Current Search: Kutkut, Nasser (x)
View All Items
- Title
- MICROEQUITY: A NEW MODEL FOR MICROFINANCE IN THE U.S.
- Creator
-
Ball, Joseph, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
Most of the research on microfinance focuses on the microloan activities of microfinance institutions such as Grameen Bank of Bangladesh and Banco Sol of South America. These institutions make small loans to the poor to help them engage in income generating activities. Many organizations have tried to translate this practice to the United States, but due to fundamental differences between the advanced U.S. business environment and that found in the developing world, such attempts have been...
Show moreMost of the research on microfinance focuses on the microloan activities of microfinance institutions such as Grameen Bank of Bangladesh and Banco Sol of South America. These institutions make small loans to the poor to help them engage in income generating activities. Many organizations have tried to translate this practice to the United States, but due to fundamental differences between the advanced U.S. business environment and that found in the developing world, such attempts have been met with limited success. There is a substantial amount of research on microfinance institutions and activities in the U.S., however almost all of the activity is focused on making microloans. In this paper, a new method for pursuing microfinance, microequity, is put forward as a potential candidate for successfully and sustainably implementing microfinance in the United States. The preliminary conclusions reached in this paper, based on research into traditional microfinance internationally and in the U.S. as well as research on the pros and cons of traditional equity and debt financing, show that a microequity model for microfinance could offer a solution to the difficulties that have prevented microfinance from being successfully and sustainably implemented in the United States.
Show less - Date Issued
- 2013
- Identifier
- CFH0004409, ucf:45139
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004409
- Title
- HUMAN CAPITAL EFFECT ON SECOND GENERATION IMMIGRANT ENTREPRENEURS.
- Creator
-
Mazahaem Flores, Ali, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
Interest in entrepreneurship has increased in the past few years as more schools are beginning to incorporate subject and degrees specializing in the area as well as individuals mobilizing into an entrepreneurial lifestyle due to the lack of opportunities in the standard workplace environment. Historically, immigrants have made up a large majority of entrepreneurs and it has been their primary way of upward mobility in society. The boom in high tech start-ups and other small businesses in the...
Show moreInterest in entrepreneurship has increased in the past few years as more schools are beginning to incorporate subject and degrees specializing in the area as well as individuals mobilizing into an entrepreneurial lifestyle due to the lack of opportunities in the standard workplace environment. Historically, immigrants have made up a large majority of entrepreneurs and it has been their primary way of upward mobility in society. The boom in high tech start-ups and other small businesses in the last decade have primarily been driven by children of immigrants. As a result of these recent trends this study analyses the foreign born children of immigrants and their entrepreneurial capacity. The intent of this study is to find to what extent human capital affects the entrepreneurial capacity of immigrant children, if any. By analyzing the Theory of Human Capital in Entrepreneurship and its main variables, the study aims to find their level of human capital. Through the gathering of recent population data, analysis of research journals, publications and books, we evaluate the level of human capital and how it affects the capacity of the individual. Historically, evidence has shown a correlation between the two and we hope to contribute to the research and better understand its role in our subject matter as well as bring more awareness to a topic that lacks information.
Show less - Date Issued
- 2013
- Identifier
- CFH0004401, ucf:45145
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004401
- Title
- Ultra-Efficient Cascaded Buck-Boost Converter.
- Creator
-
Ashok Pise, Anirudh, Batarseh, Issa, Mikhael, Wasfy, Sun, Wei, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
This thesis presents various techniques to achieve ultra-high-efficiency for Cascaded-Buck-Boost converter. A rigorous loss model with component non linearity is developed and validated experimentally. An adaptive-switching-frequency control is discussed to optimize weighted efficiency. Some soft-switching techniques are discussed. A low-profile planar-nanocrystalline inductor is developed and various design aspects of core and copper design are discussed. Finite-element-method is used to...
Show moreThis thesis presents various techniques to achieve ultra-high-efficiency for Cascaded-Buck-Boost converter. A rigorous loss model with component non linearity is developed and validated experimentally. An adaptive-switching-frequency control is discussed to optimize weighted efficiency. Some soft-switching techniques are discussed. A low-profile planar-nanocrystalline inductor is developed and various design aspects of core and copper design are discussed. Finite-element-method is used to examine and visualize the inductor design. By implementing the above, a peak efficiency of over 99.2 % is achieved with a power density of 6 kW/L and a maximum profile height of 7 mm is reported. This converter finds many applications because of its versatility: allowing bidirectional power flow and the ability to step-up or step-down voltages in either direction.
