Current Search: Kazemi Jahromi, Ali (x)
View All Items
- Title
- Analysis and Design of Non-Hermitian Optical Systems.
- Creator
-
Kazemi Jahromi, Ali, Abouraddy, Ayman, Christodoulides, Demetrios, Likamwa, Patrick, Chini, Michael, University of Central Florida
- Abstract / Description
-
From a very general perspective, optical devices can be viewed as constructions based on the spatial engineering of the optical index of refraction. Sculpting the real part of the refractive index produces the wide variety of known passive optical devices, such as waveguides, resonators, gratings, among a plethora of other possibilities for managing the transport of light. Less attention has been directed to engineering the imaginary part of the refractive index (-) that is responsible for...
Show moreFrom a very general perspective, optical devices can be viewed as constructions based on the spatial engineering of the optical index of refraction. Sculpting the real part of the refractive index produces the wide variety of known passive optical devices, such as waveguides, resonators, gratings, among a plethora of other possibilities for managing the transport of light. Less attention has been directed to engineering the imaginary part of the refractive index (-) that is responsible for optical gain and absorption (-) in conjunction with the real part of the refractive index. Optical gain is the building block of amplifiers and lasers, while optical absorption is exploited in photovoltaic devices, photodetectors, and as dopants in lasing media. Recently, the field of non-Hermitian photonics has emerged in which the new opportunities afforded by the spatial engineering of the optical gain and loss in an optical device are being exploited. Indeed, the judicious design of such active devices can result in counterintuitive physical effects, new optical functionalities that enable unexpected applications, and enhanced performance of existing devices.In this work, we have theoretically and experimentally demonstrated four different non-Hermitian arrangements exhibiting novel non-trivial features. First, we show that the direction of energy flow can be controlled inside an active cavity by tuning the optical gain. Reversing the direction of the energy flow within the cavity (-) such that Poynting's vector points backwards towards the source (-) takes place when the cavity gain exceeds a certain threshold value, which we have named 'Poynting's threshold'. To realize this effect, we have employed a fiber-based arrangement that allows for unambiguous determining of the direction of the energy flow within the cavity. Second, we have studied the implication of Poynting's threshold with respect to spectral reflection from an active cavity. Surprisingly, the reflection at Poynting's threshold becomes spectrally flat and is guaranteed to attain unity reflectivity while maintaining non-zero transmission. In other words, at Poynting's threshold, the cavity becomes a 'transparent perfect mirror'. We have realized this effect in an on-chip active waveguide device and in an optical-fiber-based system. Third, we have examined a parity-time (PT) symmetric fiber-based cavity consisting of two coupled sub-cavities, one of which contains gain and the other loss. In contrast to all previous on-chip PT-symmetric micro-devices, the exotic features of such a system may be expected to vanish when the length of the cavity is extremely large (exceeding 1 km in our experiments) due to the strong fluctuations in the optical phase. Nevertheless, we have found that some of the central features of such a system survive; e.g., loss-induced enhancement of lasing power is still observable. Finally, we have demonstrated (-) for the first time (-) the interferometric perfect absorption of light in a weakly absorbing (erbium-doped) fiber system. Additionally, we verified that this coherent effect is the most efficient configuration with respect to utilizing the absorbing species in the medium.
Show less - Date Issued
- 2018
- Identifier
- CFE0007206, ucf:52271
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007206
- Title
- Highly-Sensitive Stoichiometric Analysis of YAG Ceramics Using Laser-Induced Breakdown Spectroscopy (LIBS).
- Creator
-
Kazemi Jahromi, Ali, Gaume, Romain, Richardson, Martin, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Transparent ceramics are an important class of optical materials with applications in high-strength windows, radiation detectors and high-power lasers. Despite the many successful developments of the past decades, their challenging fabrication still needs to be perfected to achieve a better consistency in optical quality. In particular, ternary phase materials such as Yttrium Aluminum Garnet (YAG, Y3Al5O12), a long standing high-power laser host, require a precise control of stoichiometry,...
Show moreTransparent ceramics are an important class of optical materials with applications in high-strength windows, radiation detectors and high-power lasers. Despite the many successful developments of the past decades, their challenging fabrication still needs to be perfected to achieve a better consistency in optical quality. In particular, ternary phase materials such as Yttrium Aluminum Garnet (YAG, Y3Al5O12), a long standing high-power laser host, require a precise control of stoichiometry, often beyond the precision of current analytical techniques, in order to reduce scattering losses and the presence of deleterious point defects. This work explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for the quantitative analysis of ceramic compositions near stoichiometry. We have designed a compact and automated LIBS system to determine the plasma composition of sintered mixtures of Y2O3-Al2O3 near the garnet composition. The performance of our setup is evaluated and compared to conventional techniques. Optimized conditions for the acquisition of plasma emission spectra are discussed and the intensity ratios of Y+ and Al in the 300 to 400nm spectral range are analyzed using simple plasma models. The results show that, for the selected parameters of our experiments, the fluctuations in plasma temperature are minimal, and the stability of the plasma is improved. Current results show that ceramic compositions can be resolved within 1 at% in oxide and several suggestions are proposed to further increase the accuracy and precision of the method.
Show less - Date Issued
- 2014
- Identifier
- CFE0005191, ucf:50624
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005191