Current Search: Mohammed Ali, Awrad (x)
View All Items
- Title
- Machine Learning from Casual Conversation.
- Creator
-
Mohammed Ali, Awrad, Sukthankar, Gita, Wu, Annie, Boloni, Ladislau, University of Central Florida
- Abstract / Description
-
Human social learning is an effective process that has inspired many existing machine learning techniques, such as learning from observation and learning by demonstration. In this dissertation, we introduce another form of social learning, Learning from a Casual Conversation (LCC). LCC is an open-ended machine learning system in which an artificially intelligent agent learns from an extended dialog with a human. Our system enables the agent to incorporate changes into its knowledge base,...
Show moreHuman social learning is an effective process that has inspired many existing machine learning techniques, such as learning from observation and learning by demonstration. In this dissertation, we introduce another form of social learning, Learning from a Casual Conversation (LCC). LCC is an open-ended machine learning system in which an artificially intelligent agent learns from an extended dialog with a human. Our system enables the agent to incorporate changes into its knowledge base, based on the human's conversational text input. This system emulates how humans learn from each other through a dialog. LCC closes the gap in the current research that is focused on teaching specific tasks to computer agents. Furthermore, LCC aims to provide an easy way to enhance the knowledge of the system without requiring the involvement of a programmer. This system does not require the user to enter specific information; instead, the user can chat naturally with the agent. LCC identifies the inputs that contain information relevant to its knowledge base in the learning process. LCC's architecture consists of multiple sub-systems combined to perform the task. Its learning component can add new knowledge to existing information in the knowledge base, confirm existing information, and/or update existing information found to be related to the user input. %The test results indicate that the prototype was successful in learning from a conversation. The LCC system functionality was assessed using different evaluation methods. This includes tests performed by the developer, as well as by 130 human test subjects. Thirty of those test subjects interacted directly with the system and completed a survey of 13 questions/statements that asked the user about his/her experience using LCC. A second group of 100 human test subjects evaluated the dialogue logs of a subset of the first group of human testers. The collected results were all found to be acceptable and within the range of our expectations.
Show less - Date Issued
- 2019
- Identifier
- CFE0007503, ucf:52634
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007503
- Title
- Synthetic generators for simulating social networks.
- Creator
-
Mohammed Ali, Awrad, Sukthankar, Gita, Wu, Annie, Boloni, Ladislau, University of Central Florida
- Abstract / Description
-
An application area of increasing importance is creating agent-based simulations to model human societies. One component of developing these simulations is the ability to generate realistic human social networks. Online social networking websites, such as Facebook, Google+, and Twitter, have increased in popularity in the last decade. Despite the increase in online social networking tools and the importance of studying human behavior in these networks, collecting data directly from these...
Show moreAn application area of increasing importance is creating agent-based simulations to model human societies. One component of developing these simulations is the ability to generate realistic human social networks. Online social networking websites, such as Facebook, Google+, and Twitter, have increased in popularity in the last decade. Despite the increase in online social networking tools and the importance of studying human behavior in these networks, collecting data directly from these networks is not always feasible due to privacy concerns. Previous work in this area has primarily been limited to 1) network generators that aim to duplicate a small subset of the original network's properties and 2) problem-specific generators for applications such as the evaluation of community detection algorithms.In this thesis, we extended two synthetic network generators to enable them to duplicate the properties of a specific dataset. In the first generator, we consider feature similarity and label homophily among individuals when forming links. The second generator is designed to handle multiplex networks that contain different link types. We evaluate the performance of both generators on existing real-world social network datasets, as well as comparing our methods with a related synthetic network generator. In this thesis, we demonstrate that the proposed synthetic network generators are both time efficient and require only limited parameter optimization.
Show less - Date Issued
- 2014
- Identifier
- CFE0005532, ucf:50300
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005532