Show less - Date Issued
- 2017
- Identifier
- CFE0007277, ucf:52181
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007277
- Title
- A NEW QUASI RESONANT DC-LINK FOR PHOTOVOLTAIC MICRO-INVERTERS.
- Creator
-
Grishina, Anna, Batarseh, Issa, Shen, Zheng, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
PV Inverters have the task of tracking the maximum power point (MPP), and regulating the solar energy generation to this optimal operation point. The second task is the conversion of direct current produced by the solar modules into alternating current compatible with the grid.A new inverter approach such as a single phase micro inverter is emerging aimed to overcome some of the challenges of centralized inverters. As a counterpart to the central inverter, a micro inverter is a small compact...
Show morePV Inverters have the task of tracking the maximum power point (MPP), and regulating the solar energy generation to this optimal operation point. The second task is the conversion of direct current produced by the solar modules into alternating current compatible with the grid.A new inverter approach such as a single phase micro inverter is emerging aimed to overcome some of the challenges of centralized inverters. As a counterpart to the central inverter, a micro inverter is a small compact module attached directly to each solar panel.To provide for the constantly increasing demand for a small size, light weight and high efficiency micro inverter, soft switching power conversion technologies have been employed. The switching stress can be minimized by turning on/off each switch when the voltage across it or the current through it is zero at the switching transition. With the addition of auxiliary circuits such as auxiliary switches and LC resonant components the so called soft switching condition can be achieved for semiconductor devices.Four main purposes to investigate the soft switching technologies for single-phase micro-inverter are:(1) to improve overall efficiency by creating the favorable operating conditions for power devices using soft-switching techniques;(2) to shrink the reactive components by pushing the switching frequency to a higher range with decent efficiency.(3) to ensure soft switching does not exacerbate inverter performance, meaning all conventional PWM algorithms can be applied in order to meet IEEE standards.(4) to investigate which soft switching techniques offer the cheapest topology and control strategy as cost and simple control are crucial for low power inverter applications.An overview on the existing soft-switching inverter topologies for single phase inverter technology is summarized.A new quasi resonant DC link that allows for pulse- width- modulation (PWM) is presented in this thesis. The proposed quasi resonant DC link provides zero-voltage switching (ZVS) condition for the main devices by resonating the DC-link voltage to zero via three auxiliary switches and LC components. The operating principle and mode analysis are given. The simulation was carried out to verify the proposed soft switching technique. A 150W 120VAC single-phase prototype was built. The experimental results show that the soft switching for four main switches can be realized under different load conditions and the peak efficiency can reach 95.6%. The proposed quasi DC link can be applied to both single-phase and three-phase DC/AC micro inverter.In order to boost efficiency and increase power density it is important to evaluate the power loss mechanism in each stage of operation of the micro inverter. Using the datasheet parameters of the commercially available semiconductor switches, conduction and switching losses were estimated. This thesis presents a method to analyze power losses of the new resonant DC link inverter which alleviates topology optimization and MOSFET selection. An analytical, yet simple model for calculating the conduction and switching losses was developed. With this model a rough calculation of efficiency can be done, which helps to speed up the design process and to increase efficiency.
Show less - Date Issued
- 2012
- Identifier
- CFE0004379, ucf:49397
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004379
- Title
- Virtual resistance based DC-link voltage regulation for Microgrid DG inverters.
- Creator
-
Shinde, Siddhesh, Batarseh, Issa, Mikhael, Wasfy, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
This research addresses the practical issues faced by Microgrid Distributed Generation (DG) inverters when operated in islanded mode. A Microgrid (MG) is an interconnection of domestic distributed loads and low voltage distributed energy sources such as micro-turbine, wind-turbine, PVs and storage devices. These energy sources are power limited in nature and constrain the operation of DG inverters to which they are coupled. DG inverters operated in islanded mode should maintain the power...
Show moreThis research addresses the practical issues faced by Microgrid Distributed Generation (DG) inverters when operated in islanded mode. A Microgrid (MG) is an interconnection of domestic distributed loads and low voltage distributed energy sources such as micro-turbine, wind-turbine, PVs and storage devices. These energy sources are power limited in nature and constrain the operation of DG inverters to which they are coupled. DG inverters operated in islanded mode should maintain the power balance between generation and demand. If DG inverter operating in islanded mode drains its source power below a certain limit or if it is incapable of supplying demanded power due to its hardware rating, it turns on its safety mechanism and isolates itself from the MG. This, in turn, increases the power demand on the rest of the DG units and can have a catastrophic impact on the viability of the entire system. This research presents a Virtual Resistance based DC Link Voltage Regulation technique which will allow DG inverters to continue to source their available power even when the power demand by the load is higher than their capacity without shutting off and isolating from the MG.
