Current Search: Laviola II, Joseph (x)
View All Items
- Title
- Realtime Editing in Virtual Reality for Room Scale Scans.
- Creator
-
Greenwood, Charles, Laviola II, Joseph, Hughes, Charles, Heinrich, Mark, University of Central Florida
- Abstract / Description
-
This work presents a system for the design and implementation of tools that support the editing of room-scale scans within a virtual reality environment, in real time. The moniker REVRRSS ((")reverse(")) thus stands for Real-time Editing (in) Virtual Reality (of) Room Scale Scans. The tools were evaluated for usefulness based upon whether they meet the criterion of real time usability. Users evaluated the editing experience with traditional keyboard-video-mouse compared to a head mounted...
Show moreThis work presents a system for the design and implementation of tools that support the editing of room-scale scans within a virtual reality environment, in real time. The moniker REVRRSS ((")reverse(")) thus stands for Real-time Editing (in) Virtual Reality (of) Room Scale Scans. The tools were evaluated for usefulness based upon whether they meet the criterion of real time usability. Users evaluated the editing experience with traditional keyboard-video-mouse compared to a head mounted display and hand-held controllers for Virtual Reality. Results show that users prefer the VR approach. The quality of the finished product when using VR is comparable to that of traditional desktop controls. The architecture developed here can be adapted to innumerable future projects and tools.
Show less - Date Issued
- 2019
- Identifier
- CFE0007463, ucf:52678
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007463
- Title
- SetPad: A Sketch-Based Tool For Exploring Discrete Math Set Problems.
- Creator
-
Cossairt, Travis, Laviola II, Joseph, Foroosh, Hassan, Hughes, Charles, University of Central Florida
- Abstract / Description
-
We present SetPad, a new application prototype that lets computer science students explore discrete math problems by sketching set expressions using pen-based input. Students can manipulate the expressions interactively with the tool via pen or multi-touch interface. Likewise, discrete mathematics instructors can use SetPad to display and work through set problems via a projector to better demonstrate the solutions to the students. We discuss the implementation and feature set of the...
Show moreWe present SetPad, a new application prototype that lets computer science students explore discrete math problems by sketching set expressions using pen-based input. Students can manipulate the expressions interactively with the tool via pen or multi-touch interface. Likewise, discrete mathematics instructors can use SetPad to display and work through set problems via a projector to better demonstrate the solutions to the students. We discuss the implementation and feature set of the application, as well as results from both an informal perceived usefulness evaluation for students taking a computer science foundation exam in addition to a formal user study measuring the effectiveness of the tool when solving set proof problems. The results indicate that SetPad was well received, allows for efficient solutions to proof problems, and has the potential to have a positive impact when used as as an individual student application or an instructional tool.
Show less - Date Issued
- 2012
- Identifier
- CFE0004240, ucf:49507
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004240
- Title
- Code Park: A New 3D Code Visualization Tool and IDE.
- Creator
-
Khaloo, Pooya, Laviola II, Joseph, Foroosh, Hassan, Leavens, Gary, University of Central Florida
- Abstract / Description
-
We introduce Code Park, a novel tool for visualizing codebases in a 3D game-like environment. Code Park aims to improve a programmer's understanding of an existing codebase in a manner that is both engaging and fun to be appealing especially for novice users such as students. It achieves these goals by laying out the codebase in a 3D park-like environment. Each class in the codebase is represented as a 3D room-like structure. Constituent parts of the class (variable, member functions, etc.)...
Show moreWe introduce Code Park, a novel tool for visualizing codebases in a 3D game-like environment. Code Park aims to improve a programmer's understanding of an existing codebase in a manner that is both engaging and fun to be appealing especially for novice users such as students. It achieves these goals by laying out the codebase in a 3D park-like environment. Each class in the codebase is represented as a 3D room-like structure. Constituent parts of the class (variable, member functions, etc.) are laid out on the walls, resembling a syntax-aware (")wallpaper("). The users can interact with the codebase using an overview, and a first-person viewer mode. They also can edit, compile and run code in this environment. We conducted three user studies to evaluate Code Park's usability and suitability for organizing an existing project. Our results indicate that Code Park is easy to get familiar with and significantly helps in code understanding. Further, the users unanimously believed that Code Park was an engaging tool to work with.
Show less - Date Issued
- 2017
- Identifier
- CFE0006752, ucf:51838
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006752
- Title
- An Exploration of Unmanned Aerial Vehicle Direct Manipulation Through 3D Spatial Interaction.
- Creator
-
Pfeil, Kevin, Laviola II, Joseph, Hughes, Charles, Sukthankar, Gita, University of Central Florida
- Abstract / Description
-
We present an exploration that surveys the strengths and weaknesses of various 3D spatial interaction techniques, in the context of directly manipulating an Unmanned Aerial Vehicle (UAV). Particularly, a study of touch- and device- free interfaces in this domain is provided. 3D spatial interaction can be achieved using hand-held motion control devices such as the NintendoWiimote, but computer vision systems offer a different and perhaps more natural method. In general, 3D user interfaces ...
