Current Search: Gallagher, Daniel (x)
View All Items
- Title
- ULTRA-WIDEBAND ORTHOGONAL FREQUENCY CODED SAW CORRELATORS.
- Creator
-
Gallagher, Daniel, Malocha, Donald, University of Central Florida
- Abstract / Description
-
Ultrawideband (UWB) communication new technology with ability to share the FCC allocated frequency spectrum, large channel capacity and data rate, simple transceiver architecture and high performance in noisy environments. Such communication advantages have paved the way for emerging wireless technologies such as wireless high definition video streaming, wireless sensor networks and more. This thesis examines orthogonal frequency coded surface acoustic wave (SAW) correlators for use in...
Show moreUltrawideband (UWB) communication new technology with ability to share the FCC allocated frequency spectrum, large channel capacity and data rate, simple transceiver architecture and high performance in noisy environments. Such communication advantages have paved the way for emerging wireless technologies such as wireless high definition video streaming, wireless sensor networks and more. This thesis examines orthogonal frequency coded surface acoustic wave (SAW) correlators for use in advanced UWB communication systems. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for UWB spreading of data. The use of OFC spectrally spreads a PN sequence beyond that of CDMA because of the increased bandwidth; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are needed in the IF block in the transmitter and receiver, and reduces much of the signal processing requirements. The OFC SAW correlator device consists of a dispersive OFC transducer and a wideband output transducer. The dispersive filter was designed using seven contiguous chip frequencies within the transducer. Each chip is weighted in the transducer to account for the varying conductance of the chips and to compensate for the output transducer apodization. Experimental correlator results of an OFC SAW correlation filter are presented. The dispersive filter is designed using seven contiguous chip frequencies within the transducer. SAW correlators with fractional bandwidth of approximately 29% were fabricated on lithium niobate (LiNbO3) having a center frequency of 250 MHz and the filter has a processing gain of 49. A coupling of modes (COM) model is used to predict the experimental SAW filter response. Discussion of the filter design, analysis and measurements are presented. Results are shown for operation in a matched filter correlator for use in an UWB communication system and compared to predictions.
Show less - Date Issued
- 2007
- Identifier
- CFE0001820, ucf:47338
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001820
- Title
- Ultra-wideband Spread Spectrum Communications using Software Defined Radio and Surface Acoustic Wave Correlators.
- Creator
-
Gallagher, Daniel, Malocha, Donald, Delfyett, Peter, Richie, Samuel, Weeks, Arthur, Youngquist, Robert, University of Central Florida
- Abstract / Description
-
Ultra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator...
Show moreUltra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator receiver with orthogonal frequency coding and software defined radio (SDR) base station transmitter.Orthogonal frequency coding (OFC) and pseudorandom noise (PN) coding provide a means for spreading of the UWB data. The use of orthogonal frequency coding (OFC) increases the correlator processing gain (PG) beyond that of code division multiple access (CDMA); providing added code diversity, improved pulse ambiguity, and superior performance in noisy environments. Use of SAW correlators reduces the complexity and power requirements of the receiver architecture by eliminating many of the components needed and reducing the signal processing and timing requirements necessary for digital matched filtering of the complex spreading signal.The OFC receiver correlator code sequence is hard-coded in the device due to the physical SAW implementation. The use of modern SDR forms a dynamic base station architecture which is able to programmatically generate a digitally modulated transmit signal. An embedded Xilinx Zynq (TM) system on chip (SoC) technology was used to implement the SDR system; taking advantage of recent advances in digital-to-analog converter (DAC) sampling rates. SDR waveform samples are generated in baseband in-phase and quadrature (I (&) Q) pairs and upconverted to a 491.52 MHz operational frequency.The development of the OFC SAW correlator ultimately used in the receiver is presented along with a variety of advanced SAW correlator device embodiments. Each SAW correlator device was fabricated on lithium niobate (LiNbO3) with fractional bandwidths in excess of 20%. The SAW correlator device presented for use in system was implemented with a center frequency of 491.52 MHz; matching SDR transmit frequency. Parasitic electromagnetic feedthrough becomes problematic in the packaged SAW correlator after packaging and fixturing due to the wide bandwidths and high operational frequency. The techniques for reduction of parasitic feedthrough are discussedwith before and after results showing approximately 10:1 improvement.Correlation and demodulation results are presented using the SAW correlator receiver under operation in an UWB communication system. Bipolar phase shift keying (BPSK) techniques demonstrate OFC modulation and demodulation for a test binary bit sequence. Matched OFC code reception is compared to a mismatched, or cross-correlated, sequence after correlation and demodulation. Finally, the signal-to-noise power ratio (SNR) performance results for the SAW correlator under corruption of a wideband noise source are presented.
Show less - Date Issued
- 2015
- Identifier
- CFE0005794, ucf:50054
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005794