Show less - Date Issued
- 2016
- Identifier
- CFE0006503, ucf:51403
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006503
- Title
- Design and Implementation of PV-Firming and Optimization Algorithms For Three-Port Microinverters.
- Creator
-
Alharbi, Mahmood, Batarseh, Issa, Haralambous, Michael, Mikhael, Wasfy, Yuan, Jiann-Shiun, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
With the demand increase for electricity, the ever-increasing awareness of environmental issues, coupled with rolling blackouts, the role of renewable energy generation is increasing along with the thirst for electricity and awareness of environmental issues. This dissertation proposes the design and implementation of PV-firming and optimization algorithms for three-port microinverters.Novel strategies are proposed in Chapters 3 and 4 for harvesting stable solar power in spite of intermittent...
Show moreWith the demand increase for electricity, the ever-increasing awareness of environmental issues, coupled with rolling blackouts, the role of renewable energy generation is increasing along with the thirst for electricity and awareness of environmental issues. This dissertation proposes the design and implementation of PV-firming and optimization algorithms for three-port microinverters.Novel strategies are proposed in Chapters 3 and 4 for harvesting stable solar power in spite of intermittent solar irradiance. PV firming is implemented using a panel-level three-port grid-tied PV microinverter system instead of the traditional high-power energy storage and management system at the utility scale. The microinverter system consists of a flyback converter and an H-bridge inverter/rectifier, with a battery connected to the DC-link. The key to these strategies lies in using static and dynamic algorithms to generate a smooth PV reference power. The outcomes are applied to various control methods to charge/discharge the battery so that a stable power generation profile is obtained. In addition, frequency-based optimization for the inverter stage is presented.One of the design parameters of grid-tied single-phase H-bridge sinusoidal pulse-width modulation (SPWM) microinverters is switching frequency. The selection of the switching frequency is a tradeoff between improving the power quality by reducing the total harmonic distortion (THD), and improving the efficiency by reducing the switching loss. In Chapter 5, two algorithms are proposed for optimizing both the power quality and the efficiency of the microinverter. They do this by using a frequency tracking technique that requires no hardware modification. The first algorithm tracks the optimal switching frequency for maximum efficiency at a given THD value. The second maximizes the power quality of the H-bridge micro-inverter by tracking the switching frequency that corresponds to the minimum THD.Real-time PV intermittency and usable capacity data were evaluated and then further analyzed in MATLAB/SIMULINK to validate the PV firming control. The proposed PV firming and optimization algorithms were experimentally verified, and the results evaluated. Finally, Chapter 6 provides a summary of key conclusions and future work to optimize the presented topology and algorithms.
Show less - Date Issued
- 2018
- Identifier
- CFE0007305, ucf:52166
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007305
- Title
- Advanced Control Techniques for Efficiency and Power Density Improvement of a Three-Phase Microinverter.
- Creator
-
Tayebi, Seyed Milad, Batarseh, Issa, Mikhael, Wasfy, Sundaram, Kalpathy, Sun, Wei, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
Inverters are widely used in photovoltaic (PV) based power generation systems. Most of these systems have been based on medium to high power string inverters. Microinverters are gaining popularity over their string inverter counterparts in PV based power generation systems due to maximized energy harvesting, high system reliability, modularity, and simple installation. They can be deployed on commercial buildings, residential rooftops, electric poles, etc and have a huge potential market....
Show moreInverters are widely used in photovoltaic (PV) based power generation systems. Most of these systems have been based on medium to high power string inverters. Microinverters are gaining popularity over their string inverter counterparts in PV based power generation systems due to maximized energy harvesting, high system reliability, modularity, and simple installation. They can be deployed on commercial buildings, residential rooftops, electric poles, etc and have a huge potential market. Emerging trend in power electronics is to increase power density and efficiency while reducing cost. A powerful tool to achieve these objectives is the development of an advanced control system for power electronics. In low power applications such as solar microinverters, increasing the switching frequency can reduce the size of passive components resulting in higher power density. However, switching losses and electromagnetic interference (EMI) may increase as a consequence of higher switching frequency. Soft switching techniques have been proposed to overcome these issues. This dissertation presents several innovative control techniques which are used to increase efficiency and power density while reducing cost. Dynamic dead time optimization and dual zone modulation techniques have been proposed in this dissertation to significantly improve the microinverter efficiency. In dynamic dead time optimization technique, pulse width modulation (PWM) dead times are dynamically adjusted as a function of load current to minimize MOSFET body diode conduction time which reduces power dissipation. This control method also improves total harmonic distortion (THD) of the inverter output current. To further improve the microinverter efficiency, a dual-zone modulation has been proposed which introduces one more soft-switching transition and lower inductor peak current compared to the other boundary conduction mode (BCM) modulation methods.In addition, an advanced DC link voltage control has been proposed to increase the microinverter power density. This concept minimizes the storage capacitance by allowing greater voltage ripple on the DC link. Therefore, the microinverter reliability can be significantly increased by replacing electrolytic capacitors with film capacitors. These control techniques can be readily implemented on any inverter, motor controller, or switching power amplifier. Since there is no circuit modification involved in implementation of these control techniques and can be easily added to existing controller firmware, it will be very attractive to any potential licensees.
