Current Search: Heinrich, Helge (x)
View All Items
Pages
- Title
- EVOLUTION OF LAMELLAR STRUCTURES IN AL-AG ALLOYS.
- Creator
-
Senapati, Sephalika, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
In the present study, the formation and the evolution of lamellar structures in different Al-Ag alloys were investigated by transmission electron microscopy (TEM). Plates of the hexagonalÁ phase form semi-coherently on the {111} planes of the face centered cubic lattice of the alloy after the formation of Guinier-Preston zones. Guinier-Preston zones are metastable coherent preprecipitates which are silver rich in the aluminum-rich Al-Ag alloys. The decomposition of aluminum rich...
Show moreIn the present study, the formation and the evolution of lamellar structures in different Al-Ag alloys were investigated by transmission electron microscopy (TEM). Plates of the hexagonalÁ phase form semi-coherently on the {111} planes of the face centered cubic lattice of the alloy after the formation of Guinier-Preston zones. Guinier-Preston zones are metastable coherent preprecipitates which are silver rich in the aluminum-rich Al-Ag alloys. The decomposition of aluminum rich Al-Ag alloys, particularly the sequence of the later stages of precipitate formation was studied. With scanning electron microscopy and high-resolution transmission electron microscopy the development of the Á phase was investigated. Samples cut from different Al-Ag alloys were homogenized at temperatures between 530C to 560C to obtain a single phase f.c.c solid solution. The samples were then quenched to room temperature, followed by heat treatments at temperatures between 140C and 220C for varying lengths of times. While Guinier-Preston zones increase in diameter with increasing aging duration, silver rich platelets of the Á phase form. The Á phase is the next metastable phase in the decomposition sequence before finally the Á phase transforms to the stable silver-rich phase, termedÁ . For samples with silver contents above 12 at.% a parallel lamellar alignment of fine Á-plates and Alrich matrix is found after extended heat treatments. For all alloys with Ag concentrations below 12 at.% individual Á plates are found on all four possible (111) planes of the ¿ matrix. iv A method is presented to calibrate the medium-magnification high-angle annular dark-field contrast in scanning transmission electron microscopy. This calibration allows for the quantitative measurement of plate thicknesses from high-angle annular dark-field scanning transmission electron micrographs of Ag2Al plates inclined to the electron beam. Results from these measurements are in good agreement with direct bright-field micrographs of plates viewed edge-on.
Show less - Date Issued
- 2005
- Identifier
- CFE0000874, ucf:46648
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000874
- Title
- CHARACTERIZATION OF MICROSTRUCTURAL AND CHEMICAL FEATURES IN CU-IN-GA-SE-S-BASED THIN-FILM SOLAR CELLS.
- Creator
-
Halbe, Ankush, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
Thin-film solar cells are potentially low-cost devices to convert sunlight into electricity. Improvements in the conversion efficiencies of these cells reduce material utilization cost and make it commercially viable. Solar cells from the Thin-Film Physics Group, ETH Zurich, Switzerland and the Florida Solar Energy Center (FSEC), UCF were characterized for defects and other microstructural features within the thin-film structure and at the interfaces using transmission electron microscopy ...
Show moreThin-film solar cells are potentially low-cost devices to convert sunlight into electricity. Improvements in the conversion efficiencies of these cells reduce material utilization cost and make it commercially viable. Solar cells from the Thin-Film Physics Group, ETH Zurich, Switzerland and the Florida Solar Energy Center (FSEC), UCF were characterized for defects and other microstructural features within the thin-film structure and at the interfaces using transmission electron microscopy (TEM). The present thesis aims to provide a feedback to these groups on their deposition processes to understand the correlations between processing, resulting microstructures, and the conversion efficiencies of these devices. Also, an optical equipment measuring photocurrents from a solar cell was developed for the identification of defect-prone regions of a thin-film solar cell. The focused ion beam (FIB) technique was used to prepare TEM samples. Bright-field TEM along with scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) including elemental distribution line scans and maps were extensively used for characterizing the absorber layer and interfaces both above and below the absorber layer. Energy-filtered transmission electron microscopy (EFTEM) was applied in cases where EDS results were inconclusive due to the overlap of X-ray energies of certain elements, especially molybdenum and sulfur. Samples from ETH Zurich were characterized for changes in the CIGS (Cu(In,Ga)Se2) microstructure due to sodium incorporation from soda-lime glass or from a post-deposition treatment with NaF as a function of CIGS deposition temperature. The CIGS-CdS interface becomes smoother and the small columnar CIGS grains close to the Mo back contact disappear with increasing CIGS deposition temperature. At 773 K the two sodium incorporation routes result in large differences in the microstructures with a significantly larger grain size for the samples after post-deposition Na incorporation. Porosity was observed in the absorber layer close to the back contact in the samples from FSEC. The reason for porosity could be materials evaporation in the gallium beam of the FIB or a processing effect. The porosity certainly indicates heterogeneities of the composition of the absorber layer near the back contact. A Mo-Se rich layer (possibly MoSe2) was formed at the interface between CIGS/CIGSS and Mo improving the quality of the junction. Other chemical heterogeneities include un-sulfurized Cu-Ga deposits, residual Se from the selenization/ sulfurization chamber in CIGS2 and the formation of Cu-rich regions which are attributed to decomposition effects in the Ga beam of the FIB. Wavy absorber surfaces were observed for some of the cells with occasional discontinuities in the metal grids. The 50 nm thick CdS layer, however, remained continuous in all the samples under investigation. For a sample with a transparent back contact, a 10 nm Mo layer was deposited on ITO (indium tin oxide) before deposition of the CIGS2 (Cu(In,Ga)S2) layer. EFTEM maps indicate that a MoS2 layer does not form for such a Mo/MoS2-ITO back contact. Instead, absorber layer material diffuses through the thin Mo layer onto the ITO forming two layers of CIGS2 on either side of Mo with different compositions. Furthermore, an optical beam induced current (OBIC) system with micron level resolution was successfully developed and preliminary photocurrent maps were acquired to microscopically identify regions within a thin-film solar cell with undesirable microstructural features. Such a system, when fully operational, will provide the means for the identification of special regions from where samples for TEM analysis can be obtained using the FIB technique to study specifically the defects responsible for local variations in solar cell properties.
Show less - Date Issued
- 2006
- Identifier
- CFE0001022, ucf:46807
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001022
- Title
- QUANTITATIVE THICKNESS MAPPING IN HIGH-ANGLE ANNULAR DARK-FIELD (HAADF) SCANNING TRANSMISSION ELECTRON MICROSCOPY (STEM).
- Creator
-
Nukala, Haritha, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
Only a few methods are currently available for the measurement of sample thicknesses in Transmission Electron Microscopy (TEM). These methods, Convergent-Beam Electron Diffraction (CBED) and thickness mapping in Energy-Filtered TEM (EFTEM), are either elaborate or complex. In this present work, I have investigated and come up with a simple straight-forward method to measure the local thickness of a TEM sample with the atomic number (Z-contrast) imaging using High-Angle Annular Dark Field ...