Show moreWe present an exploration that surveys the strengths and weaknesses of various 3D spatial interaction techniques, in the context of directly manipulating an Unmanned Aerial Vehicle (UAV). Particularly, a study of touch- and device- free interfaces in this domain is provided. 3D spatial interaction can be achieved using hand-held motion control devices such as the NintendoWiimote, but computer vision systems offer a different and perhaps more natural method. In general, 3D user interfaces (3DUI) enable a user to interact with a system on a more robust and potentially more meaningful scale. We discuss the design and development of various 3D interaction techniques using commercially available computer vision systems, and provide an exploration of the effects that these techniques have on an overall user experience in the UAV domain. Specific qualities of the user experience are targeted, including the perceived intuition, ease of use, comfort, and others. We present a complete user study for upper-body gesture, and preliminary reactions towards 3DUI using hand-and-finger gestures are also discussed. The results provide evidence that supports the use of 3DUI in this domain, as well as the use of certain styles of techniques over others.
Show less - Date Issued
- 2013
- Identifier
- CFE0004910, ucf:49612
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004910
- Title
- SketChart: A Pen-Based Tool for Chart Generation and Interaction.
- Creator
-
Vargas Gonzalez, Andres, Laviola II, Joseph, Foroosh, Hassan, Hua, Kien, University of Central Florida
- Abstract / Description
-
It has been shown that representing data with the right visualization increases the understanding of qualitative and quantitative information encoded in documents. However, current tools for generating such visualizations involve the use of traditional WIMP techniques, which perhaps makes free interaction and direct manipulation of the content harder. In this thesis, we present a pen-based prototype for data visualization using 10 different types of bar based charts. The prototype lets users...
Show moreIt has been shown that representing data with the right visualization increases the understanding of qualitative and quantitative information encoded in documents. However, current tools for generating such visualizations involve the use of traditional WIMP techniques, which perhaps makes free interaction and direct manipulation of the content harder. In this thesis, we present a pen-based prototype for data visualization using 10 different types of bar based charts. The prototype lets users sketch a chart and interact with the information once the drawing is identified. The prototype's user interface consists of an area to sketch and touch based elements that will be displayed depending on the context and nature of the outline. Brainstorming and live presentations can benefit from the prototype due to the ability to visualize and manipulate data in real time. We also perform a short, informal user study to measure effectiveness of the tool while recognizing sketches and users acceptance while interacting with the system. Results show SketChart strengths and weaknesses and areas for improvement.
Show less - Date Issued
- 2014
- Identifier
- CFE0005434, ucf:50405
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005434
- Title
- Guided Autonomy for Quadcopter Photography.
- Creator
-
Alabachi, Saif, Sukthankar, Gita, Behal, Aman, Lin, Mingjie, Boloni, Ladislau, Laviola II, Joseph, University of Central Florida
- Abstract / Description
-
Photographing small objects with a quadcopter is non-trivial to perform with many common user interfaces, especially when it requires maneuvering an Unmanned Aerial Vehicle (C) to difficult angles in order to shoot high perspectives. The aim of this research is to employ machine learning to support better user interfaces for quadcopter photography. Human Robot Interaction (HRI) is supported by visual servoing, a specialized vision system for real-time object detection, and control policies...
Show morePhotographing small objects with a quadcopter is non-trivial to perform with many common user interfaces, especially when it requires maneuvering an Unmanned Aerial Vehicle (C) to difficult angles in order to shoot high perspectives. The aim of this research is to employ machine learning to support better user interfaces for quadcopter photography. Human Robot Interaction (HRI) is supported by visual servoing, a specialized vision system for real-time object detection, and control policies acquired through reinforcement learning (RL). Two investigations of guided autonomy were conducted. In the first, the user directed the quadcopter with a sketch based interface, and periods of user direction were interspersed with periods of autonomous flight. In the second, the user directs the quadcopter by taking a single photo with a handheld mobile device, and the quadcopter autonomously flies to the requested vantage point.This dissertation focuses on the following problems: 1) evaluating different user interface paradigms for dynamic photography in a GPS-denied environment; 2) learning better Convolutional Neural Network (CNN) object detection models to assure a higher precision in detecting human subjects than the currently available state-of-the-art fast models; 3) transferring learning from the Gazebo simulation into the real world; 4) learning robust control policies using deep reinforcement learning to maneuver the quadcopter to multiple shooting positions with minimal human interaction.
Show less - Date Issued
- 2019
- Identifier
- CFE0007774, ucf:52369
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007774
- Title
- Exploring Natural User Abstractions For Shared Perceptual Manipulator Task Modeling (&) Recovery.
- Creator
-
Koh, Senglee, Laviola II, Joseph, Foroosh, Hassan, Zhang, Shaojie, Kim, Si Jung, University of Central Florida
- Abstract / Description
-
State-of-the-art domestic robot assistants are essentially autonomous mobile manipulators capable of exerting human-scale precision grasps. To maximize utility and economy, non-technical end-users would need to be nearly as efficient as trained roboticists in control and collaboration of manipulation task behaviors. However, it remains a significant challenge given that many WIMP-style tools require superficial proficiency in robotics, 3D graphics, and computer science for rapid task modeling...
