Current Search: Ishigami, Marsahir (x)
View All Items
- Title
- Intracavity Laser Absorption Spectroscopy using Quantum Cascade Laser and Fabry-Perot Interferometer.
- Creator
-
Medhi, Gautam, Peale, Robert, Ishigami, Marsahir, Chernyak, Leonid, Delfyett, Peter, University of Central Florida
- Abstract / Description
-
Intracavity Laser Absorption Spectroscopy (ICLAS) at IR wavelengths offers an opportunity for spectral sensing of low vapor pressure compounds. We report here an ICLAS system design based on a quantum cascade laser (QCL) at THz (69.9 ?m) and IR wavelengths (9.38 and 8.1 ?m) with an open external cavity. The sensitivity of such a system is potentially very high due to extraordinarily long effective optical paths that can be achieved in an active cavity. Sensitivity estimation by numerical...
Show moreIntracavity Laser Absorption Spectroscopy (ICLAS) at IR wavelengths offers an opportunity for spectral sensing of low vapor pressure compounds. We report here an ICLAS system design based on a quantum cascade laser (QCL) at THz (69.9 ?m) and IR wavelengths (9.38 and 8.1 ?m) with an open external cavity. The sensitivity of such a system is potentially very high due to extraordinarily long effective optical paths that can be achieved in an active cavity. Sensitivity estimation by numerical solution of the laser rate equations for the THz QCL ICLAS system is determined. Experimental development of the external cavity QCL is demonstrated for the two IR wavelengths, as supported by appearance of fine mode structure in the laser spectrum. The 8.1 ?m wavelength exhibits a dramatic change in the output spectrum caused by the weak intracavity absorption of acetone. Numerical solution of the laser rate equations yields a sensitivity estimation of acetone partial pressure of 165 mTorr corresponding to ~ 200 ppm. The system is also found sensitive to the humidity in the laboratory air with an absorption coefficient of just 3 x 10-7 cm-1 indicating a sensitivity of 111 ppm. Reported also is the design of a compact integrated data acquisition and control system. Potential applications include military and commercial sensing for threat compounds such as explosives, chemical gases, biological aerosols, drugs, banned or invasive organisms, bio-medical breath analysis, and terrestrial or planetary atmospheric science.
Show less - Date Issued
- 2011
- Identifier
- CFE0004137, ucf:49040
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004137
- Title
- Spin Pumping in Lateral Double Quantum Dot Systems.
- Creator
-
Pelton, Sabine, Mucciolo, Eduardo, Ishigami, Marsahir, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
Electron transport in single lateral quantum dot (QD) and parallel lateral doublequantum dot (DQD) systems is modeled using semiclassical rate equations. The Zeemaneffect, in conjunction with resonant tunneling, is used to select the spin of electronsinvolved in transport. We show adiabatic spin pumping by periodic variation of thesystems' confining parameters, namely the quantum point contacts (QPCs) dictating theboundaries of the dots, and the gate voltage applied to each dot. The...
Show moreElectron transport in single lateral quantum dot (QD) and parallel lateral doublequantum dot (DQD) systems is modeled using semiclassical rate equations. The Zeemaneffect, in conjunction with resonant tunneling, is used to select the spin of electronsinvolved in transport. We show adiabatic spin pumping by periodic variation of thesystems' confining parameters, namely the quantum point contacts (QPCs) dictating theboundaries of the dots, and the gate voltage applied to each dot. The limitations ofadiabatic spin pumping are subsequently examined by counting the average spin pumpedper cycle when frequency and interdot capacitance are adjusted.
Show less - Date Issued
- 2012
- Identifier
- CFE0004334, ucf:49435
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004334
- Title
- Development of an Efficient Molecular Single-Electron Transport Spectroscopy.
- Creator
-
Rodriguez Garrigues, Alvar, Gonzalez Garcia, Enrique, Flitsiyan, Elena, Ishigami, Marsahir, University of Central Florida
- Abstract / Description
-
In this thesis I present a complete and detailed guide for the development process and fabrication of efficient single-electron transistors (SETs) and a better single-molecule magnets (SMMs) deposition yield. Starting from a commercial Si/SiO2 wafer I show the steps for the deposition of different layers to fabricate a SET as well as the improvements achieved in those for a completely functional SET device. The development process is based on a combination of optical lithography and e-beam...