Show moreOnly a few methods are currently available for the measurement of sample thicknesses in Transmission Electron Microscopy (TEM). These methods, Convergent-Beam Electron Diffraction (CBED) and thickness mapping in Energy-Filtered TEM (EFTEM), are either elaborate or complex. In this present work, I have investigated and come up with a simple straight-forward method to measure the local thickness of a TEM sample with the atomic number (Z-contrast) imaging using High-Angle Annular Dark Field (HAADF) Scanning Transmission Electron Microscopy (STEM). HAADF STEM shows atomic number contrast for high scattering angles of the electrons, owing to predominant electron scattering at the potential of the nucleus similar to Rutherford scattering. The characterization of materials by STEM helps to identify microstructures and nanostructures within a sample and to analyze defects in samples. HAADF STEM imaging is capable of resolving atomic structures with better than 2 Å lateral resolution. However, HAADF STEM has so far not been systematically used to measure sample thicknesses. In Z-contrast imaging, it was known that the intensity of the electrons scattered to high angles increases with increase in the atomic number (Z) of the element/compound with increasing thickness of the sample based on the equation, I ~ t.Zα Where t, is the thickness and α, is a parameter between 1 and 2. This project was started with this simple approach, but the experimental results within the thesis show that the relation between the intensity and the atomic number is not well described by this equation. A more reliable parameter, σZ, the interaction coefficient of the material was calculated. Samples containing Ag2Al platelets in Al matrix were used for calibration purposes. Additional samples containing layers of known elements/compounds were obtained from TriQuint Semiconductors and from the Physics department of UCF to calculate σ for various elements/compounds. These experimental values were used to measure the local thicknesses in nanoparticles and also the total volume of the nanoparticles. This quantitative HAADF STEM analysis represents a new method, which can be added to the list of methods used for the purpose of measurement of the local thickness of a sample in the TEM. This method is especially useful for the thickness measurement of nanoparticles. The other two methods, CBED and thickness maps in EFTEM are strongly affected by the sample orientation and therefore not appropriate for the study of nanoparticle thicknesses, whereas orientation effects are negligible for the conditions used in this HAADF STEM analysis.
Show less - Date Issued
- 2008
- Identifier
- CFE0002309, ucf:47859
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002309
- Title
- Porosity Removal of CM247 Ni-base Superalloy using Thermal Heat Treatment without Applied Pressure.
- Creator
-
Heinrich, Chad, Sohn, Yongho, Coffey, Kevin, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
Blade and vane components made with Ni-base superalloys play a vital role in hot section of gas turbine engines. Removal of porosity in cast Ni-base superalloys is a critical process consideration since porosity from casting process can have deleterious effects on the performance and integrity of superalloy component. Still, the cost-efficient processing of Ni-base superalloys that are technologically acceptable, or superior, can contribute significantly to the life-cycle cost of gas turbine...
Show moreBlade and vane components made with Ni-base superalloys play a vital role in hot section of gas turbine engines. Removal of porosity in cast Ni-base superalloys is a critical process consideration since porosity from casting process can have deleterious effects on the performance and integrity of superalloy component. Still, the cost-efficient processing of Ni-base superalloys that are technologically acceptable, or superior, can contribute significantly to the life-cycle cost of gas turbine engines. The purpose of this thesis was to explore the possibility of eliminating the hot isostatic pressing cycle in a CM247 Ni-base superalloy processing. For cast CM247, conventional processing includes a hot isostatic pressing, which is primarily used to densify cast alloys by eliminating porosity. Two modified heat treatments without any applied pressure for CM247 were explored. Following these heat treatments, the porosity within each the sample was analyzed by electron microscopy. Results showed that HIP'ing removed 67.4% of the porosity from the as-cast CM247. The modified heat treatment examined in this study removed 97.9% of the porosity from the as-cast CM247. These experimental results were analyzed by considering the energetics of the HIP and modified heat treatments. Analysis demonstrated that most of the energy imparted on the casting for porosity removal can be due to temperature and not pressure, and justified how the modified heat treatments reduced porosity more effectively than the standard HIP cycle. Findings of this study can be immediately implemented for easier and more cost-effective processing of CM247 Ni-base superalloy.
Show less - Date Issued
- 2015
- Identifier
- CFE0006322, ucf:51558
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006322
- Title
- INFRARED SURFACE PLASMON POLARITONS ON SEMICONDUCTOR, SEMIMETAL AND CONDUCTING POLYMER.
- Creator
-
Shahzad, Monas, Peale, Robert, Heinrich, Helge, Coffey, Kevin, Diaz, Diego, University of Central Florida
- Abstract / Description
-
Conductors with IR (infrared) plasma frequencies are potentially useful hosts of surface plasmon polaritons (SPPs) with subwavelength mode confinement for sensing applications. The underlying aim of this work is to identify such conductors that also have sharp SPP excitation resonances for biosensor applications at infrared (3-11 ?m) wavelengths, where biological analytes are strongly differentiated by their IR absorption spectra. In this work, various materials were investigated such as a...
Show moreConductors with IR (infrared) plasma frequencies are potentially useful hosts of surface plasmon polaritons (SPPs) with subwavelength mode confinement for sensing applications. The underlying aim of this work is to identify such conductors that also have sharp SPP excitation resonances for biosensor applications at infrared (3-11 ?m) wavelengths, where biological analytes are strongly differentiated by their IR absorption spectra. In this work, various materials were investigated such as a heavily doped semiconductor, a semimetal, a conducting polymer and its composite.Heavily doped silicon was investigated by tuning its plasma frequency to the infrared region by heavily doping. The measured complex permittivity spectra for p-type silicon with a carrier concentration of 6 (&)#215; 1019 and 6 (&)#215; 1020 cm-3 show that these materials support SPPs beyond 11 and 6 ?m wavelengths, respectively. SPP generation was observed in angular reflection spectra of doped-silicon gratings. Photon-to-plasmon coupling resonances, a necessary condition for sensing, were demonstrated near 10 ?m wavelength for the heaviest doped, and the observed resonances were confirmed theoretically using analytic calculations. The permittivity spectra were also used to calculate SPP mode heights above the silicon surface and SPP propagation lengths. Reasonable merit criteria applied to these quantities suggest that only the heaviest doped material has sensor potential, and then mainly within the wavelength range of 6 to 10 ?m. The semimetal bismuth (Bi) has an infrared plasmon frequency less than the infrared plasma frequency of noble metals such as gold and silver, which is one order of magnitude lower than their plasma frequencies. The excitation of IR surface plasmons on Bi lamellar gratings in the wavelength range of 3.4 (&)#181;m to 10.6 (&)#181;m was observed. Distinct SPP resonances were observed although the usual condition for bound SPP is not satisfied in this wavelength range because the real part of the permittivity is positive. The excitation of these resonances agrees theoretically with the electromagnetic surface waves called surface polaritons (SPs). The measured permittivity spectra were used to calculate the SP mode heights above the bismuth surface and SP propagation length, which satisfied our criteria for sensors.A conducting polymer and its composite with graphite were also investigated since their plasma frequency may lie in the infrared region. Polyaniline was chemically synthesized and doped with various acids to prepare its salt form. A composite material of polyaniline with colloidal and nano-graphite was also prepared. Optical constants were measured in the long wave infrared region (LWIR) and were used to calculate SPP propagation length and penetration depth. SPP resonance spectra were calculated and suggested that polyaniline and its composite can be used as a host with sufficient mode confinement for IR sensor application.