Show moreState-of-the-art domestic robot assistants are essentially autonomous mobile manipulators capable of exerting human-scale precision grasps. To maximize utility and economy, non-technical end-users would need to be nearly as efficient as trained roboticists in control and collaboration of manipulation task behaviors. However, it remains a significant challenge given that many WIMP-style tools require superficial proficiency in robotics, 3D graphics, and computer science for rapid task modeling and recovery. But research on robot-centric collaboration has garnered momentum in recent years; robots are now planning in partially observable environments that maintain geometries and semantic maps, presenting opportunities for non-experts to cooperatively control task behavior with autonomous-planning agents exploiting the knowledge. However, as autonomous systems are not immune to errors under perceptual difficulty, a human-in-the-loop is needed to bias autonomous-planning towards recovery conditions that resume the task and avoid similar errors.In this work, we explore interactive techniques allowing non-technical users to model task behaviors and perceive cooperatively with a service robot under robot-centric collaboration. We evaluate stylus and touch modalities that users can intuitively and effectively convey natural abstractions of high-level tasks, semantic revisions, and geometries about the world. Experiments are conducted with `pick-and-place' tasks in an ideal `Blocks World' environment using a Kinova JACO six degree-of-freedom manipulator. Possibilities for the architecture and interface are demonstrated with the following features; (1) Semantic `Object' and `Location' grounding that describe function and ambiguous geometries (2) Task specification with an unordered list of goal predicates, and (3) Guiding task recovery with implied scene geometries and trajectory via symmetry cues and configuration space abstraction. Empirical results from four user studies show our interface was much preferred than the control condition, demonstrating high learnability and ease-of-use that enable our non-technical participants to model complex tasks, provide effective recovery assistance, and teleoperative control.
Show less - Date Issued
- 2018
- Identifier
- CFE0007209, ucf:52292
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007209
- Title
- Exploring the Multi-touch Interaction Design Space for 3D Virtual Objects to Support Procedural Training Tasks.
- Creator
-
Holderness, Sarah, Laviola II, Joseph, Hughes, Charles, Sukthankar, Gita, Hatchett, Martin, University of Central Florida
- Abstract / Description
-
Multi-touch interaction has the potential to be an important input method for realistic training in 3D environments. However, multi-touch interaction has not been explored much in 3D tasks, especially when trying to leverage realistic, real-world interaction paradigms. A systematic inquiry into what realistic gestures look like for 3D environments is required to understand how users translate real-world motions to multi-touch motions. Once those gestures are defined, it is important to see...
Show moreMulti-touch interaction has the potential to be an important input method for realistic training in 3D environments. However, multi-touch interaction has not been explored much in 3D tasks, especially when trying to leverage realistic, real-world interaction paradigms. A systematic inquiry into what realistic gestures look like for 3D environments is required to understand how users translate real-world motions to multi-touch motions. Once those gestures are defined, it is important to see how we can leverage those gestures to enhance training tasks.In order to explore the interaction design space for 3D virtual objects, we began by conducting our first study exploring user-defined gestures. From this work we identified a taxonomy and design guidelines for 3D multi-touch gestures and how perspective view plays a role in the chosen gesture. We also identified a desire to use pressure on capacitive touch screens. Since the best way to implement pressure still required some investigation, our second study evaluated two different pressure estimation techniques in two different scenarios.Once we had a taxonomy of gestures we wanted to examine whether implementing these realistic multi-touch interactions in a training environment provided training benefits. Our third study compared multi-touch interaction to standard 2D mouse interaction and to actual physical training and found that multi-touch interaction performed better than 2D mouse and as well as physical training. This study showed us that multi-touch training using a realistic gesture set can perform as well as training on the actual apparatus.One limitation of the first training study was that the user had constrained perspective to allow for us to focus on isolating the gestures. Since users can change their perspective in a real life training scenario and therefore gain spatial knowledge of components, we wanted to see if allowing users to alter their perspective helped or hindered training. Our final study compared training with Unconstrained multi-touch interaction, Constrained multi-touch interaction, or training on the actual physical apparatus. Results show that the Unconstrained multi-touch interaction and the Physical groups had significantly better performance scores than the Constrained multi-touch interaction group, with no significant difference between the Unconstrained multi-touch and Physical groups. Our results demonstrate that allowing users more freedom to manipulate objects as they would in the real world benefits training. In addition to the research already performed, we propose several avenues for future research into the interaction design space for 3D virtual objects that we believe will be of value to researchers and designers of 3D multi-touch training environments.
Show less - Date Issued
- 2017
- Identifier
- CFE0006603, ucf:51287
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006603
- Title
- The WOZ Recognizer: A Tool For Understanding User Perceptions of Sketch-Based Interfaces.
- Creator
-
Bott, Jared, Laviola II, Joseph, Hughes, Charles, Foroosh, Hassan, Lank, Edward, University of Central Florida
- Abstract / Description
-
Sketch recognition has the potential to be an important input method for computers in the coming years; however, designing and building an accurate and sophisticated sketch recognition system is a time consuming and daunting task. Since sketch recognition is still at a level where mistakes are common, it is important to understand how users perceive and tolerate recognition errors and other user interface elements with these imperfect systems. A problem in performing this type of research is...
