Current Search: Graniela Ortiz, Benito (x)
View All Items
- Title
- Assessment of Terrain Database Correlation Using Line-Of-Sight Measurements.
- Creator
-
Oyama, Leonardo, Goldiez, Brian, Kincaid, John, Graniela Ortiz, Benito, Martin, Glenn, University of Central Florida
- Abstract / Description
-
The uncountable number of tools for the creation of synthetic terrains poses as a challenge for simulation interoperability. The permutations of tools, elevation maps, and software settings leads to combinations of poorly correlated virtual terrains. An important issue in distributed simulations is the lack of line-of-sight correlation. For example, in military networked simulations, consistent intervisibility between simulated entities is crucial for a fair-fight, especially when simulations...
Show moreThe uncountable number of tools for the creation of synthetic terrains poses as a challenge for simulation interoperability. The permutations of tools, elevation maps, and software settings leads to combinations of poorly correlated virtual terrains. An important issue in distributed simulations is the lack of line-of-sight correlation. For example, in military networked simulations, consistent intervisibility between simulated entities is crucial for a fair-fight, especially when simulations include direct-fire weapons. The literature review presented in the Chapter Two discusses a multitude of interoperability issues caused by discrepant terrain representations and rendering engines noncompliant to any standard image generation process. Furthermore, the literature review discusses past research that strived for measuring (or mitigating) the correlation issues between terrain databases. Based on previous research, this thesis proposes a methodology for analysis of line-of-sight correlation between a pair of terrain databases. All the mathematical theory involved in the methodology is discussed in the Chapter Three. In addition, this thesis proposes a new method for measuring the roughness of a visual terrain database. This method takes into account the 3D dispersion of the vectors normal to the polygons in the terrain's mesh. Because the vectors normal to the polygons are conveniently stored in most visual databases, the roughness calculation suggested here is fast and does not require sampling the terrain's elevation. In order to demonstrate the proposed method, twin terrain databases and a tool were created as part of this thesis. The goal of this tool is to extract data from the terrain databases for statistical analysis. The tool is open source and its source code is provided with this thesis. The Chapter Four includes an example of statistical analysis using an open source statistic software. The line-of-sight correlation analysis discussed here includes the terrain's geometry only (terrain's culture is not addressed). Human factors were not taken into consideration.
Show less - Date Issued
- 2015
- Identifier
- CFE0005985, ucf:50792
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005985
- Title
- GPU Ray Traced Rendering And Image Fusion Based Visualization Of Urban Terrain For Enhanced Situation Awareness.
- Creator
-
Sik, Lingling, Pattanaik, Sumanta, Kincaid, John, Proctor, Michael, Tappen, Marshall, Graniela Ortiz, Benito, University of Central Florida
- Abstract / Description
-
Urban activities involving planning, preparing for and responding to time critical situations often demands sound situational awareness of overall settings. Decision makers, who are tasked to respond effectively to emergencies, must be equipped with information on the details of what is happening, and must stay informed with updates as the event unfolds and remain attentive to the extent of impact the dynamics of the surrounding settings might have. Recent increases in the volumes of geo...