Show less - Date Issued
- 2012
- Identifier
- CFE0004598, ucf:49215
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004598
- Title
- Fatigue Lifetime Approximation based on Quantitative Microstructural Analysis for Air Plasma Sprayed Thermal Barrier Coatings.
- Creator
-
Bargraser, Carmen, Sohn, Yongho, An, Linan, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
The durability of thermal barrier coatings (TBCs) affects the life of the hot section engine components on which they are applied. Fatigue is the general failure mechanism for such components and is responsible for most unexpected failures; therefore it is desirable to develop lifetime approximation models to ensure reliability and durability.In this study, we first examined the microstructural degradation of air plasma sprayed ZrO2-8wt.%Y2O3 TBCs with a low-pressure plasma sprayed CoNiCrAlY...
Show moreThe durability of thermal barrier coatings (TBCs) affects the life of the hot section engine components on which they are applied. Fatigue is the general failure mechanism for such components and is responsible for most unexpected failures; therefore it is desirable to develop lifetime approximation models to ensure reliability and durability.In this study, we first examined the microstructural degradation of air plasma sprayed ZrO2-8wt.%Y2O3 TBCs with a low-pressure plasma sprayed CoNiCrAlY bond coat on an IN 738LC superalloy substrate. The durability of TBCs were assessed through furnace thermal cyclic tests carried out in air at 1100(&)deg;C with a 1-, 10-, and 50-hour dwell period, preceded by a 10-minute heat-up and followed by a 10-minute forced-air-quench. Failure mechanisms of the TBCs were thoroughly investigated through materials characterization techniques including: X-Ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy.Quantitative microstructural analyses were then carried out to document the growth of the thermally grown oxide (TGO) scale, the depletion of the Al-rich ?-NiAl phase in the bond coat, and the population and growth of micro-cracks near the YSZ/bond coat interface. Trends in the TGO growth and the ?-phase depletion in the bond coat followed those of diffusion-controlled processes(-)parabolic growth of the TGO and exponential depletion of the ?-phase. Formation and propagation of cracks within the YSZ resulted in complete spallation of the YSZ topcoat from the bond-coated superalloy substrate.Evolution in these microstructural features was correlated to the lifetime of TBCs, which showed cracking within the YSZ to be the cause of failure; thus a lifetime approximation model was developed, via modification of Paris Law, based on the experimental data. The model predicted the TBC lifetime within 10% of the experimental lifetime.
Show less - Date Issued
- 2011
- Identifier
- CFE0004087, ucf:49145
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004087
- Title
- Novel Nanostructures and Processes for Enhanced Catalysis of Composite Solid Propellants.
- Creator
-
Draper, Robert, Seal, Sudipta, Heinrich, Helge, Zhai, Lei, University of Central Florida
- Abstract / Description
-
The purpose of this study is to examine the burning behaviour of composite solid propellants (CSP)in the presence of nanoscale, heterogenous catalysts. The study targets the decomposition of am-monium perchlorate (AP) as a key component in the burning profile of these propellants, and seeksto identify parameters of AP decomposition reaction that can be affected by catalytic additives.The decomposition behavior of AP was studied in the presence of titanium dioxide nanoparticlesin varying...
Show moreThe purpose of this study is to examine the burning behaviour of composite solid propellants (CSP)in the presence of nanoscale, heterogenous catalysts. The study targets the decomposition of am-monium perchlorate (AP) as a key component in the burning profile of these propellants, and seeksto identify parameters of AP decomposition reaction that can be affected by catalytic additives.The decomposition behavior of AP was studied in the presence of titanium dioxide nanoparticlesin varying configurations, surface conditions, dopants, morphology, and synthesis parameters withthe AP crystals. The catalytic nanoparticles were found to enhance the decomposition rate of theammonium perchlorate, and promote an accelerated burning rate of CSP propellants containingthe additives. Furthermore, different configurations were shown to have varying degrees of effec-tiveness in promoting the decomposition behaviour.To study the effect of the catalyst's configuration in the bulk propellant, controlled dispersion con-ditions of the nanoparticle catalysts were created and studied using differential scanning calorime-try, as well as model propellant strand burning. The catalysts were shown to promote the greatestenthalpy of reaction, as well as the highest burn rate, when the AP crystals were recrystalizedaround the nanoparticle additives. This is in contrast to the lowest enthalpy condition, which cor-responded to catalysts being dispersed upon the AP crystal surface using bio-molecule templates.Additionally, a method of facile, visible light nanoparticle tracking was developed to study theeffect of mixing and settling parameters on the nano-catalysts. To accomplish this, the titaniananoparticles were doped with fluorescent europium molecules to track the dispersion of the cat-alysts in the propellant binder. This method was shown to succesfully allow for dispersion andagglomeration monitoring without affecting the catalytic effect of the TiO2 nanoparticles.
Show less - Date Issued
- 2013
- Identifier
- CFE0004991, ucf:49559
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004991
- Title
- Reactive sputter deposition of lithium phosphorus oxynitride thin films, a Li battery solid state electrolyte.
- Creator
-
Mani, Prabhu Doss, Coffey, Kevin, Heinrich, Helge, Hickman, James, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
Lithium phosphorus oxy-nitride (LiPON) thin films are widely studied and used as a thin film electrolyte for lithium ion battery applications. LiPON thin films may be prepared by many techniques, but RF sputter deposition is most frequently used and was investigated in this dissertation, in spite of its low deposition rate, because of it offers more reliable and controllable processing. This dissertation includes the methodologies of sputter deposition and materials characterization of the...
Show moreLithium phosphorus oxy-nitride (LiPON) thin films are widely studied and used as a thin film electrolyte for lithium ion battery applications. LiPON thin films may be prepared by many techniques, but RF sputter deposition is most frequently used and was investigated in this dissertation, in spite of its low deposition rate, because of it offers more reliable and controllable processing. This dissertation includes the methodologies of sputter deposition and materials characterization of the LiPON thin film electrolytes.The LiPON thin films were deposited under varying conditions of process gas, substrate bias, and deposition temperature. To understand the variations in ionic conductivity observed, the films were extensively characterized to examine structural and compositional differences, including examination by x-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP/OES), and spectroscopic ellipsometry. In addition, film density, and the intrinsic stress of the deposited films were also studied.The highest ionic conductivity of 9.8 x 10-6 S/cm was obtained at elevated deposition temperature and is correlated to a reduced density of defects, as indicated from the optical characterization.
Show less - Date Issued
- 2015
- Identifier
- CFE0005835, ucf:50929
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005835
- Title
- Graphene Oxide Reinforcement in Plasma Sprayed Nickel-5%Aluminum Coatings.
- Creator
-
Ward, David, Seal, Sudipta, Vaidyanathan, Raj, Heinrich, Helge, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Metallic plasma sprayed coatings are widely used in the aerospace industry for repair on worn engine components. However, the inherent defects in these coatings limit the variety of repairs and reduce the service life of the repaired parts. A potential solution to overcome this problem is to mix small amounts of inexpensive graphene oxide in the powder feedstock. The incredible strength to weight ratio of graphene oxide makes it a viable additive to improve mechanical properties of metallic...