Show moreSketch recognition has the potential to be an important input method for computers in the coming years; however, designing and building an accurate and sophisticated sketch recognition system is a time consuming and daunting task. Since sketch recognition is still at a level where mistakes are common, it is important to understand how users perceive and tolerate recognition errors and other user interface elements with these imperfect systems. A problem in performing this type of research is that we cannot easily control aspects of recognition in order to rigorously study the systems. We performed a study examining user perceptions of three pen-based systems for creating logic gate diagrams: a sketch-based interface, a WIMP-based interface, and a hybrid interface that combined elements of sketching and WIMP. We found that users preferred the sketch-based interface and we identified important criteria for pen-based application design. This work exposed the issue of studying recognition systems without fine-grained control over accuracy, recognition mode, and other recognizer properties. In order to solve this problem, we developed a Wizard of Oz sketch recognition tool, the WOZ Recognizer, that supports controlled symbol and position accuracy and batch and streaming recognition modes for a variety of sketching domains. We present the design of the WOZ Recognizer, modeling recognition domains using graphs, symbol alphabets, and grammars; and discuss the types of recognition errors we included in its design. Further, we discuss how the WOZ Recognizer simulates sketch recognition, controlling the WOZ Recognizer, and how users interact with it. In addition, we present an evaluative user study of the WOZ Recognizer and the lessons we learned.We have used the WOZ Recognizer to perform two user studies examining user perceptions of sketch recognition; both studies focused on mathematical sketching. In the first study, we examined whether users prefer recognition feedback now (real-time recognition) or later (batch recognition) in relation to different recognition accuracies and sketch complexities. We found that participants displayed a preference for real-time recognition in some situations (multiple expressions, low accuracy), but no statistical preference in others. In our second study, we examined whether users displayed a greater tolerance for recognition errors when they used mathematical sketching applications they found interesting or useful compared to applications they found less interesting. Participants felt they had a greater tolerance for the applications they preferred, although our statistical analysis did not positively support this.In addition to the research already performed, we propose several avenues for future research into user perceptions of sketch recognition that we believe will be of value to sketch recognizer researchers and application designers.
Show less - Date Issued
- 2016
- Identifier
- CFE0006077, ucf:50945
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006077
- Title
- Worldwide Infrastructure for Neuroevolution: A Modular Library to Turn Any Evolutionary Domain into an Online Interactive Platform.
- Creator
-
Szerlip, Paul, Stanley, Kenneth, Laviola II, Joseph, Wu, Annie, Kim, Joo, University of Central Florida
- Abstract / Description
-
Across many scientific disciplines, there has emerged an open opportunity to utilize the scale and reach of the Internet to collect scientific contributions from scientists and non-scientists alike. This process, called citizen science, has already shown great promise in the fields of biology and astronomy. Within the fields of artificial life (ALife) and evolutionary computation (EC) experiments in collaborative interactive evolution (CIE) have demonstrated the ability to collect thousands...
Show moreAcross many scientific disciplines, there has emerged an open opportunity to utilize the scale and reach of the Internet to collect scientific contributions from scientists and non-scientists alike. This process, called citizen science, has already shown great promise in the fields of biology and astronomy. Within the fields of artificial life (ALife) and evolutionary computation (EC) experiments in collaborative interactive evolution (CIE) have demonstrated the ability to collect thousands of experimental contributions from hundreds of users across the glob. However, such collaborative evolutionary systems can take nearly a year to build with a small team of researchers. This dissertation introduces a new developer framework enabling researchers to easily build fully persistent online collaborative experiments around almost any evolutionary domain, thereby reducing the time to create such systems to weeks for a single researcher. To add collaborative functionality to any potential domain, this framework, called Worldwide Infrastructure for Neuroevolution (WIN), exploits an important unifying principle among all evolutionary algorithms: regardless of the overall methods and parameters of the evolutionary experiment, every individual created has an explicit parent-child relationship, wherein one individual is considered the direct descendant of another. This principle alone is enough to capture and preserve the relationships and results for a wide variety of evolutionary experiments, while allowing multiple human users to meaningfully contribute. The WIN framework is first validated through two experimental domains, image evolution and a new two-dimensional virtual creature domain, Indirectly Encoded SodaRace (IESoR), that is shown to produce a visually diverse variety of ambulatory creatures. Finally, an Android application built with WIN, #filters, allows users to interactively evolve custom image effects to apply to personalized photographs, thereby introducing the first CIE application available for any mobile device. Together, these collaborative experiments and new mobile application establish a comprehensive new platform for evolutionary computation that can change how researchers design and conduct citizen science online.
Show less - Date Issued
- 2015
- Identifier
- CFE0005889, ucf:50892
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005889
- Title
- Recognition of Complex Events in Open-source Web-scale Videos: Features, Intermediate Representations and their Temporal Interactions.
- Creator
-
Bhattacharya, Subhabrata, Shah, Mubarak, Guha, Ratan, Laviola II, Joseph, Sukthankar, Rahul, Moore, Brian, University of Central Florida
- Abstract / Description
-
Recognition of complex events in consumer uploaded Internet videos, captured under real-world settings, has emerged as a challenging area of research across both computer vision and multimedia community. In this dissertation, we present a systematic decomposition of complex events into hierarchical components and make an in-depth analysis of how existing research are being used to cater to various levels of this hierarchy and identify three key stages where we make novel contributions,...