Show less - Date Issued
- 2017
- Identifier
- CFE0007136, ucf:52328
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007136
- Title
- Analysis, Design and Efficiency Optimization of Power Converters for Renewable Energy Applications.
- Creator
-
Chen, Xi, Batarseh, Issa, Zhou, Qun, Mikhael, Wasfy, Sun, Wei, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
DC-DC power converters are widely used in renewable energy-based power generation systems due to the constant demand of high-power density and high-power conversion efficiency. DC-DC converters can be classified into non-isolated and isolated topologies. For non-isolated topologies, they are typically derived from buck, boost, buck-boost or forth order (such as Cuk, Sepic and Zeta) converters and they usually have relatively higher conversion efficiency than isolated topologies. However, with...
Show moreDC-DC power converters are widely used in renewable energy-based power generation systems due to the constant demand of high-power density and high-power conversion efficiency. DC-DC converters can be classified into non-isolated and isolated topologies. For non-isolated topologies, they are typically derived from buck, boost, buck-boost or forth order (such as Cuk, Sepic and Zeta) converters and they usually have relatively higher conversion efficiency than isolated topologies. However, with the applications where the isolation is required, either these topologies should be modified, or alternative topologies are needed. Among various isolated DC-DC converters, the LLC resonant converter is an attractive selection due to its soft switching, isolation, wide gain range, high reliability, high power density and high conversion efficiency.In low power applications, such as battery chargers and solar microinverters, increasing the switching frequency can reduce the size of passive components and reduce the current ripple and root-mean-square (RMS) current, resulting in higher power density and lower conduction loss. However, switching losses, gate driving loss and electromagnetic interference (EMI) may increase as a consequence of higher switching frequency. Therefore, switching frequency modulation, components optimization and soft switching techniques have been proposed to overcome these issues and achieve a tradeoff to reach the maximum conversion efficiency.This dissertation can be divided into two categories: the first part is focusing on the well-known non-isolated bidirectional cascaded-buck-boost converter, and the second part is concentrating on the isolated dual-input single resonant tank LLC converter. Several optimization approaches have been presented to improve the efficiency, power density and reliability of the power converters. In the first part, an adaptive switching frequency modulation technique has been proposed based on the precise loss model in this dissertation to increase the efficiency of the cascaded-buck-boost converter. In adaptive switching frequency modulation technique, the optimal switching frequency for the cascaded-buck-boost converter is adaptively selected to achieve the minimum total power loss. In addition, due to the major power losses coming from the inductor, a new low profile nanocrystalline inductor filled with copper foil has been designed to significantly reduce the core loss and winding loss. To further improve the efficiency of the cascaded-buck-boost converter, the adaptive switching frequency modulation technique has been applied on the converter with designed nanocrystalline inductor, in which the peak efficiency of the converter can break the 99% bottleneck.In the second part, a novel dual-input DC-DC converter is developed according to the LLC resonant topology. This design concept minimizes the circuit components by allowing single resonant tank to interface with multiple input sources. Based on different applications, the circuit configuration for the dual-input LLC converter will be a little different. In order to improve the efficiency of the dual-input LLC converter, the semi-active rectifiers have been used on the transformer secondary side to replace the low-side bridge diodes. In this case, higher magnetizing inductance can be selected while maintaining the same voltage gain. Besides, a burst-mode control strategy has been proposed to improve the light load and very light load efficiency of the dual- input LLC converter. This control strategy is able to be readily implemented on any power converter since it can be achieved directly through firmware and no circuit modification is needed in implementation of this strategy.
Show less - Date Issued
- 2019
- Identifier
- CFE0007612, ucf:52531
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007612
- Title
- Analysis and Design Optimization of Resonant DC-DC Converters.