Show moreMetallic plasma sprayed coatings are widely used in the aerospace industry for repair on worn engine components. However, the inherent defects in these coatings limit the variety of repairs and reduce the service life of the repaired parts. A potential solution to overcome this problem is to mix small amounts of inexpensive graphene oxide in the powder feedstock. The incredible strength to weight ratio of graphene oxide makes it a viable additive to improve mechanical properties of metallic plasma sprayed coatings. The powder system chosen for this research is Nickel-5Aluminum since it is a common coating for such repairs. The greatest challenge was retaining graphene oxide, which combusts at 400(&)deg;C, while melting the Nickel above 1450(&)deg;C using a high temperature plasma plume. Graphene oxide was successfully retained in the coatings using either of two configurations: (1) Injecting the graphene oxide powder via solution suspension separately from the metal powder, or (2) Installing a shroud on the front of the plasma gun and backfilling with Argon to inhibit combustion. The uniquely designed solution suspension configuration resulted in a higher deposition efficiency of graphene oxide while the inert shroud configuration had a more homogeneous distribution and retention of graphene oxide in the coatings. The best overall coating was achieved using the inert shroud configuration using a powder mixture containing 2% weight Edge Functionalized Graphene Oxide. Vickers microhardness increased 46% and tensile adhesion strength increased 26% over control samples. This is possible due to the mechanisms of dislocation strengthening and stress transfer previously reported in graphene oxide reinforced Aluminum composites formed by flake powder metallurgy. It was also observed that the energy released by the combustion of graphene oxide helps to uniformly melt the Nickel particles and improve the coating microstructure, allowing for more forgiving spray parameters. The methods developed and results attained in this research open opportunities for graphene oxide to be added as inexpensive reinforcements to other metallic compositions for widespread use in metal matrix composite manufacturing.
Show less - Date Issued
- 2014
- Identifier
- CFE0005901, ucf:50857
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005901
- Title
- A theoretical and experimental investigation of the physical and chemical properties of solid nanoscale interfaces.
- Creator
-
Matos, Jeronimo, Kara, Abdelkader, Heinrich, Helge, Schelling, Patrick, Masunov, Artem, University of Central Florida
- Abstract / Description
-
With the emerging interest in nanoscale materials, the fascinating field of surface science is rapidly growing and presenting challenges to the design of both experimental and theoretical studies. The primary aim of this dissertation is to shed some light on the physical and chemical properties of selected nanoscale materials at the interface. Furthermore, we will discuss the effective application of cutting edge theoretical and experimental techniques that are invaluable tools for...
Show moreWith the emerging interest in nanoscale materials, the fascinating field of surface science is rapidly growing and presenting challenges to the design of both experimental and theoretical studies. The primary aim of this dissertation is to shed some light on the physical and chemical properties of selected nanoscale materials at the interface. Furthermore, we will discuss the effective application of cutting edge theoretical and experimental techniques that are invaluable tools for understanding the systems at hand. To this effect, we use density functional theory (DFT) with the inclusion of van der Waals (vdW) interactions to study the effect of long-range interactions on the adsorption characteristics of various organic molecules (i.e. benzene, olympicene radical, and sexithiophene) on transition metal surfaces. Secondly, the detailed analysis of x-ray absorption spectroscopy (XAS), scanning transmission electron microscopy (STEM), x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements will be presented. These investigations will be dedicated to the study of (i) the effect of pre-treatment on the coarsening behavior of Pt nanoparticles (NPs) supported on ?-Al2O3 and (ii) deconvoluting the intrinsic (size effects) and extrinsic (ligand effects) physical and electronic properties of Au NPs encapsulated by polystyrene 2-vinylpiridine ligands.
Show less - Date Issued
- 2015
- Identifier
- CFE0005975, ucf:50783
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005975
- Title
- The Study of Physiochemical Properties of Cerium Oxide Nanoparticles and its Application in Biosensors.
- Creator
-
Barkam, Swetha, Seal, Sudipta, Heinrich, Helge, Gaume, Romain, University of Central Florida
- Abstract / Description
-
Biosensors continue to get smaller and faster with the advancement in nanotechnology through the use of nanomaterials to achieve high sensitivity and selectivity. However, the continued reliance on biomolecules or enzymes in the biosensor assembly poses the problem of reproducibility, storage and complexity. This dissertation research address some of the challenges by investigating the physiochemical properties of nanoparticles to understand its interaction with biological systems and develop...
Show moreBiosensors continue to get smaller and faster with the advancement in nanotechnology through the use of nanomaterials to achieve high sensitivity and selectivity. However, the continued reliance on biomolecules or enzymes in the biosensor assembly poses the problem of reproducibility, storage and complexity. This dissertation research address some of the challenges by investigating the physiochemical properties of nanoparticles to understand its interaction with biological systems and develop enzyme free biosensors. In this study, we have demonstrated a novel strategy to integrate cerium oxide nanoparticles (CNPs) as an efficient transducer through rigorous screening for developing enzyme/label free biosensors for detecting analytes such as dopamine associated with neurodegenerative diseases and limonin for fruit quality management. CNPs have been proven to exhibit antioxidant properties attributed to its dynamic change in surface oxidation states (Ce4+ to Ce3+ and vice versa) mediated at the oxygen vacancies on the surface of the CNPs. It is also well-established that nanoparticles are resourceful novel materials with a plethora of applications in the field of nanomedicine.It is of significant importance to study the changes in physiochemical properties of different synthesized CNPs for effective use in biomedical applications. In one of the studies, the effects of different anions in the precursor of the cerium salts used for synthesizing CNPs using the same synthesis method, were extensively studied. It has been demonstrated that the physicochemical properties such as dispersion stability, hydrodynamic size, and the signature surface chemistry, antioxidant catalytic activity, oxidation potentials of different CNPs have been significantly altered with the change of anions in the precursor salts. . The increased antioxidant property of CNPs prepared using the precursor salts containing NO3(&)#175; and Cl(&)#175; ions have been extensively studied using in-situ UV-Visible spectroscopy which reveal that the change in oxidation potentials of CNPs with the change in concentration of anions. Thus, this work demonstrated that the physicochemical and antioxidant properties of CNPs can be tuned by anions of the precursor during the synthesis process.After standardizing the synthesis process, CNPs have been immobilized on highly ordered polymer nanopillars to develop an optical sensor for dopamine detection. Dopamine, is one of the main neurotransmitters which plays a significant role in central nervous system and its deficiency leads to neurological disorders such as Parkinson's disease, schizophrenia etc. Current biosensors in the literature use invasive detection techniques and lacks sensitivity to detect physiological clinically relevant concentrations of dopamine. The interaction between CNPs and dopamine have been extensively studied using UV-visible spectro-electrochemical studies to achieve the right surface chemistry (35-70% Ce4+). The sensor exhibits high sensitivity (1fM detection in simulated body fluid), high selectivity (in acetic acid, sheep plasma) and increased robustness with several cycles of usage.Furthermore, we have developed a CNPs based biosensor by integrating it on a transistor platform for improved sensitivity and better adhesion by immobilizing in silk fibroin matrix. In the final study, CNPs integrated in silk fibroin (SF) polymer electrospun nanofibers incorporated on an organic electrochemical transistor platform, is used to develop a limonin sensor. It has been established that the concentration of limonin in citric fruit predicts the quality in terms of bitter taste from the HLB bacteria infected fruits. A unique in-house electrospinning set-up using drum as collector was used to develop SF (extracted from cocoon) nanofibers used as CNP (synthesized in-situ in fibers) transducer carrier, both of which have a specific interaction with limonin. This novel biosensor has exhibited high sensitivity (100nM in PBS) and selectivity (citric acid, sugar etc.) with improved robustness in terms of reuse. The broader impact of the study is to develop holistic diagnostic non-invasive biosensors that can directly be used to detect the analytes using samples from humans and/or on field for fruit quality determination, which is a huge stepping stone in the advancement of nanotechnology based biosensors. This will fuel future generation of enzyme free biosensors which can utilize similar concepts for the detection of other analytes. The biosensor could be printed on a flexible substrate to advance wearable smart biosensor and could eventually enable users to wirelessly monitor the analyte concentrations using smartphones.