Show moreRecognition of complex events in consumer uploaded Internet videos, captured under real-world settings, has emerged as a challenging area of research across both computer vision and multimedia community. In this dissertation, we present a systematic decomposition of complex events into hierarchical components and make an in-depth analysis of how existing research are being used to cater to various levels of this hierarchy and identify three key stages where we make novel contributions, keeping complex events in focus. These are listed as follows: (a) Extraction of novel semi-global features -- firstly, we introduce a Lie-algebra based representation of dominant camera motion present while capturing videos and show how this can be used as a complementary feature for video analysis. Secondly, we propose compact clip level descriptors of a video based on covariance of appearance and motion features which we further use in a sparse coding framework to recognize realistic actions and gestures. (b) Construction of intermediate representations -- We propose an efficient probabilistic representation from low-level features computed from videos, basedon Maximum Likelihood Estimates which demonstrates state of the art performancein large scale visual concept detection, and finally, (c) Modeling temporal interactions between intermediate concepts -- Using block Hankel matrices and harmonic analysis of slowly evolving Linear Dynamical Systems, we propose two new discriminative feature spaces for complex event recognition and demonstratesignificantly improved recognition rates over previously proposed approaches.
Show less - Date Issued
- 2013
- Identifier
- CFE0004817, ucf:49724
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004817
- Title
- Exploring 3D User Interface Technologies for Improving the Gaming Experience.
- Creator
-
Kulshreshth, Arun, Laviola II, Joseph, Hughes, Charles, Da Vitoria Lobo, Niels, Masuch, Maic, University of Central Florida
- Abstract / Description
-
3D user interface technologies have the potential to make games more immersive (&) engaging and thus potentially provide a better user experience to gamers. Although 3D user interface technologies are available for games, it is still unclear how their usage affects game play and if there are any user performance benefits. A systematic study of these technologies in game environments is required to understand how game play is affected and how we can optimize the usage in order to achieve...
Show more3D user interface technologies have the potential to make games more immersive (&) engaging and thus potentially provide a better user experience to gamers. Although 3D user interface technologies are available for games, it is still unclear how their usage affects game play and if there are any user performance benefits. A systematic study of these technologies in game environments is required to understand how game play is affected and how we can optimize the usage in order to achieve better game play experience.This dissertation seeks to improve the gaming experience by exploring several 3DUI technologies. In this work, we focused on stereoscopic 3D viewing (to improve viewing experience) coupled with motion based control, head tracking (to make games more engaging), and faster gesture based menu selection (to reduce cognitive burden associated with menu interaction while playing). We first studied each of these technologies in isolation to understand their benefits for games. We present the results of our experiments to evaluate benefits of stereoscopic 3D (when coupled with motion based control) and head tracking in games. We discuss the reasons behind these findings and provide recommendations for game designers who want to make use of these technologies to enhance gaming experiences. We also present the results of our experiments with finger-based menu selection techniques with an aim to find out the fastest technique. Based on these findings, we custom designed an air-combat game prototype which simultaneously uses stereoscopic 3D, head tracking, and finger-count shortcuts to prove that these technologies could be useful for games if the game is designed with these technologies in mind. Additionally, to enhance depth discrimination and minimize visual discomfort, the game dynamically optimizes stereoscopic 3D parameters (convergence and separation) based on the user's look direction. We conducted a within subjects experiment where we examined performance data and self-reported data on users perception of the game. Our results indicate that participants performed significantly better when all the 3DUI technologies (stereoscopic 3D, head-tracking and finger-count gestures) were available simultaneously with head tracking as a dominant factor. We explore the individual contribution of each of these technologies to the overall gaming experience and discuss the reasons behind our findings.Our experiments indicate that 3D user interface technologies could make gaming experience better if used effectively. The games must be designed to make use of the 3D user interface technologies available in order to provide a better gaming experience to the user. We explored a few technologies as part of this work and obtained some design guidelines for future game designers. We hope that our work will serve as the framework for the future explorations of making games better using 3D user interface technologies.
Show less - Date Issued
- 2015
- Identifier
- CFE0005643, ucf:50190
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005643
- Title
- Functional Scaffolding for Musical Composition: A New Approach in Computer-Assisted Music Composition.
- Creator
-
Hoover, Amy, Stanley, Kenneth, Wu, Annie, Laviola II, Joseph, Anderson, Thaddeus, University of Central Florida
- Abstract / Description
-
While it is important for systems intended to enhance musical creativity to define and explore musical ideas conceived by individual users, many limit musical freedom by focusing on maintaining musical structure, thereby impeding the user's freedom to explore his or her individual style. This dissertation presents a comprehensive body of work that introduces a new musical representation that allows users to explore a space of musical rules that are created from their own melodies. This...