- Creator
-
Fang, Xiang, Shen, Zheng, Batarseh, Issa, Mikhael, Wasfy, Wu, Xinzhang, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
The development in power conversion technology is in constant demand of high power efficiency and high power density. The DC-DC power conversion is an indispensable stage for numerous power supplies and energy related applications. Particularly, in PV micro-inverters and front-end converter of power supplies, great challenges are imposed on the power performances of the DC-DC converter stage, which not only require high efficiency and density but also the capability to regulate a wide...
Show moreThe development in power conversion technology is in constant demand of high power efficiency and high power density. The DC-DC power conversion is an indispensable stage for numerous power supplies and energy related applications. Particularly, in PV micro-inverters and front-end converter of power supplies, great challenges are imposed on the power performances of the DC-DC converter stage, which not only require high efficiency and density but also the capability to regulate a wide variation range of input voltage and load conditions. The resonant DC-DC converters are good candidates to meet these challenges with the advantages of achieving soft switching and low EMI. Among the resonant converters, the LLC converter is very attractive for its high gain range and providing ZVS from full load to zero load condition. The operation of the LLC converter is complicated due to its multiple resonant stage mechanism. In this dissertation, a literature review of different analysis methods are presented, and it shows that the study on the LLC is still incomplete. Therefore, an operation mode analysis method is proposed, which divides the operation into six major modes based on the occurrence of resonant stages. The resonant currents, voltages and the DC gain characteristics for each mode is investigated. To get a thorough view of the converter behavior, the boundaries of every mode are studied, and the mode distribution is discussed. An experimental prototype is built and tested to demonstrate its accuracy in operation waveforms and gain prediction. Since most of the LLC modes have no closed-form solutions, simplification is necessary in order to utilize this mode model in practical design. As the peak gain is an important design parameters indicating the LLC's operating limit of input voltage and switching frequency, a numerical peak gain approximation method is developed, which provide a direct way to calculate the peak gain and its corresponding load and frequency condition. In addition, as PO mode is the most favorable operation mode of the LLC, its operation region is investigated and an approximation approach is developed to determine its boundary. The design optimization of the LLC has always been a difficult problem as there are many parameters affecting the design and it lacks clear design guidance in selecting the optimal resonant tank parameters. Based on the operation mode model, three optimization methods are proposed according to the design scenarios. These methods focus on minimize the conduction loss of resonant tank while maintaining the required voltage gain level, and the approximations of peak gains and mode boundary can be applied here to facilitate the design. A design example is presented following one of the optimization procedure. As a comparison, the L-C component values are reselected and tested while the design specifications are the same. The experiments show that the optimal design has better efficiency performance. Finally, a generalized approach for resonant converter analysis is developed. It can be implemented by computer programs or numerical analysis tools to derive the operation waveforms and DC characteristics of resonant converters.
Show less - Date Issued
- 2012
- Identifier
- CFE0004229, ucf:49026
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004229
- Title
- investigation of dual-stage high efficiency (&)density micro inverter for solar application.
- Creator
-
Chen, Lin, Batarseh, Issa, Mikhael, Wasfy, Wu, Xinzhang, Behal, Aman, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
Module integrated converters (MIC), also called micro inverter, in single phase have witnessed recent market success due to unique features (1) improved energy harvest, (2) improved system efficiency, (3) lower installation costs, (4) plug-N-play operation, (5) and enhanced flexibility and modularity. The MIC sector has grown from a niche market to mainstream, especially in the United States. Due to the fact that two-stage architecture is commonly used for single phase MIC application. A DC...
Show moreModule integrated converters (MIC), also called micro inverter, in single phase have witnessed recent market success due to unique features (1) improved energy harvest, (2) improved system efficiency, (3) lower installation costs, (4) plug-N-play operation, (5) and enhanced flexibility and modularity. The MIC sector has grown from a niche market to mainstream, especially in the United States. Due to the fact that two-stage architecture is commonly used for single phase MIC application. A DC-DC stage with maximum power point tracking to boost the output voltage of the Photovoltaic (PV) panel is employed in the first stage, DC-AC stage is used for use to connect the grid or the residential application. As well known, the cost of MIC is key issue compared to convention PV system, such as the architecture: string inverter or central inverter. A high efficiency and density DC-DC converter is proposed and dedicated for MIC application. Assuming further expansion of the MIC market, this dissertation presents the micro-inverter concept incorporated in large size PV installations such as MW-class solar farms where a three phase AC connection is employed. A high efficiency three phase MIC with two-stage ZVS operation for grid tied photovoltaic system is proposed which will reduce cost per watt, improve reliability, and increase scalability of MW-class solar farms through the development of new solar farm system architectures. This dissertation presents modeling and triple-loop control for a high efficiency three-phase four-wire inverter for use in grid-connected two-stage micro inverter applications. An average signal model based on a synchronous rotation frame for a three-phase four-wire inverter has been developed. The inner current loop consists of a variable frequency bidirectional current mode (VFBCM) controller which regulates output filter inductor current thereby achieving ZVS, improved system response, and reduced grid current THD. Active damping of the LCL output filter using filter inductor current feedback is discussed along with small signal modeling of the proposed control method. Since the DC-link capacitor plays a critical role in two-stage micro inverter applications, a DC-link controller is implemented outside of the two current control loops to keep the bus voltage constant. In the end, simulation and experimental results from a 400 watt prototype are presented to verify the validity of the theoretical analysis.