Show less - Date Issued
- 2017
- Identifier
- CFE0006931, ucf:51662
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006931
- Title
- The Study of Photo-reduction of Cerium Oxide Nanoparticles in Presence of Dextran: An Attempt in Understanding the Functionality of the System.
- Creator
-
Barkam, Swetha, Seal, Sudipta, Heinrich, Helge, Gaume, Romain, University of Central Florida
- Abstract / Description
-
Malignant melanoma cancer is the sixth common cancer diagnosed in the United States. Surgery, chemotherapy and radiation are some of the successful techniques in killing tumor cells. However, in these techniques, it is not easy to distinguish tumor cells from the healthy once which inadvertently get exposed to chemical agent/radiation. Therefore it is required to develop an anti-cancer agent which selectively kills the cancer cells, while still protecting the normal tissues. In our...
Show moreMalignant melanoma cancer is the sixth common cancer diagnosed in the United States. Surgery, chemotherapy and radiation are some of the successful techniques in killing tumor cells. However, in these techniques, it is not easy to distinguish tumor cells from the healthy once which inadvertently get exposed to chemical agent/radiation. Therefore it is required to develop an anti-cancer agent which selectively kills the cancer cells, while still protecting the normal tissues. In our preliminary work, we have shown that Dextran (1000Da) coated Cerium oxide nanoparticles (Dex-CNPs) selectively kills the cancer cells (50% killing at a concentration of 150?M) without inducing toxicity to the normal cells. However, the mechanism involved on how CNPs/Dex-CNPs attain the selectivity and efficiently kill the tumor cells is still unknown. In this study we have synthesized Dextran coated ceria nano particles (Dex- CNPs) with different surface oxidation state ratio (Ce4+/Ce3+). This will provide an in depth understanding of the key chemical and physical properties of the system that can improve its efficacy. The varied surface oxidation of the particles is achieved by exposing Dex-CNPs to light which initiates a color change from dark to pale yellow indicating the reduction of Ce4+ to Ce3+. Interestingly we have found that the Dex-CNPs exposed to light have reduced cytotoxicity towards squamous cell carcinoma cell line (CCL30) compared to the protected once. Characterization of the same revealed that Dex- CNPs exposed to light have decreased Ce4+ /Ce3+ surface oxidation ratio compared to the other. This provides more insight in useful synthesis of Dex-CNPs in terms of storage and handling. In summary, higher Ce4+ /Ce3+ surface oxidation ratio is more efficient in hindering tumor growth by effectively hindering the tumor-stoma interaction.
Show less - Date Issued
- 2013
- Identifier
- CFE0005301, ucf:50508
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005301
- Title
- Catalytic Role of Boron Nitride in the Thermal Decomposition of Ammonium Perchlorate.
- Creator
-
Grossman, Kevin, Seal, Sudipta, Coffey, Kevin, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
The decomposition of Ammonium Perchlorate (AP), a strong oxidizer used in solid rocket propellant, is widely studied in an attempt to increase the burn characteristics of propellants. Many materials have been shown to catalyze its decomposition, but little is known about the mechanism by which AP decomposition becomes catalyzed. In this study, Boron Nitride (BN) nanostructures, a material previously unknown to act as a catalyst, is studied. The decomposition reaction is studied by thermo...
Show moreThe decomposition of Ammonium Perchlorate (AP), a strong oxidizer used in solid rocket propellant, is widely studied in an attempt to increase the burn characteristics of propellants. Many materials have been shown to catalyze its decomposition, but little is known about the mechanism by which AP decomposition becomes catalyzed. In this study, Boron Nitride (BN) nanostructures, a material previously unknown to act as a catalyst, is studied. The decomposition reaction is studied by thermo-gravimetric analysis / differential scanning calorimetry, X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. The goal of this study is to discover the activation energy of this catalyst reaction, intermediary products of the reaction, mechanism of reaction and end state of the boron nitride nanostructures (ie, if the BN acts as a true catalyst, or participates on the overall reaction and has some end state that's different from the initial state). Four variations of BN have been synthesized using a hydrothermal process; BN nanoribbons, Boron Rich BN, Nitrogen-Rich BN, and high surface area BN. It is shown that the decomposition of AP is significantly altered when in the presence of BN and the mechanism through which BN catalyzes the decomposition is most likely the presence of oxidized nitrogen species on the BN material.
Show less - Date Issued
- 2015
- Identifier
- CFE0005801, ucf:50027
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005801
- Title
- Real time monitoring of Cell-Nanoparticles interaction and tracking internalization process by mechanical probing using Atomic Force Microscopy.
- Creator
-
Ly, Anh, Seal, Sudipta, Zhai, Lei, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
With extensive development of nanotechnology in last few years, scientists have discovered that nanoparticles (NPs) can be used as an efficient Drug Delivery System (DOS). In order to develop better NPs based drug delivery tool, it is imperative to understand the interaction between the NPs and the cell membrane. In our earlier studies, cerium oxide nanoparticles (CNPs) have been reported to have therapeutic properties, specifically against abnormalities associated with oxidative stress....
Show moreWith extensive development of nanotechnology in last few years, scientists have discovered that nanoparticles (NPs) can be used as an efficient Drug Delivery System (DOS). In order to develop better NPs based drug delivery tool, it is imperative to understand the interaction between the NPs and the cell membrane. In our earlier studies, cerium oxide nanoparticles (CNPs) have been reported to have therapeutic properties, specifically against abnormalities associated with oxidative stress. Therefore, CNPs with different sizes and morphology were selected to understand the interaction with cell. We analyzed the mechanical property of human nasal septum tumor cells membranes using Atomic Force Microscopy (AFM) with and without CNPs. In particular, Force-Distance spectroscopy mode was used to estimate the elasticity of cells membrane. Different concentrations (0, 50, 125 and 250 ?M) of CNPs were added to the cells (squamous cells; CCL30) and incubated for different time periods (0, 15, 30 and 60 minutes). Cell membrane elasticity/Young's modulus was calculated using a modified Hertz model. Changes in the cell elasticity were observed in high concentration of CNPs when treated with one hour. Significant changes in cell elasticity were observed at high concentration of CNPs for one hour of incubation. No significant change in cell elasticity was observed over one hour time period for 50 ?M of CNPs. Moreover, by using selected inhibitors to block different cell mediated internalization pathways, we also investigated the correlation between the cellular uptake and the tracking of NPs with their size. Specifically, similar change in cell elasticity was observed after blocking the cell energy production for CNPs with smaller diameter (3-5 nm). On the other hand, bigger size NPs (20-30 nm) showed no change in cell elasticity after blocking the cell energy production. These results indicate that 3-5 nm particles internalize cell by non-energy dependent pathway i.e. passive diffusion whereas 20-30 nm particles entered in cell by energy dependent pathways i.e. endocytosis of particles. Further, we have also identified the cellular uptake of 20-30 nm particles is by enclosing those CNPs in membrane vesicles in caveolae-mediated endocytosis mechanism. In summary, these results indicate that the nanoparticles-cell interaction has pronounced influence on the shape and size of the nanoparticles. These interactions can be further monitored by real time mechanical property measurement of cell membrane.
