Current Search: Jabalameli, Amirhossein (x)
View All Items
- Title
- Characterization of a Spiking Neuron Model via a Linear Approach.
- Creator
-
Jabalameli, Amirhossein, Behal, Aman, Hickman, James, Haralambous, Michael, University of Central Florida
- Abstract / Description
-
In the past decade, characterizing spiking neuron models has been extensively researched as anessential issue in computational neuroscience. In this thesis, we examine the estimation problemof two different neuron models. In Chapter 2, We propose a modified Izhikevich model withan adaptive threshold. In our two-stage estimation approach, a linear least squares method anda linear model of the threshold are derived to predict the location of neuronal spikes. However,desired results are not...
Show moreIn the past decade, characterizing spiking neuron models has been extensively researched as anessential issue in computational neuroscience. In this thesis, we examine the estimation problemof two different neuron models. In Chapter 2, We propose a modified Izhikevich model withan adaptive threshold. In our two-stage estimation approach, a linear least squares method anda linear model of the threshold are derived to predict the location of neuronal spikes. However,desired results are not obtained and the predicted model is unsuccessful in duplicating the spikelocations. Chapter 3 is focused on the parameter estimation problem of a multi-timescale adaptivethreshold (MAT) neuronal model. Using the dynamics of a non-resetting leaky integrator equippedwith an adaptive threshold, a constrained iterative linear least squares method is implemented tofit the model to the reference data. Through manipulation of the system dynamics, the thresholdvoltage can be obtained as a realizable model that is linear in the unknown parameters. This linearlyparametrized realizable model is then utilized inside a prediction error based framework to identifythe threshold parameters with the purpose of predicting single neuron precise firing times. Thisestimation scheme is evaluated using both synthetic data obtained from an exact model as well asthe experimental data obtained from in vitro rat somatosensory cortical neurons. Results show theability of this approach to fit the MAT model to different types of reference data.
Show less - Date Issued
- 2015
- Identifier
- CFE0005958, ucf:50803
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005958
- Title
- AUTONOMOUS ROBOTIC GRASPING IN UNSTRUCTURED ENVIRONMENTS.
- Creator
-
Jabalameli, Amirhossein, Behal, Aman, Haralambous, Michael, Pourmohammadi Fallah, Yaser, Boloni, Ladislau, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
A crucial problem in robotics is interacting with known or novel objects in unstructured environments. While the convergence of a multitude of research advances is required to address this problem, our goal is to describe a framework that employs the robot's visual perception to identify and execute an appropriate grasp to pick and place novel objects. Analytical approaches explore for solutions through kinematic and dynamic formulations. On the other hand, data-driven methods retrieve grasps...
Show moreA crucial problem in robotics is interacting with known or novel objects in unstructured environments. While the convergence of a multitude of research advances is required to address this problem, our goal is to describe a framework that employs the robot's visual perception to identify and execute an appropriate grasp to pick and place novel objects. Analytical approaches explore for solutions through kinematic and dynamic formulations. On the other hand, data-driven methods retrieve grasps according to their prior knowledge of either the target object, human experience, or through information obtained from acquired data. In this dissertation, we propose a framework based on the supporting principle that potential contacting regions for a stable grasp can be foundby searching for (i) sharp discontinuities and (ii) regions of locally maximal principal curvature in the depth map. In addition to suggestions from empirical evidence, we discuss this principle by applying the concept of force-closure and wrench convexes. The key point is that no prior knowledge of objects is utilized in the grasp planning process; however, the obtained results show thatthe approach is capable to deal successfully with objects of different shapes and sizes. We believe that the proposed work is novel because the description of the visible portion of objects by theaforementioned edges appearing in the depth map facilitates the process of grasp set-point extraction in the same way as image processing methods with the focus on small-size 2D image areas rather than clustering and analyzing huge sets of 3D point-cloud coordinates. In fact, this approach dismisses reconstruction of objects. These features result in low computational costs and make it possible to run the proposed algorithm in real-time. Finally, the performance of the approach is successfully validated by applying it to the scenes with both single and multiple objects, in both simulation and real-world experiment setups.
Show less - Date Issued
- 2019
- Identifier
- CFE0007892, ucf:52757
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007892