Show moreWhile it is important for systems intended to enhance musical creativity to define and explore musical ideas conceived by individual users, many limit musical freedom by focusing on maintaining musical structure, thereby impeding the user's freedom to explore his or her individual style. This dissertation presents a comprehensive body of work that introduces a new musical representation that allows users to explore a space of musical rules that are created from their own melodies. This representation, called functional scaffolding for musical composition (FSMC), exploits a simple yet powerful property of multipart compositions: The pattern of notes and rhythms in different instrumental parts of the same song are functionally related. That is, in principle, one part can be expressed as a function of another. Music in FSMC is represented accordingly as a functional relationship between an existing human composition, or scaffold, and an additional generated voice. This relationship is encoded by a type of artificial neural network called a compositional pattern producing network (CPPN). A human user without any musical expertise can then explore how these additional generated voices should relate to the scaffold through an interactive evolutionary process akin to animal breeding. The utility of this insight is validated by two implementations of FSMC called NEAT Drummer and MaestroGenesis, that respectively help users tailor drum patterns and complete multipart arrangements from as little as a single original monophonic track. The five major contributions of this work address the overarching hypothesis in this dissertation that functional relationships alone, rather than specialized music theory, are sufficient for generating plausible additional voices. First, to validate FSMC and determine whether plausible generated voices result from the human-composed scaffold or intrinsic properties of the CPPN, drum patterns are created with NEAT Drummer to accompany several different polyphonic pieces. Extending the FSMC approach to generate pitched voices, the second contribution reinforces the importance of functional transformations through quality assessments that indicate that some partially FSMC-generated pieces are indistinguishable from those that are fully human. While the third contribution focuses on constructing and exploring a space of plausible voices with MaestroGenesis, the fourth presents results from a two-year study where students discuss their creative experience with the program. Finally, the fifth contribution is a plugin for MaestroGenesis called MaestroGenesis Voice (MG-V) that provides users a more natural way to incorporate MaestroGenesis in their creative endeavors by allowing scaffold creation through the human voice. Together, the chapters in this dissertation constitute a comprehensive approach to assisted music generation, enabling creativity without the need for musical expertise.
Show less - Date Issued
- 2014
- Identifier
- CFE0005350, ucf:50495
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005350
- Title
- Intelligent Selection Techniques For Virtual Environments.
- Creator
-
Cashion, Jeffrey, Laviola II, Joseph, Bassiouni, Mostafa, Hughes, Charles, Bowman, Doug, University of Central Florida
- Abstract / Description
-
Selection in 3D games and simulations is a well-studied problem. Many techniques have been created to address many of the typical scenarios a user could experience. For any single scenario with consistent conditions, there is likely a technique which is well suited. If there isn't, then there is an opportunity for one to be created to best suit the expected conditions of that new scenario. It is critical that the user be given an appropriate technique to interact with their environment....
Show moreSelection in 3D games and simulations is a well-studied problem. Many techniques have been created to address many of the typical scenarios a user could experience. For any single scenario with consistent conditions, there is likely a technique which is well suited. If there isn't, then there is an opportunity for one to be created to best suit the expected conditions of that new scenario. It is critical that the user be given an appropriate technique to interact with their environment. Without it, the entire experience is at risk of becoming burdensome and not enjoyable.With all of the different possible scenarios, it can become problematic when two or more are part of the same program. If they are put closely together, or even intertwined, then the developer is often forced to pick a single technique that works so-so in both, but is likely not optimal for either, or maybe optimal in just one of them. In this case, the user is left to perform selections with a technique that is lacking in one way or another, which can increase errors and frustration.In our research, we have outlined different selection scenarios, all of which were classified by their level of object density (number of objects in scene) and object velocity. We then performed an initial study on how it impacts performance of various selection techniques, including a new selection technique that we developed just for this test, called Expand. Our results showed, among other things, that a standard Raycast technique works well in slow moving and sparse environments, while revealing that our new Expand technique works well in denser environments.With the results from our first study, we sought to develop something that would bridge the gap in performance between those selection techniques tested. Our idea was a framework that could harvest several different selection techniques and determine which was the most optimal at any time. Each selection technique would report how effective it was, given the provided scenario conditions. The framework was responsible for activating the appropriate selection technique when the user made a selection attempt. With this framework in hand, we performed two additional user studies to determine how effective it could be in actual use, and to identify its strengths and weaknesses. Each study compared several selection techniques individually against the framework which utilized them collectively, picking the most suitable. Again, the same scenarios from our first study were reused. From these studies, we gained a deeper understanding of the many challenges associated with automatic selection technique determination. The results from these two studies showed that transitioning between techniques was potentially viable, but rife with design challenges that made its optimization quite difficult.In an effort to sidestep some of the issues surrounding the switching of discrete techniques, we sought to attack the problem from the other direction, and make a single technique act similarly to two techniques, adjusting dynamically to conditions. We performed a user study to analyze the performance of such a technique, with promising results. While the qualitative differences were small, the user feedback did indicate that users preferred this technique over the others, which were static in nature.Finally, we sought to gain a deeper understanding of existing selection techniques that were dynamic in nature, and study how they were designed, and how they could be improved. We scrutinized the attributes of each technique that were already being adjusted dynamically or that could be adjusted and innovated new ways in which the technique could be improved upon. Within this analysis, we also gave thought to how each technique could be best integrated into the Auto-Select framework we proposed earlier. This overall analysis of the latest selection techniques left us with an array of new variants that warrant being created and tested against their existing versions.Our overall research goal was to perform an analysis of selection techniques that intelligently adapt to their environment. We believe that we achieved this by performing several iterative development cycles, including user studies and ultimately leading to innovation in the field of selection. We conclude our research with yet more questions left to be answered. We intend to pursue further research regarding some of these questions, as time permits.