Show moreIn this thesis I present a complete and detailed guide for the development process and fabrication of efficient single-electron transistors (SETs) and a better single-molecule magnets (SMMs) deposition yield. Starting from a commercial Si/SiO2 wafer I show the steps for the deposition of different layers to fabricate a SET as well as the improvements achieved in those for a completely functional SET device. The development process is based on a combination of optical lithography and e-beam lithography with metal deposition in ultra-high vacuum. The improvements involve a better conductance in the Al gate component, with a controlled formation of the superficial oxide layer and a faster feedback electromigration-induced breaking of Au nanowires for the creation of nanogaps at room temperature. The gate component is improved by increasing its thickness and exposing it to plasma oxidation for the complete oxidation of its surface. The nanowire breaking is realized at room temperature to make use of the surface tension of Au, which, after a previous feedback procedure, eventually opens the final gap in the nanowire. Finally, I demonstrate a new technique that allows increasing the yield of having a SMM connected in the nanowire gap. This new technique is based on monitoring the resistance of the broken nanowires during the SMM deposition from a controlled liquid solution at room temperature. When the resistance ((>)G? for open gaps) drops to values below Mega-ohms (characteristic resistance of a molecule bridging the gap) for a number of nanowires in the chip, the device is then ready for low temperature measurements.
Show less - Date Issued
- 2013
- Identifier
- CFE0004742, ucf:49775
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004742
- Title
- Optical and Magnetic properties of nanostructures.
- Creator
-
Nayyar, Neha, Rahman, Talat, Stolbov, Sergey, Ishigami, Marsahir, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
In this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms...
Show moreIn this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms in the chain is larger than 5. The plasmon energy decreases with further with increasing number of atoms (N) and is almost N-independent when N is larger than 20. In the case of coupled pure chains it was found that the plasmon energy grows as square root of the number of chains, and reaches the visible light energy 1.8eV for the case of three parallel chains. Doping of pure Au chains with transition-metal atoms leads in many cases to formation of additional plasmon peaks close in energy to the undoped chain peak. This peak comes from the local charge oscillations around the potential minima created by the impurity atom. The effect is especially pronounced for Ni-doped chains. In the multiple-chain case, we find an unusual hybridization of the two different (local and collective) plasmon modes. Changing the chain size and chemical composition in the array can be used to tune the absorption properties of nanochains. The case of coupled finite (plasmonic) and infinite (semiconductor, excitonic) chains was also analyzed. We find that one can get significant exciton-plasmon coupling, including hybridized modes and energy transfer between these excitations, in the case of doped chains. The impurity atoms are found to work as attraction centers for excitons. This can be used to transform the exciton energy into local plasmon oscillations with consequent emission at desired point (at which the impurity is located). In a related study the optical properties of single layer MoS2 was analyzed with a focus on the possibility of ultrafast emission, In particular, it was found that the system can emit in femto-second regime under ultrafast laser pulse excitations. Finally, we have studied the magnetic properties of FeRh nanostructures to probe whether there is an antiferromagnetic to ferromagnetic transition as a function of the ratio of Fe and Rh atoms, as in the bulk alloy.. Surprisingly, the ferromagnetic phase is found to be much more stable for these nanostructures as compared to the bulk, which suggests that band-type effects may be responsible for this transition in the bulk, i.e. the transition cannot be described in terms of modification of the Heisenberg model parameters.
Show less - Date Issued
- 2014
- Identifier
- CFE0005221, ucf:50650
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005221
- Title
- Electronic properties and atomic scale microscopy of two dimensional materials: graphene and molybdenum disulfide.
- Creator
-
Katoch, Jyoti, Ishigami, Marsahir, Mucciolo, Eduardo, Del Barco, Enrique, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
Novel two dimensional nanoscale materials like graphene and metal dichalcogenides (MX2) have attracted the attention of the scientific community, due to their rich physics and wide range of potential applications.It has been shown that novel graphene based transparent conductors and radiofrequency transistors are competitive with the existing technologies. Graphene's properties are influenced sensitively by adsorbates and substrates. As such not surprisingly, physical properties of graphene...
