Current Search: Leonessa, Alexander (x)
View All Items
- Title
- DESIGN OF AN ADAPTIVE AUTOPILOT FOR AN EXPENDABLE LAUNCH VEHICLE.
- Creator
-
Plaisted, Clinton, Leonessa, Alexander, University of Central Florida
- Abstract / Description
-
This study investigates the use of a Model Reference Adaptive Control (MRAC) direct approach to solve the attitude control problem of an Expendable Launch Vehicle (ELV) during its boost phase of flight. The adaptive autopilot design is based on Lyapunov Stability Theory and provides a useful means for controlling the ELV in the presence of environmental and dynamical uncertainties. Several different basis functions are employed to approximate the nonlinear parametric uncertainties in the...
Show moreThis study investigates the use of a Model Reference Adaptive Control (MRAC) direct approach to solve the attitude control problem of an Expendable Launch Vehicle (ELV) during its boost phase of flight. The adaptive autopilot design is based on Lyapunov Stability Theory and provides a useful means for controlling the ELV in the presence of environmental and dynamical uncertainties. Several different basis functions are employed to approximate the nonlinear parametric uncertainties in the system dynamics. The control system is designed so that the desire dresponse to a reference model would be tracked by the closed-loop system. The reference model is obtained via the feedback linearization technique applied to the nonlinear ELV dynamics. The adaptive control method is then applied to a representative ELV longitudinal motion, specifically the 6th flight of Atlas-Centaur launch vehicle (AC-6) in 1965. The simulation results presented are compared to that of the actual AC-6 post-flight trajectory reconstruction. Recommendations are made for modification and future applications of the method for several other ELV dynamics issues, such as control saturation, engine inertia, flexible body dynamics, and sloshing of liquid fuels.
Show less - Date Issued
- 2008
- Identifier
- CFE0002006, ucf:47616
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002006
- Title
- REDUCTION OF VORTEX-DRIVEN OSCILLATIONS IN A SOLID ROCKET MOTOR COLD FLOW SIMULATION THROUGH ACTIVE CONTROL.
- Creator
-
Ward, Jami, Leonessa, Alexander, University of Central Florida
- Abstract / Description
-
Control of vortex-driven instabilities was demonstrated via a scaled-down, cold-flow simulation that modeled closed-end acoustics. When vortex shedding frequencies couple with the natural acoustic modes of a choked chamber, potentially damaging low-frequency instabilities may arise. Although passive solutions can be effective, an active control solution is preferable. An experiment was performed to demonstrate an active control scheme for the reduction of vortex-driven oscillations. A non...
Show moreControl of vortex-driven instabilities was demonstrated via a scaled-down, cold-flow simulation that modeled closed-end acoustics. When vortex shedding frequencies couple with the natural acoustic modes of a choked chamber, potentially damaging low-frequency instabilities may arise. Although passive solutions can be effective, an active control solution is preferable. An experiment was performed to demonstrate an active control scheme for the reduction of vortex-driven oscillations. A non-reacting experiment using a primary flow of air, where both the duct exit and inlet are choked, simulated the closed-end acoustics. Two plates, separated by 1.27 cm, produced the vortex shedding phenomenon at the chamber's first longitudinal mode. Two active control schemes, closed-loop and open-loop, were studied via a cold-flow simulation for validating the effects of reducing vortex shedding instabilities in the system. Actuation for both control schemes was produced by using a secondary injection method. The actuation system consisted of pulsing compressed air from a modifed, 2-stroke model airplane engine, controlled and powered by a DC motor. The use of open-loop only active control was not highly effective in reducing the amplitude of the first longitudinal acoustic mode, near 93 Hz, when the secondary injection was pulsed at the same modal frequency. This was due to the uncontrolled phasing of the secondary injection system. A Pulse Width Modulated (PWM) signal was added to the open-loop control scheme to correct for improper phasing of the secondary injection flow relative to the primary flow. This addition allowed the motor speed to be intermittently increased to a higher RPM before returning to the desired open-loop control state. This proved to be effective in reducing the pressure disturbance by approximately 46%. A closed-loop control scheme was then test for its effectiveness in controlling the phase of the secondary injection. Feedback of the system's state was determined by placing a dynamic pressure transducer near the chamber exit. Closed-loop active control, using the designed secondary injection system, was proven as an effective means of reducing the problematic instabilities. A 50% reduction in the FFT RMS amplitude was realized by utilizing a Proportional-Derivative controller to modify the phase of the secondary injection.
Show less - Date Issued
- 2006
- Identifier
- CFE0000920, ucf:46728
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000920
- Title
- SYSTEM IDENTIFICATION AND FAULT DETECTION OF COMPLEX SYSTEMS.
- Creator
-
Luo, Dapeng, Leonessa, Alexander, University of Central Florida
- Abstract / Description
-
The proposed research is devoted to devising system identification and fault detection approaches and algorithms for a system characterized by nonlinear dynamics. Mathematical models of dynamical systems and fault models are built based on observed data from systems. In particular, we will focus on statistical subspace instrumental variable methods which allow the consideration of an appealing mathematical model in many control applications consisting of a nonlinear feedback system with...