Show less - Date Issued
- 2014
- Identifier
- CFE0005469, ucf:50381
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005469
- Title
- Pen-based Methods For Recognition and Animation of Handwritten Physics Solutions.
- Creator
-
Cheema, Salman, Laviola II, Joseph, Hughes, Charles, Sukthankar, Gita, Hammond, Tracy, University of Central Florida
- Abstract / Description
-
There has been considerable interest in constructing pen-based intelligent tutoring systems due to the natural interaction metaphor and low cognitive load afforded by pen-based interaction. We believe that pen-based intelligent tutoring systems can be further enhanced by integrating animation techniques. In this work, we explore methods for recognizing and animating sketched physics diagrams. Our methodologies enable an Intelligent Tutoring System (ITS) to understand the scenario and...
Show moreThere has been considerable interest in constructing pen-based intelligent tutoring systems due to the natural interaction metaphor and low cognitive load afforded by pen-based interaction. We believe that pen-based intelligent tutoring systems can be further enhanced by integrating animation techniques. In this work, we explore methods for recognizing and animating sketched physics diagrams. Our methodologies enable an Intelligent Tutoring System (ITS) to understand the scenario and requirements posed by a given problem statement and to couple this knowledge with a computational model of the student's handwritten solution. These pieces of information are used to construct meaningful animations and feedback mechanisms that can highlight errors in student solutions. We have constructed a prototype ITS that can recognize mathematics and diagrams in a handwritten solution and infer implicit relationships among diagram elements, mathematics and annotations such as arrows and dotted lines. We use natural language processing to identify the domain of a given problem, and use this information to select one or more of four domain-specific physics simulators to animate the user's sketched diagram. We enable students to use their answers to guide animation behavior and also describe a novel algorithm for checking recognized student solutions. We provide examples of scenarios that can be modeled using our prototype system and discuss the strengths and weaknesses of our current prototype.Additionally, we present the findings of a user study that aimed to identify animation requirements for physics tutoring systems. We describe a taxonomy for categorizing different types of animations for physics problems and highlight how the taxonomy can be used to define requirements for 50 physics problems chosen from a university textbook. We also present a discussion of 56 handwritten solutions acquired from physics students and describe how suitable animations could be constructed for each of them.
Show less - Date Issued
- 2014
- Identifier
- CFE0005472, ucf:50380
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005472
- Title
- Bridging the Gap Between Fun and Fitness: Instructional Techniques and Real-World Applications for Full-Body Dance Games.
- Creator
-
Charbonneau, Emiko, Laviola II, Joseph, Hughes, Charles, Tappen, Marshall, Angelopoulos, Theodore, Mueller, Florian, University of Central Florida
- Abstract / Description
-
Full-body controlled games offer the opportunity for not only entertainment, but education and exercise as well. Refined gameplay mechanics and content can boost intrinsic motivation and keep people playing over a long period of time, which is desirable for individuals who struggle with maintaining a regular exercise program. Within this gameplay genre, dance rhythm games have proven to be popular with game console owners. Yet, while other types of games utilize story mechanics that keep...
Show moreFull-body controlled games offer the opportunity for not only entertainment, but education and exercise as well. Refined gameplay mechanics and content can boost intrinsic motivation and keep people playing over a long period of time, which is desirable for individuals who struggle with maintaining a regular exercise program. Within this gameplay genre, dance rhythm games have proven to be popular with game console owners. Yet, while other types of games utilize story mechanics that keep players engaged for dozens of hours, motion-controlled dance games are just beginning to incorporate these elements. In addition, this control scheme is still young, only becoming commercially available in the last few years. Instructional displays and clear real-time feedback remain difficult challenges.This thesis investigates the potential for full-body dance games to be used as tools for entertainment, education, and fitness. We built several game prototypes to investigate visual, aural, and tactile methods for instruction and feedback. We also evaluated the fitness potential of the game Dance Central 2 both by itself and with extra game content which unlocked based on performance.Significant contributions include a framework for running a longitudinal video game study, results indicating high engagement with some fitness potential, and informed discussion of how dance games could make exertion a more enjoyable experience.
Show less - Date Issued
- 2013
- Identifier
- CFE0004829, ucf:49690
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004829
- Title
- Human-Robot Interaction For Multi-Robot Systems.
- Creator
-
Lewis, Bennie, Sukthankar, Gita, Hughes, Charles, Laviola II, Joseph, Boloni, Ladislau, Hancock, Peter, University of Central Florida
- Abstract / Description
-
Designing an effective human-robot interaction paradigm is particularly important for complex tasks such as multi robot manipulation that require the human and robot to work together in a tightly coupled fashion. Although increasing the number of robots can expand the area that therobots can cover within a bounded period of time, a poor human-robot interface will ultimately compromise the performance of the team of robots. However, introducing a human operator to the team of robots, does not...