Show moreNovel two dimensional nanoscale materials like graphene and metal dichalcogenides (MX2) have attracted the attention of the scientific community, due to their rich physics and wide range of potential applications.It has been shown that novel graphene based transparent conductors and radiofrequency transistors are competitive with the existing technologies. Graphene's properties are influenced sensitively by adsorbates and substrates. As such not surprisingly, physical properties of graphene are found to have a large variability, which cannot be controlled at the synthesis level, reducing the utility of graphene. As a part of my doctorate dissertation, I have developed atomic hydrogen as a novel technique to count the scatterers responsible for limiting the carrier mobility of graphene field effect transistors on silicon oxide (SiO2) and identified that charged impurities to be the most dominant scatterer. This result enables systematic reduction of the detrimental variability in device performance of graphene. Such sensitivity to substrates also gives an opportunity for engineering device properties of graphene using substrate interaction and atomic scale vacancies. Stacking graphene on hexagonal boron-nitride (h-BN) gives rise to nanoscale periodic potential, which influences its electronic graphene. Using state-of-the-art atomic-resolution scanning probe microscope, I correlated the observed transport properties to the substrate induced extrinsic potentials. Finally in efforts to exploit graphene's sensitivity to discover new sensor technologies, I have explored noncovalentfunctionalization of graphene using peptides.Molybdenum disulfide (MoS2) exhibits thickness dependent bandgap. Transistors fabricated from single layer MoS2 have shown a high on/off ratio. It is expected that ad-atom engineering can be used to induce on demand a metal-semiconductor transition in MoS2. In this direction, I have explored controlled/reversible fluorination and hydrogenation of monolayer MoS2 to potentially derive a full range of integrated circuit technology. The in-depth characterization of the samples is carried out by Raman/photoluminescence spectroscopy and scanning tunneling microscopy.
Show less - Date Issued
- 2014
- Identifier
- CFE0005190, ucf:50614
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005190
- Title
- First Principle Studies of Cu-Carbon Nanotube Hybrid Structures with Emphasis on the Electronic Structures and the Transport Properties.
- Creator
-
Yang, Chengyu, Chen, Quanfang, Leuenberger, Michael, Coffey, Kevin, Ishigami, Marsahir, Fang, Jiyu, University of Central Florida
- Abstract / Description
-
Carbon nanotubes have been regarded as ideal building blocks for nanoelectronics and multifunctional nanocomposites due to their exceptional strength, stiffness, flexibility, as well as their excellent electrical properties. However, carbon nanotube itself has limitations to fulfill the practical application needs: 1) an individual carbon nanotube has a low density of states at the Fermi level, and thus its conductivity is only comparable to moderate metals but lower than that of copper. 2)...
Show moreCarbon nanotubes have been regarded as ideal building blocks for nanoelectronics and multifunctional nanocomposites due to their exceptional strength, stiffness, flexibility, as well as their excellent electrical properties. However, carbon nanotube itself has limitations to fulfill the practical application needs: 1) an individual carbon nanotube has a low density of states at the Fermi level, and thus its conductivity is only comparable to moderate metals but lower than that of copper. 2) Metallic and semiconducting nanotubes are inherently mixed together from the synthesis, and the selection/separation is very difficult with very low efficiency. 3) Carbon nanotubes alone cannot be used in practical application and a bonding material is normally needed as the join material for actual devices. In this work, we fundamentally explored the possibility that metals (Cu, Al) could tailor carbon nanotube's electronic structure and even transit it from semiconducting to metallic, thus skipping the selection between the metallic and the semiconducting CNTs. We also found out a novel way to enhance a semiconducting CNT system's conductance even better than that of a metallic CNT system. All these researches are done under density functional theory (DFT) frame in conjunction with non-equilibrium Green functions (NEGF).At first we studied the adsorbed copper's influence on the electronic properties of CNT (10, 0) and CNT (5, 5). Results indicate that both the Density of States (DOS) and the transmission coefficients of CNT (5,5) /Cu have been increased. For CNT (10,0)/Cu, the band gap has been shrank, which means the improved conducting properties by the incorporation of copper . As a further case, semiconductor SWCNT (10, 0) with more adsorbed copper chains outside has been studied. 1, 4, 5 and 6 Cu chains have been added onto the carbon nanotube (10,0), and the adsorption of 6 Cu chains finally lead to the transform of the system from semiconducting to metallic. Considering the confining effect, the case that Cu filled into CNT (10, 0) is also studied. It is found that the filled copper chains could modify the system to be metallic more efficiently than the adsorbed Cu chain. Similarly, Al adsorbed on CNT (10, 0) is also studied, and it is found that Al has a better efficiency than copper in tuning the semiconducting CNT to metallic. The existing chemical bonds between the CNT and Al atoms may account for this higher efficiency. In addition, the resultant conductivity of the Al/CNT system is better than that of Cu/CNT system. The Cu/CNT (5,5)+Cu/Cu junction, as another realistic device setup, has been studied in terms of the conductance. The results show that the incorporation of Cu would enhance the conductance of the Cu/CNT/Cu system due to the interaction between Cu and the CNT.
Show less - Date Issued
- 2013
- Identifier
- CFE0005280, ucf:50561
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005280