Show less - Date Issued
- 2014
- Identifier
- CFE0005148, ucf:50699
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005148
- Title
- Control Based Soft Switching Three-phase Micro-inverter: Efficiency and Power Density Optimization.
- Creator
-
Amirahmadi, Ahmadreza, Batarseh, Issa, Lotfifard, Saeed, Mikhael, Wasfy, Wu, Xinzhang, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
In the field of renewable energy, solar photovoltaic is growing exponentially. Grid-tied PV micro-inverters have become the trend for future PV system development because of their remarkable advantages such as enhanced energy production due to MPPT implementation for each PV panel, high reliability due to redundant and distributed system architecture, and simple design, installation, and management due to its plug-and-play feature. Conventional approaches for the PV micro-inverters are mainly...
Show moreIn the field of renewable energy, solar photovoltaic is growing exponentially. Grid-tied PV micro-inverters have become the trend for future PV system development because of their remarkable advantages such as enhanced energy production due to MPPT implementation for each PV panel, high reliability due to redundant and distributed system architecture, and simple design, installation, and management due to its plug-and-play feature. Conventional approaches for the PV micro-inverters are mainly in the form of single-phase grid connected and they aim at the residential and commercial rooftop applications. It would be advantageous to extend the micro-inverter concept to large size PV installations such as MW-class solar farms where three-phase AC connections are used.The relatively high cost of the three-phase micro-inverter is the biggest barrier to its large scale deployment. Increasing the switching frequency may be the best way to reduce cost by shrinking the size of reactive components and heat-sink. However, this approach could cause conversion efficiency to drop dramatically without employing soft switching techniques or using costly new devices.This dissertation presents a new zero voltage switching control method that is suitable for low power applications such as three-phase micro-inverters. The proposed hybrid boundary conduction mode (BCM) current control method increases the efficiency and power density of the micro-inverters and features both reduced number of components and easy digital implementation. Zero voltage switching is achieved by controlling the inductor current bi-directional in every switching cycle and results in lower switching losses, higher operating frequency, and reduced size and cost of passive components, especially magnetic cores. Some practical aspects of hybrid control implementation such as dead-time insertion can degrade the performance of the micro-inverter. A dead-time compensation method that improves the performance of hybrid BCM current control by decreasing the output current THD and reducing the zero crossing distortion is presented.Different BCM ZVS current control modulation schemes are compared based on power losses breakdown, switching frequency range, and current quality. Compared to continuous conduction mode (CCM) current control, BCM ZVS control decreases MOSFET switching losses and filter inductor conduction losses but increases MOSFET conduction losses and inductor core losses. Based on the loss analysis, a dual-mode current modulation method combining ZVS and zero current switching (ZCS) schemes is proposed to improve the efficiency of the micro-inverter.Finally, a method of maintaining high power conversion efficiency across the entire load range of the three-phase micro-inverter is proposed. The proposed control method substantially increases the conversion efficiency at light loads by minimizing switching losses of semiconductor devices as well as core losses of magnetic components. This is accomplished by entering a phase skipping operating mode wherein two phases of an inverter are disabled and three inverters are combined to form a new three-phase system with minimal grid imbalance. A 400W prototype of a three-phase micro-inverter and its hybrid control system have been designed and tested under different conditions to verify the effectiveness of the proposed controller, current modulation scheme, and light load efficiency enhancement method.
Show less - Date Issued
- 2014
- Identifier
- CFE0005125, ucf:50703
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005125
- Title
- Microgrid Control and Protection: Stability and Security.
- Creator
-
Keshavarztalebi, Morteza, Behal, Aman, Haralambous, Michael, Sun, Wei, Jain, Amit Kumar, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
When the microgrid disconnects from the main grid in response to, say, upstream disturbance orvoltage fluctuation and goes to islanding mode, both voltage and frequency at all locations in themicrogrid have to be regulated to nominal values in a short amount of time before the operation ofprotective relays. Motivated by this, we studied the application of intelligent pinning of distributed cooperative secondary control of distributed generators in islanded microgrid operation in a power...