Show less - Date Issued
- 2014
- Identifier
- CFE0005204, ucf:50637
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005204
- Title
- Diffusion and reaction in selected uranium alloy system.
- Creator
-
Huang, Ke, Sohn, Yongho, An, Linan, Xu, Chengying, Coffey, Kevin, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
U-Mo metallic fuels with Al alloys as the matrix/cladding are being developed as low enriched uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Significant interactions have been observed to occur between the U-Mo fuel and the Al alloy during fuel processing and irradiation. U-Zr metallic fuels with stainless steel claddings have been developed for the generation IV sodium fast reactor (SFR). The fuel cladding chemical interaction (FCCI) induced by the...
Show moreU-Mo metallic fuels with Al alloys as the matrix/cladding are being developed as low enriched uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Significant interactions have been observed to occur between the U-Mo fuel and the Al alloy during fuel processing and irradiation. U-Zr metallic fuels with stainless steel claddings have been developed for the generation IV sodium fast reactor (SFR). The fuel cladding chemical interaction (FCCI) induced by the interdiffusion of components was also observed. These interactions induce deleterious effects on the fuel system, such as thinning of the cladding layer, formation of phases with undesirable properties, and thermal cracking due to thermal expansion mismatches and changes in molar volume. The interaction between the fuel and the cladding involves multi-component interdiffusion. To determine the ternary interdiffusion coefficients using a single diffusion couple, a new method based on regression via the matrix transformation approach is proposed in this study. This new method is clear in physical meaning and simple in mathematical calculation. The reliability and accuracy of this method have been evaluated through application to three case studies: a basic asymptotic concentration profile, a concentration profile with extrema and a smoothed concentration profile with noise. Generally, this new method works well in all three cases.In order to investigate the interdiffusion behavior in U-Mo alloys, U vs. Mo diffusion couples were assembled and annealed in the temperature range of 650 to 1000(&)deg;C. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy (SEM) and electron probe microanalysis (EPMA), respectively. Interdiffusion coefficients and activation energies were calculated as functions of temperature and Mo composition. The intrinsic diffusion coefficients of U and Mo at the marker composition were also determined. The activity of U and the thermodynamic factor of the U-Mo alloy have been calculated using the ideal solution, the regular solution, and the subregular solution models based on the molar excess Gibbs free energy of the U-Mo alloy. The calculated intrinsic diffusivities of U and Mo along with the thermodynamic factor of the U-Mo alloy were employed to estimate the atomic mobilities and the vacancy wind effects of U and Mo according to Manning's description.To explore potential diffusion barrier materials for reducing the fuel cladding chemical interaction between the U-Mo fuel and the Al alloy matrix/cladding, the interdiffusion behavior between U-Mo alloys and Mo, Zr, Nb and Mg were systematically studied. U-10wt.%Mo vs. Mo, Zr and Nb diffusion couples were annealed in the temperature range from 600 to 1000(&)deg;C. A diffusion couple between U-7wt.%Mo and Mg was annealed at 550(&)deg;C for 96 hours. SEM and transmission electron microscopy (TEM) were applied to characterize the microstructure of the interdiffusion zone. X-ray energy dispersive spectroscopy (XEDS) and EPMA were utilized to examine the concentration redistribution and the phase constituents. For the U-Mo vs. Mo diffusion couples, the interdiffusion coefficients at high Mo concentrations ranging from 22 to 32 at.%Mo were determined for the first time. In the U-Mo vs. Zr diffusion couples, the Mo2Zr phase was found at the interface. The diffusion paths were estimated and investigated according to the Mo-U-Zr ternary phase diagram. Thermal cracks and pure U precipitates were found within the diffusion zone in the U-Mo vs. Nb system. The growth rate of the interdiffusion zone was found to be lower by about 103 times for Zr, 105 times for Mo and 106 times for Nb compared to those observed in the U-10wt.%Mo vs. Al or Al-Si systems. For the diffusion couple of U-Mo vs. Mg, the U-Mo was bonded very well to the Mg and there was negligible diffusion observed even after 96 hours annealing at 550(&)deg;C.For a more fundamental understanding of the complex diffusion behavior between U-Zr fuels and their stainless steel claddings, U vs. Fe, Fe-15wt.%Cr and Fe-15wt.%Cr-15wt.%Ni diffusion couples were examined to investigate the interdiffusion behaviors between U and Fe and the effects of the alloying elements Cr and Ni. The diffusion couples were annealed in the temperature range from 580 to 700(&)deg;C for various times. Two intermetallic phases, U6Fe and UFe2, developed in all of the diffusion couples with the U6Fe layer growing faster than the UFe2 layer. For the diffusion couples of U vs. Fe, extrinsic growth constants, intrinsic growth constants, integrated interdiffusion coefficients and activation energies in each phase were calculated. The results suggest that U6Fe impeded the growth of UFe2, and the boundary condition change caused by the allotropic transformation of U played a role in the growth of the U6Fe and UFe2 layers. The reasons why U6Fe grew much faster than UFe2 are also discussed. The additions of Cr and Ni into Fe affected the growth rates of U6Fe and UFe2. The solubility of Cr and Ni in U6Fe and UFe2 were determined, and it was found that Cr diffused into U more slowly than Fe or Ni.
Show less - Date Issued
- 2012
- Identifier
- CFE0004548, ucf:49238
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004548
- Title
- Rare Earth Oxide Coating with Controlled Chemistry Using Thermal Spray.
- Creator
-
Singh, Virendra, Seal, Sudipta, Coffey, Kevin, Raghavan, Seetha, Heinrich, Helge, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Cerium oxide (Ceria) at nano scale has gained significant attention due to its numerous technological applications. Ceria in both doped and undoped forms are being explored as oxygen sensor, catalysis, protective coating against UV and corrosion, solid oxide fuel cell (SOFC) electrolyte and newly discovered antioxidant for biomedical applications. Therefore, there is an imminent need of a technology which can provide a cost effective, large scale manufacturing of nanoceria and its subsequent...