Show moreDesigning an effective human-robot interaction paradigm is particularly important for complex tasks such as multi robot manipulation that require the human and robot to work together in a tightly coupled fashion. Although increasing the number of robots can expand the area that therobots can cover within a bounded period of time, a poor human-robot interface will ultimately compromise the performance of the team of robots. However, introducing a human operator to the team of robots, does not automatically improve performance due to the difficulty of teleoperating mobile robots with manipulators. The human operator's concentration is divided not only amongmultiple robots but also between controlling each robot's base and arm. This complexity substantially increases the potential neglect time, since the operator's inability to effectively attend to each robot during a critical phase of the task leads to a significant degradation in task performance.There are several proven paradigms for increasing the efficacy of human-robot interaction: 1) multimodal interfaces in which the user controls the robots using voice and gesture; 2) configurable interfaces which allow the user to create new commands by demonstrating them; 3) adaptive interfaceswhich reduce the operator's workload as necessary through increasing robot autonomy. This dissertation presents an evaluation of the relative benefits of different types of user interfaces for multi-robot systems composed of robots with wheeled bases and three degree of freedom arms. It describes a design for constructing low-cost multi-robot manipulation systems from off the shelfparts.User expertise was measured along three axes (navigation, manipulation, and coordination), and participants who performed above threshold on two out of three dimensions on a calibration task were rated as expert. Our experiments reveal that the relative expertise of the user was the key determinant of the best performing interface paradigm for that user, indicating that good user modeling is essential for designing a human-robot interaction system that will be used for an extended period of time. The contributions of the dissertation include: 1) a model for detecting operator distraction from robot motion trajectories; 2) adjustable autonomy paradigms for reducing operator workload; 3) a method for creating coordinated multi-robot behaviors from demonstrations with a single robot; 4) a user modeling approach for identifying expert-novice differences from short teleoperation traces.
Show less - Date Issued
- 2014
- Identifier
- CFE0005198, ucf:50613
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005198
- Title
- Automatic 3D human modeling: an initial stage towards 2-way inside interaction in mixed reality.
- Creator
-
Xiong, Yiyan, Hughes, Charles, Pattanaik, Sumanta, Laviola II, Joseph, Moshell, Michael, University of Central Florida
- Abstract / Description
-
3D human models play an important role in computer graphics applications from a wide range of domains, including education, entertainment, medical care simulation and military training. In many situations, we want the 3D model to have a visual appearance that matches that of a specific living person and to be able to be controlled by that person in a natural manner. Among other uses, this approach supports the notion of human surrogacy, where the virtual counterpart provides a remote presence...
Show more3D human models play an important role in computer graphics applications from a wide range of domains, including education, entertainment, medical care simulation and military training. In many situations, we want the 3D model to have a visual appearance that matches that of a specific living person and to be able to be controlled by that person in a natural manner. Among other uses, this approach supports the notion of human surrogacy, where the virtual counterpart provides a remote presence for the human who controls the virtual character's behavior. In this dissertation, a human modeling pipeline is proposed for the problem of creating a 3D digital model of a real person. Our solution involves reshaping a 3D human template with a 2D contour of the participant and then mapping the captured texture of that person to the generated mesh. Our method produces an initial contour of a participant by extracting the user image from a natural background. One particularly novel contribution in our approach is the manner in which we improve the initial vertex estimate. We do so through a variant of the ShortStraw corner-finding algorithm commonly used in sketch-based systems. Here, we develop improvements to ShortStraw, presenting an algorithm called IStraw, and then introduce adaptations of this improved version to create a corner-based contour segmentatiuon algorithm. This algorithm provides significant improvements on contour matching over previously developed systems, and does so with low computational complexity. The system presented here advances the state of the art in the following aspects. First, the human modeling process is triggered automatically by matching the participant's pose with an initial pose through a tracking device and software. In our case, the pose capture and skeletal model are provided by the Microsoft Kinect and its associated SDK. Second, color image, depth data, and human tracking information from the Kinect and its SDK are used to automatically extract the contour of the participant and then generate a 3D human model with skeleton. Third, using the pose and the skeletal model, we segment the contour into eight parts and then match the contour points on each segment to a corresponding anchor set associated with a 3D human template. Finally, we map the color image of the person to the 3D model as its corresponding texture map. The whole modeling process only take several seconds and the resulting human model looks like the real person. The geometry of the 3D model matches the contour of the real person, and the model has a photorealistic texture. Furthermore, the mesh of the human model is attached to the skeleton provided in the template, so the model can support programmed animations or be controlled by real people. This human control is commonly done through a literal mapping (motion capture) or a gesture-based puppetry system. Our ultimate goal is to create a mixed reality (MR) system, in which the participants can manipulate virtual objects, and in which these virtual objects can affect the participant, e.g., by restricting theirmobility. This MR system prototype design motivated the work of this dissertation, since a realistic 3D human model of the participant is an essential part of implementing this vision.
Show less - Date Issued
- 2014
- Identifier
- CFE0005277, ucf:50543
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005277