Show moreWhen the microgrid disconnects from the main grid in response to, say, upstream disturbance orvoltage fluctuation and goes to islanding mode, both voltage and frequency at all locations in themicrogrid have to be regulated to nominal values in a short amount of time before the operation ofprotective relays. Motivated by this, we studied the application of intelligent pinning of distributed cooperative secondary control of distributed generators in islanded microgrid operation in a power system. In the first part, the problem of single and multi-pinning of distributed cooperative secondary control of DGs in a microgrid is formulated. It is shown that the intelligent selection of a pinning set based on the number of its connections and distance of leader DG/DGs from the rest of the network, i.e., degree of connectivity, strengthens microgrid voltage and frequency regulation performance both in transient and steady state. The proposed control strategy and algorithm are validated by simulation in MATLAB/SIMULINK using different microgrid topologies. It is shown that it is much easier to stabilize the microgrid voltage and frequency in islanding mode operationby specifically placing the pinning node on the DGs with high degrees of connectivity than byrandomly placing pinning nodes into the network. In all of these research study cases, DGs areonly required to communicate with their neighboring units which facilitates the distributed controlstrategy.Historically, the models for primary control are developed for power grids with centralized powergeneration, in which the transmission lines are assumed to be primarily inductive. However, fordistributed power generation, this assumption does not hold since the network has significant resistive impedance as well. Hence, it is of utmost importance to generalize the droop equations, i.e., primary control, to arrive at a proper model for microgrid systems. Motivated by this, we proposed the secondary adaptive voltage and frequency control of distributed generators for low and medium voltage microgrid in autonomous mode to overcome the drawback of existing classical droop based control techniques. Our proposed secondary control strategy is adaptive with line parameters and can be applied to all types of microgrids to address the simultaneous impacts of active and reactive power on the microgrids voltage and frequency. Also, since the parameters in the network model are unknown or uncertain, the second part of our research studies adaptive distributed estimation/compensation. It is shown that this is an effective method to robustly regulate the microgrid variables to their desired values.The security of power systems against malicious cyberphysical data attacks is the third topic of this dissertation. The adversary always attempts to manipulate the information structure of the power system and inject malicious data to deviate state variables while evading the existing detection techniques based on residual test. The solutions proposed in the literature are capable of immunizing the power system against false data injection but they might be too costly and physically not practical in the expansive distribution network. To this end, we define an algebraic condition for trustworthy power system to evade malicious data injection. The proposed protection scheme secures the power system by deterministically reconfiguring the information structure and corresponding residual test. More importantly, it does not require any physical effort in either microgrid or network level. The identification scheme of finding meters being attacked is proposed as well. Eventually, a well-known IEEE 30-bus system is adopted to demonstrate the effectiveness of the proposed schemes.
Show less - Date Issued
- 2016
- Identifier
- CFE0006338, ucf:51569
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006338
- Title
- Optimization and design of photovoltaic micro-inverter.
- Creator
-
Zhang, Qian, Batarseh, Issa, Shen, Zheng, Wu, Xinzhang, Lotfifard, Saeed, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
To relieve energy shortage and environmental pollution issues, renewable energy, especially PV energy has developed rapidly in the last decade. The micro-inverter systems, with advantages in dedicated PV power harvest, flexible system size, simple installation, and enhanced safety characteristics are the future development trend of the PV power generation systems. The double-stage structure which can realize high efficiency with nice regulated sinusoidal waveforms is the mainstream for the...