Show moreCerium oxide (Ceria) at nano scale has gained significant attention due to its numerous technological applications. Ceria in both doped and undoped forms are being explored as oxygen sensor, catalysis, protective coating against UV and corrosion, solid oxide fuel cell (SOFC) electrolyte and newly discovered antioxidant for biomedical applications. Therefore, there is an imminent need of a technology which can provide a cost effective, large scale manufacturing of nanoceria and its subsequent consolidation, specially using thermal spray.This dissertation aims to develop a scientific understanding towards the development of pure and doped ceria- based coating for a variety of technological applications, from SOFC applications to corrosion resistant coating. Atmospheric plasma spray (APS) and solution precursor plasma spray (SPPS) techniques for the fabrication of nano ceria coating were investigated. For feedstock powder preparation, a spray drying technique was used for the agglomeration of cerium oxide nano particles to achieve high density coating. Deposition efficiencies and coating porosity as a function of processing parameters were analyzed and optimized using a statistical design of experiment model. The coating deposition efficiency was dependent on the plasma temperature and vaporization pressure of the ceria nanoparticles. However, low standoff distance and high carrier gas flow rate were responsible for the improved density upto 86 (&)#177;3%.An alternative novel SPPS technique was studied for a thin film of cerium oxide deposition from various cerium salt precursors in doped and undoped conditions. The SPPS process allows controlling the chemistry of coating at a molecular level. The deposition mechanism by single scan experiments and the effect of various factors on coating microstructure evolution were studied in terms of splats formation. It was found that the precursor salt (nitrate of cerium) with lower thermal decomposition temperatures was suitable for a high density coating. The high concentration and low spray distance significantly improve the splat morphology and reduced porosity (upto 20%). The feasibility of the trivalent cations (Sm 3+ and Gd 3+) doping into cerium oxide lattice in high temperature plasma was discussed and experimentally studied. XRD analysis revealed the nano crystalline characteristic of the coating and lattice expansion due to doping. The extensive transmission electron microscopy, Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and thermo gravimetric were conducted to evaluate the precursors, and coating microstructure.Due to facial switching between Ce4+ and Ce3+ oxidation state, the cerium oxide surface becomes catalytically active. Thus, the APS ceria coatings were investigated for their applicability under extreme environmental conditions (high pressure and temperature). The air plasma sprayed coated 17-4PH steel was subjected to high pressure (10 Kpsi) and temperature (300 oF) corrosive environment. The coated steel showed continuous improvement in the corrosion resistance at 3.5 wt% NaCl at ambient temperature for three months study whereas, high pressure did not reveal a significant role in the corrosion process, and however, one needs to do further research. The ceria coated steel also revealed the improvement in corrosion protection (by 4 times) compared to the bare steel at low pH, 300 oF and 4000 Psi environment. This study projects the importance of cerium oxide coatings, their fabrication, optimization and applications.
Show less - Date Issued
- 2012
- Identifier
- CFE0004230, ucf:49023
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004230
- Title
- Direct measurement of thicknesses, volumes or compositions of nanomaterials by quantitative atomic number contrast in high-angle annular dark-field scanning transmission electron microscopy.
- Creator
-
Yuan, Biao, Heinrich, Helge, Sohn, Yongho, Coffey, Kevin, Fang, Jiyu, Roldan Cuenya, Beatriz, University of Central Florida
- Abstract / Description
-
The sizes, shapes, volumes and compositions of nanoparticles are very important parameters determining many of their properties. Efforts to measure these parameters for individual nanoparticles and to obtain reliable statistics for a large number of nanoparticles require a fast and reliable method for 3-D characterization. In this dissertation, a direct measurement method for thicknesses, volumes or compositions of nanomaterials by quantitative atomic number contrast in High-Angle Annular...
Show moreThe sizes, shapes, volumes and compositions of nanoparticles are very important parameters determining many of their properties. Efforts to measure these parameters for individual nanoparticles and to obtain reliable statistics for a large number of nanoparticles require a fast and reliable method for 3-D characterization. In this dissertation, a direct measurement method for thicknesses, volumes or compositions of nanomaterials by quantitative atomic number contrast in High-Angle Annular Dark-Field (HAADF) Scanning Transmission Electron Microscopy (STEM) is presented. A HAADF detector collects electrons scattered incoherently to high angles. The HAADF signal intensity is in first-order approximation proportional to the sample thickness and increases with atomic number. However, for larger sample thicknesses this approach fails. A simple description for the thickness dependence of the HAADF-STEM contrast has been developed in this dissertation. A new method for the calibration of the sensitivity of the HAADF detector for a FEI F30 transmission electron microscope (TEM) is developed in this dissertation. A nearly linear relationship of the HAADF signal with the electron current is confirmed. Cross sections of multilayered samples provided by TriQuint Semiconductors in Apopka, FL, for contrast calibration were obtained by focused ion-beam (FIB) preparation yielding data on the interaction cross section per atom.To obtain an absolute intensity calibration of the HAADF-STEM intensity, Convergent Beam Electron Diffraction (CBED) was performed on Si single crystals. However, for samples prepared by the focused ion beam technique, CBED often significantly underestimates the sample thickness. Multislice simulations from Dr. Kirkland's C codes are used for comparison with experimental results. TEM offers high lateral resolution, but contains little or no information on the thickness of samples. Thickness maps in energy-filtered TEM (EFTEM), CBED and tilt series are so far the only methods to determine thicknesses of particles in TEM. In this work I have introduced the use of wedge-shaped multilayer samples prepared by FIB for the calibration of HAADF-STEM contrasts. This method yields quantitative contrast data as a function of sample thickness. A database with several pure elements and compounds has been compiled, containing experimental data on the fraction of electrons scattered onto the HAADF detector for each nanometer of sample thickness. The use of thick samples reveals an increased signal at the interfaces of high- and low-density materials. This effect can be explained by the transfer of scattered electrons from the high density material across the interface into the less-absorbing low-density material. The calibrations were used to determine concentration gradients in nanoscale Fe-Pt multilayers as well as thicknesses and volumes of individual Au-Fe, Pt, and Ag nanoparticles. Volumes of nanoparticles with known composition can be determined with accuracy better than 15%. Porosity determination of materials becomes available with this method as shown in an example of porous Silicon.?
Show less - Date Issued
- 2012
- Identifier
- CFE0004464, ucf:49355
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004464
- Title
- Optimization of Process Parameters for Faster Deposition of CuIn1-xGaxS2 and CuIn1-xGaxSe2-ySy Thin Film Solar Cells.
- Creator
-
Kaul, Ashwani, Dhere, Neelkanth, Heinrich, Helge, Kar, Aravinda, Chow, Lee, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
Thin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. Among all the thin film technologies, CuInGaSe2 (CIGS) thin film solar cells have achieved the highest efficiency. However, the high price of photovoltaic (PV) modules has been a major factor impeding their growth for terrestrial applications. Reduction in cost of PV modules can be realized by several ways including choosing scalable processes amenable to large area...