Show moreThe proposed research is devoted to devising system identification and fault detection approaches and algorithms for a system characterized by nonlinear dynamics. Mathematical models of dynamical systems and fault models are built based on observed data from systems. In particular, we will focus on statistical subspace instrumental variable methods which allow the consideration of an appealing mathematical model in many control applications consisting of a nonlinear feedback system with nonlinearities at both inputs and outputs. Different solutions within the proposed framework are presented to solve the system identification and fault detection problems. Specifically, Augmented Subspace Instrumental Variable Identification (ASIVID) approaches are proposed to identify the closed-loop nonlinear Hammerstein systems. Then fast approaches are presented to determine the system order. Hard-over failures are detected by order determination approaches when failures manifest themselves as rank deficiencies of the dynamical systems. Geometric interpretations of subspace tracking theorems are presented in this dissertation in order to propose a fault tolerance strategy. Possible fields of application considered in this research include manufacturing systems, autonomous vehicle systems, space systems and burgeoning bio-mechanical systems.
Show less - Date Issued
- 2006
- Identifier
- CFE0000915, ucf:46756
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000915
- Title
- INTERNATIONAL SPACE STATION REMOTE SENSING POINTING ANALYSIS.
- Creator
-
Jacobson, Craig, Leonessa, Alexander, University of Central Florida
- Abstract / Description
-
This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument is SHORE (Station High-Sensitivity Ocean Research Experiment), a multi-band optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. The analysis begins with the discussion of the coordinate systems involved and then...
Show moreThis paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument is SHORE (Station High-Sensitivity Ocean Research Experiment), a multi-band optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies. Finally, there is a brief discussion of image processing to address any post error correction options.
Show less - Date Issued
- 2005
- Identifier
- CFE0000855, ucf:46661
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000855
- Title
- Real-Time Open Source Traffic Control Software for the Advance Traffic Controller.
- Creator
-
Key, Justin, Radwan, Ahmed, Hua, Kien, Kincaid, John, Leonessa, Alexander, University of Central Florida
- Abstract / Description
-
Under the initiative of Department of Transportation (DOT) a safety-critical, dual redundant, open source traffic signal control application is currently being developed. The system named SCOPE, for Signal Control Program Environment, currently implements standard 8-phase NEMA logic and the National Cooperative Highway Research Program 3-66 preemption logic. SCOPE is designed to be part of the Advanced Traffic Controller (ATC), making use of API standard 2.06b to integrate with the hardware....
Show moreUnder the initiative of Department of Transportation (DOT) a safety-critical, dual redundant, open source traffic signal control application is currently being developed. The system named SCOPE, for Signal Control Program Environment, currently implements standard 8-phase NEMA logic and the National Cooperative Highway Research Program 3-66 preemption logic. SCOPE is designed to be part of the Advanced Traffic Controller (ATC), making use of API standard 2.06b to integrate with the hardware. Safety-critical status is achieved through redundancy of application logic that constantly compares expected signal phase information. From baseline requirements, engineers independently program application code, one using Ada95 and the other using C++.The Traffic EXperimental Analytical Simulation Model, a microscopic single-intersection vehicular simulation, was used for initial validation and testing of the functionality of the system. The second demonstration of the SCOPE, used actuated detector data collected from a recording of a live intersection. Actuator calls were placed on SCOPE at the same times the vehicles triggered the detectors in the video (assuming the vehicles were not in-queue). Using SCOPE the real-world traffic was not only right-of-way safely yielded, but the traffic flow state time average time in-queue reduced. The final phase of testing will occur when the DOT performs Formal Qualification Testing, which is scheduled for 2013.Upon validation and subsequent release to the open source community SCOPE will provide users the ability to replace the proprietary application software residing in ATC cabinets. Transparency will be provided into another aspect of the traffic control signal thus taking the initiative of ATC one step further.
Show less - Date Issued
- 2012
- Identifier
- CFE0004562, ucf:49254
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004562
- Title
- Investigation of Tactile Displays for Robot to Human Communication.
- Creator
-
Barber, Daniel, Reinerman, Lauren, Jentsch, Florian, Lackey, Stephanie, Leonessa, Alexander, University of Central Florida
- Abstract / Description
-
Improvements in autonomous systems technology and a growing demand within military operations are spurring a revolution in Human-Robot Interaction (HRI). These mixed-initiative human-robot teams are enabled by Multi-Modal Communication (MMC), which supports redundancy and levels of communication that are more robust than single mode interaction. (Bischoff (&) Graefe, 2002; Partan (&) Marler, 1999). Tactile communication via vibrotactile displays is an emerging technology, potentially...
Show moreImprovements in autonomous systems technology and a growing demand within military operations are spurring a revolution in Human-Robot Interaction (HRI). These mixed-initiative human-robot teams are enabled by Multi-Modal Communication (MMC), which supports redundancy and levels of communication that are more robust than single mode interaction. (Bischoff (&) Graefe, 2002; Partan (&) Marler, 1999). Tactile communication via vibrotactile displays is an emerging technology, potentially beneficial to advancing HRI. Incorporation of tactile displays within MMC requires developing messages equivalent in communication power to speech and visual signals used in the military. Toward that end, two experiments were performed to investigate the feasibility of a tactile language using a lexicon of standardized tactons (tactile icons) within a sentence structure for communication of messages for robot to human communication. Experiment one evaluated tactons from the literature with standardized parameters grouped into categories (directional, dynamic, and static) based on the nature and meaning of the patterns to inform design of a tactile syntax. Findings of this experiment revealed directional tactons showed better performance than non-directional tactons, therefore syntax for experiment two composed of a non-directional and a directional tacton was more likely to show performance better than chance. Experiment two tested the syntax structure of equally performing tactons identified from experiment one, revealing participants' ability to interpret tactile sentences better than chance with or without the presence of an independent work imperative task. This finding advanced the state of the art in tactile displays from one to two word phrases facilitating inclusion of the tactile modality within MMC for HRI.
Show less - Date Issued
- 2012
- Identifier
- CFE0004778, ucf:49800
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004778