Show moreTo relieve energy shortage and environmental pollution issues, renewable energy, especially PV energy has developed rapidly in the last decade. The micro-inverter systems, with advantages in dedicated PV power harvest, flexible system size, simple installation, and enhanced safety characteristics are the future development trend of the PV power generation systems. The double-stage structure which can realize high efficiency with nice regulated sinusoidal waveforms is the mainstream for the micro-inverter.This thesis studied a double stage micro-inverter system. Considering the intermittent nature of PV power, a PFC was analyzed to provide additional electrical power to the system. When the solar power is less than the load required, PFC can drag power from the utility grid.In the double stage micro-inverter, the DC/DC stage was realized by a LLC converter, which could realize soft switching automatically under frequency modulation. However it has a complicated relationship between voltage gain and load. Thus conventional variable step P(&)O MPPT techniques for PWM converter were no longer suitable for the LLC converter. To solve this problem, a novel MPPT was proposed to track MPP efficiently. Simulation and experimental results verified the effectiveness of the proposed MPPT.The DC/AC stage of the micro-inverter was realized by a BCM inverter. With duty cycle and frequency modulation, ZVS was achieved through controlling the inductor current bi-directional in every switching cycle. This technique required no additional resonant components and could be employed for low power applications on conventional full-bridge and half-bridge inverter topologies. Three different current mode control schemes were derived from the basic theory of the proposed technique. They were referred to as Boundary Current Mode (BCM), Variable Hysteresis Current Mode (VHCM), and Constant Hysteresis Current Mode (CHCM) individually in this paper with their advantages and disadvantages analyzed in detail. Simulation and experimental results demonstrated the feasibilities of the proposed soft-switching technique with the digital control schemes.The PFC converter was applied by a single stage biflyback topology, which combined the advantages of single stage PFC and flyback topology together, with further advantages in low intermediate bus voltage and current stresses. A digital controller without current sampling requirement was proposed based on the specific topology. To reduce the voltage spike caused by the leakage inductor, a novel snubber cell combining soft switching technique with snubber technique together was proposed. Simulation and experimental waveforms illustrated the same as characteristics as the theoretical analysis.In summary, the dissertation analyzed each power stage of photovoltaic micro-inverter system from efficiency and effectiveness optimization perspectives. Moreover their advantages were compared carefully with existed topologies and control techniques. Simulation and experiment results were provided to support the theoretical analysis.
Show less - Date Issued
- 2013
- Identifier
- CFE0005286, ucf:50540
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005286
- Title
- cooperative control and advanced management of distributed generators in a smart grid.
- Creator
-
Maknouninejad, Ali, Qu, Zhihua, Lotfifard, Saeed, Haralambous, Michael, Wu, Xinzhang, Kutkut, Nasser, University of Central Florida
- Abstract / Description
-
Smart grid is more than just the smart meters. The future smart grids are expected to include ahigh penetration of distributed generations (DGs), most of which will consist of renewable energysources, such as solar or wind energy. It is believed that the high penetration of DGs will resultin the reduction of power losses, voltage profile improvement, meeting future load demand, andoptimizingthe use of non-conventionalenergy sources. However, more serious problems will ariseif a decent control...
Show moreSmart grid is more than just the smart meters. The future smart grids are expected to include ahigh penetration of distributed generations (DGs), most of which will consist of renewable energysources, such as solar or wind energy. It is believed that the high penetration of DGs will resultin the reduction of power losses, voltage profile improvement, meeting future load demand, andoptimizingthe use of non-conventionalenergy sources. However, more serious problems will ariseif a decent control mechanism is not exploited. An improperly managed high PV penetration maycause voltage profile disturbance, conflict with conventional network protection devices, interferewith transformer tap changers, and as a result, cause network instability.Indeed, it is feasible to organize DGs in a microgrid structure which will be connected to the maingrid through a point of common coupling (PCC). Microgrids are natural innovation zones for thesmart grid because of their scalability and flexibility. A proper organization and control of theinteraction between the microgrid and the smartgrid is a challenge.Cooperative control makes it possible to organize different agents in a networked system to actas a group and realize the designated objectives. Cooperative control has been already appliedto the autonomous vehicles and this work investigates its application in controlling the DGs in amicro grid. The microgrid power objectives are set by a higher level control and the application ofthe cooperative control makes it possible for the DGs to utilize a low bandwidth communicationnetwork and realize the objectives.Initially, the basics of the application of the DGs cooperative control are formulated. This includesorganizing all the DGs of a microgrid to satisfy an active and a reactive power objective. Then, thecooperative control is further developed by the introduction of clustering DGs into several groupsto satisfy multiple power objectives. Then, the cooperative distribution optimization is introducedto optimally dispatch the reactive power of the DGs to realize a unified microgrid voltage profileand minimizethelosses. Thisdistributedoptimizationis agradient based techniqueand itis shownthat when the communication is down, it reduces to a form of droop. However, this gradient baseddroop exhibits a superior performance in the transient response, by eliminating the overshootscaused by the conventional droop.Meanwhile, the interaction between each microgrid and the main grid can be formulated as aStackelberg game. The main grid as the leader, by offering proper energy price to the micro grid,minimizes its cost and secures the power. This not only optimizes the economical interests ofboth sides, the microgrids and the main grid, but also yields an improved power flow and shavesthe peak power. As such, a smartgrid may treat microgrids as individually dispatchable loads orgenerators.
Show less - Date Issued
- 2013
- Identifier
- CFE0004712, ucf:49817
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004712