Show moreThin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. Among all the thin film technologies, CuInGaSe2 (CIGS) thin film solar cells have achieved the highest efficiency. However, the high price of photovoltaic (PV) modules has been a major factor impeding their growth for terrestrial applications. Reduction in cost of PV modules can be realized by several ways including choosing scalable processes amenable to large area deposition, reduction in the materials consumption of active layers, and attaining faster deposition rates suitable for in-line processing. Selenization-sulfurization of sputtered metallic Cu-In-Ga precursors is known to be more amenable to large area deposition. Sputter-deposited molybdenum thin film is commonly employed as a back contact layer for CIGS solar cells. However, there are several difficulties in fabricating an optimum back contact layer. It is known that molybdenum thin films deposited at higher sputtering power and lower gas pressure exhibit better electrical conductivity. However, such films exhibit poor adhesion to the soda-lime glass substrate. On the other hand, films deposited at lower discharge power and higher pressure although exhibit excellent adhesion show lower electrical conductivity. Therefore, a multilayer structure is normally used so as to get best from the two deposition regimes. A multi-pass processing is not desirable in high volume production because it prolongs total production time and correspondingly increases the manufacturing cost. In order to make manufacturing compliant with an in-line deposition, it is justifiable having fewer deposition sequences. Thorough analysis of pressure and power relationship of film properties deposited at various parameters has been carried out. It has been shown that it is possible to achieve a molybdenum back contact of desired properties in a single deposition pass by choosing the optimum deposition parameters. It is also shown that the film deposited in a single pass is actually a composite structure. CIGS solar cells have successfully been completed on the developed single layer back contact with National Renewable Energy Laboratory (NREL) certified device efficiencies (>)11%. The optimization of parameters has been carried out in such a way that the deposition of back contact and metallic precursors can be carried out in identical pressure conditions which is essential for in-line deposition without a need for load-lock. It is know that the presence of sodium plays a very critical role during the growth of CIGS absorber layer and is beneficial for the optimum device performance. The effect of sodium location during the growth of the absorber layer has been studied so as to optimize its quantity and location in order to get devices with improved performance. NREL certified devices with efficiencies (>)12% have been successfully completed.
Show less - Date Issued
- 2012
- Identifier
- CFE0004559, ucf:49261
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004559
- Title
- Understanding the Role of Defects in the Radiation Response of Nanoceria.
- Creator
-
Kumar, Amit, Seal, Sudipta, Heinrich, Helge, Cho, Hyoung, Leuenberger, Michael, Zhai, Lei, Devanathan, Ram, University of Central Florida
- Abstract / Description
-
Nanoscale cerium oxide (nanoceria) have shown to possess redox active property , and has been widely studied for potential use in catalysis, chemical-mechanical planarization, bio-medical and solid oxide fuel cell (SOFC), etc. The redox state of nanoceria can be tuned by controlling the defects within the lattice and thus its physical and chemical properties. Perfect ceria lattice has fluorite structure and the research in last decade has shown that oxide and mixed oxide systems with...
Show moreNanoscale cerium oxide (nanoceria) have shown to possess redox active property , and has been widely studied for potential use in catalysis, chemical-mechanical planarization, bio-medical and solid oxide fuel cell (SOFC), etc. The redox state of nanoceria can be tuned by controlling the defects within the lattice and thus its physical and chemical properties. Perfect ceria lattice has fluorite structure and the research in last decade has shown that oxide and mixed oxide systems with pyrochlore and fluorite have better structural stability under high energy radiation. However, the current literature shows a limited number of studies on the effect of high energy radiation on nanoceria. This dissertation aims at understanding the phenomena occurring on irradiation of nanoceria lattice through experiments and atomistic simulation.At first, research was conducted to show the ability to control the defects in nanoceria lattice and understand the effect in tailoring its properties. The defect state of nanoceria was controlled by lower valence state rare earth dopant europium. Extensive materials characterization was done using high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy to understand the effect of dopant chemistry in modifying the chemical state of nanoceria. The defects originating in the lattice and redox state was quantified with increasing dopant concentration. The photoluminescence property of the control and doped nanoceria were evaluated with respect to its defect state. It was observed that defect plays an important role in modifying the photoluminescence property and that it can be tailored in a wide range to control the optical properties of nanoceria.Having seen the importance of defects in controlling the properties of nanoceria, further experiments were conducted to understand the effect of radiation in cerium oxide thin films of different crystallinity. The cerium oxide thin films were synthesized using oxygen plasma assisted molecular beam epitaxy (OPA-MBE) growth. The thin films were exposed to high energy radiation over a wide range of fluence (1013 to 1017 He+ ions/cm3). The current literature does not report the radiation effect in nanoceria in this wide range and upto this high fluence. The chemical state of the thin film was studied using in-situ XPS for each dose of radiation. It was found that radiation induced defects within both the ceria thin films and the valence state deviated further towards non-stoichiometry with radiation. The experimental results from cerium oxide thin film irradiation were studied in the light of simulation. Classical molecular dynamics and Monte Carlo simulation were used for designing the model ceria nanoparticle and studying the interaction of the lattice model with radiation. Electronic and nuclear stopping at the end of the range were modeled in ceria lattice using classical molecular dynamics to simulate the effect of radiation. It was seen that displacement damage was the controlling factor in defect production in ceria lattice. The simulation results suggested that nanosized cerium oxide has structural stability under radiation and encounters radiation damage due to the mixed valence states. A portion of the study will focus on observing the lattice stability of cerium with increasing concentration of the lower valence (Ce3+) within the lattice. With this current theoretical understanding of the role of redox state and defects during irradiation, the surfaces and bulk of nanoceria can be tailored for radiation stable structural applications.
Show less - Date Issued
- 2012
- Identifier
- CFE0004396, ucf:49375
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004396
- Title
- Nano-pipette as nanoparticle analyzer and capillary gated ion transistor.
- Creator
-
Rudzevich, Yauheni, Chow, Lee, Heinrich, Helge, Schulte, Alfons, Yuan, Jiann-Shiun, University of Central Florida
- Abstract / Description
-
The ability to precisely count inorganic and organic nanoparticles and to measure their size distribution plays a major role in various applications such as drug delivery, nanoparticles counting, and many others. In this work I present a simple resistive pulse method that allows translocations, counting, and measuring the size and velocity distribution of silica nanoparticles and liposomes with diameters from 50 nm to 250 nm. This technique is based on the Coulter counter technique, but has...
Show moreThe ability to precisely count inorganic and organic nanoparticles and to measure their size distribution plays a major role in various applications such as drug delivery, nanoparticles counting, and many others. In this work I present a simple resistive pulse method that allows translocations, counting, and measuring the size and velocity distribution of silica nanoparticles and liposomes with diameters from 50 nm to 250 nm. This technique is based on the Coulter counter technique, but has nanometer size pores. It was found that ionic current drops when nanoparticles enter the nanopore of a pulled micropipette, producing a clear translocation signal. Pulled borosilicate micropipettes with opening 50 ~ 350 nm were used as the detecting instrument. This method provides a direct, fast and cost-effective way to characterize inorganic and organic nanoparticles in a solution. In this work I also introduce a newly developed Capillary Ionic Transistor (CIT). It is presented as a nanodevice which provides control of ionic transport through nanochannel by gate voltage. CIT is Ionic transistor, which employs pulled capillary as nanochannel with a tip diameter smaller than 100 mm. We observed that the gate voltage applied to gate electrode, deposited on the outer wall of a capillary, affect a conductance of nanochannel, due to change of surface charge at the solution/capillary interface. Negative gate voltage corresponds to lower conductivity and positive gate increases conductance of the channel. This effect strongly depends on the size of the channel. In general, at least one dimension of the channel has to be small enough for electrical double layer to overlap.
Show less - Date Issued
- 2014
- Identifier
- CFE0005880, ucf:50882
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005880