Show moreUrban activities involving planning, preparing for and responding to time critical situations often demands sound situational awareness of overall settings. Decision makers, who are tasked to respond effectively to emergencies, must be equipped with information on the details of what is happening, and must stay informed with updates as the event unfolds and remain attentive to the extent of impact the dynamics of the surrounding settings might have. Recent increases in the volumes of geo-spatial data such as satellite imageries, elevation maps, street-level photographs and real-time imageries from remote sensory devices affect the way decision makers make assessments in time-critical situations. When terrain related spatial information are presented accurately, timely, and are augmented with terrain analysis such as viewshed computations, enhanced situational understanding could be formed. Painting such enhanced situational pictures, however, demands efficient techniques to process and present volumes of geo-spatial data. Modern Graphics Processing Units (GPUs) have opened up a wide field of applications far beyond processing millions of polygons. This dissertation presents approaches that harness graphics rendering techniques and GPU programmability to visualize urban terrain with accuracy, viewshed analysis and real-time imageries. The GPU ray tracing and image fusion visualization techniques presented herein have the potential to aid in achieving enhanced urban situational awareness and understanding.Current state of the art polygon based terrain representations often use coarse representations for terrain features of less importance to improve rendering rate. This results in reduced geometrical accuracy for selective terrain features that are considered less critical to the visualization or simulation needs. Alternatively, to render highly accurate urban terrain, considerable computational effort is needed. A compromise between achieving real-time rendering rate and accurate terrain representations would have to be made. Likewise, computational tasks involved in terrain-related calculations such as viewshed analysis are highly computational intensive and are traditionally performed at a non-interactive rate. The first contribution of the research involves using GPU ray tracing, a rendering approach, conventionally not employed in the simulation community in favor of rasterization, to achieve accurate visualization and improved understanding of urban terrain. The efficiency of using GPU ray tracing is demonstrated in two areas, namely, in depicting complex, large scale terrain and in visualizing viewshed terrain effects at interactive rate. Another contribution entails designing a novel approach to create an efficient and real-time mapping system. The solution achieves updating and visualizing terrain textures using 2D geo-referenced imageries for enhanced situational awareness. Fusing myriad of multi-view 2D inputs spatially for a complex 3D urban scene typically involves a large number of computationally demanding tasks such as image registrations, mosaickings and texture mapping. Current state of the art solutions essentially belongs to two groups. Each strives to either provide near real-time situational pictures in 2D or off-line complex 3D reconstructions for subsequent usages. The solution proposed in this research relies on using prior constructed synthetic terrains as backdrops to be updated with real-time geo-referenced images. The solution achieves speed in fusing information in 3D. Mapping geo-referenced images spatially in 3D puts them into context. It aids in conveying spatial relationships among the data. Prototypes to evaluate the effectiveness of the aforementioned techniques are also implemented. The benefits of augmenting situational displays with viewshed analysis and real-time geo-referenced images in relation to enhancing the user's situational awareness are also evaluated. Preliminary results from user evaluation studies demonstrate the usefulness of the techniques in enhancing operators' performances, in relation to situational awareness and understanding.
Show less - Date Issued
- 2013
- Identifier
- CFE0005115, ucf:50757
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005115
- Title
- Harmony: An Architecture for Network Centric Heterogeneous Terrain Database Re-Generation.
- Creator
-
Graniela Ortiz, Benito, Proctor, Michael, Gonzalez, Avelino, Wiegand, Rudolf, Goldiez, Brian, Cox, Robert, University of Central Florida
- Abstract / Description
-
This research investigated an alternative modeling and simulation terrain database generation paradigm that rapidly harmonizes changes target formats throughout a distributed simulation system while accommodating bandwidth and processing time limitations. This dissertation proposes a (")distributed partial bi-directional terrain database re-generation(") paradigm, which envisions network based terrain database updates between reliable partners. The approach is very attractive as it reduces...
Show moreThis research investigated an alternative modeling and simulation terrain database generation paradigm that rapidly harmonizes changes target formats throughout a distributed simulation system while accommodating bandwidth and processing time limitations. This dissertation proposes a (")distributed partial bi-directional terrain database re-generation(") paradigm, which envisions network based terrain database updates between reliable partners. The approach is very attractive as it reduces the amount of processing and bandwidth required to distribute locally emergent changes throughout a distributed system by only updating the affected target format data elements. In the prototype theoretical architecture that implements the approach, agent theory and ontologies are used to interpret data changes in external target formats and implement the necessary transformations on a server internal terrain database generation system. These changes are then distributed to clients to achieve consistency between all correlated representations. Experimental findings with the prototype suggests smaller network utilization and processing times than conventional terrain database generation will experience while maintaining correlated heterogeneous terrain database representations overtime. This Bi-Directional Ontology-driven TDB Re-Generation Architecture has the potential to revolutionize the traditional terrain database generation pipeline paradigm.
Show less - Date Issued
- 2011
- Identifier
- CFE0004475, ucf:49315
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004475