, hypochlorous acid (HOCl) and reactive nitrogen (NO*) species. The addition of ascorbic acid and uric acid have shown no interference during H2O2 detection. Change in S to Mo ratio have been studied using x-ray photoelectron spectroscopy. Density functional theory (DFT) have been employed to understand the detection mechanism and size-dependent sensitivity of MoS2. DFT study further reveals the role of S-deficiency and Mo- and S-edges in the higher catalytic activity of 5-7 nm MoS2 particles.Through these studies, the importance of defects in nanomaterials and their exotic properties at the nanoscale have been demonstrated. Understanding developed from these studies have provided the framework to develop more advanced functional nanomaterials for biomedical and biosensing applications.
Show less - Date Issued
- 2017
- Identifier
- CFE0006944, ucf:51655
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006944