Current Search: Moharam, M.G. (x)
View All Items
- Title
- RIGOROUS ANALYSIS OF WAVE GUIDING AND DIFFRACTIVE INTEGRATED OPTICAL STRUCTURES.
- Creator
-
Greenwell, Andrew, Moharam, M.G., University of Central Florida
- Abstract / Description
-
The realization of wavelength scale and sub-wavelength scale fabrication of integrated optical devices has led to a concurrent need for computational design tools that can accurately model electromagnetic phenomena on these length scales. This dissertation describes the physical, analytical, numerical, and software developments utilized for practical implementation of two particular frequency domain design tools: the modal method for multilayer waveguides and one-dimensional lamellar gratings...
Show moreThe realization of wavelength scale and sub-wavelength scale fabrication of integrated optical devices has led to a concurrent need for computational design tools that can accurately model electromagnetic phenomena on these length scales. This dissertation describes the physical, analytical, numerical, and software developments utilized for practical implementation of two particular frequency domain design tools: the modal method for multilayer waveguides and one-dimensional lamellar gratings and the Rigorous Coupled Wave Analysis (RCWA) for 1D, 2D, and 3D periodic optical structures and integrated optical devices. These design tools, including some novel numerical and programming extensions developed during the course of this work, were then applied to investigate the design of a few unique integrated waveguide and grating structures and the associated physical phenomena exploited by those structures. The properties and design of a multilayer, multimode waveguide-grating, guided mode resonance (GMR) filter are investigated. The multilayer, multimode GMR filters studied consist of alternating high and low refractive index layers of various thicknesses with a binary grating etched into the top layer. The separation of spectral wavelength resonances supported by a multimode GMR structure with fixed grating parameters is shown to be controllable from coarse to fine through the use of tightly controlled, but realizable, choices for multiple layer thicknesses in a two material waveguide; effectively performing the simultaneous engineering of the wavelength dispersion for multiple waveguide grating modes. This idea of simultaneous dispersion band tailoring is then used to design a multilayer, multimode GMR filter that possesses broadened angular acceptance for multiple wavelengths incident at a single angle of incidence. The effect of a steady-state linear loss or gain on the wavelength response of a GMR filter is studied. A linear loss added to the primary guiding layer of a GMR filter is shown to produce enhanced resonant absorption of light by the GMR structure. Similarly, linear gain added to the guiding layer is shown to produce enhanced resonant reflection and transmission from a GMR structure with decreased spectral line width. A combination of 2D and 3D modeling is utilized to investigate the properties of an embedded waveguide grating structure used in filtering/reflecting an incident guided mode. For the embedded waveguide grating, 2D modeling suggests the possibility of using low index periodic inclusions to create an embedded grating resonant filter, but the results of 3D RCWA modeling suggest that transverse low index periodic inclusions produce a resonant lossy cavity as opposed to a resonant reflecting mirror. A novel concept for an all-dielectric unidirectional dual grating output coupler is proposed and rigorously analyzed. A multilayer, single-mode, high and graded-index, slab waveguide is placed atop a slightly lower index substrate. The properties of the individual gratings etched into the waveguide's cover/air and substrate/air interfaces are then chosen such that no propagating diffracted orders are present in the device superstrate and only a single order is present outside the structure in the substrate. The concept produces a robust output coupler that requires neither phase-matching of the two gratings nor any resonances in the structure, and is very tolerant to potential errors in fabrication. Up to 96% coupling efficiency from the substrate-side grating is obtained over a wide range of grating properties.
Show less - Date Issued
- 2007
- Identifier
- CFE0001635, ucf:47244
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001635
- Title
- TWO-DIMENSIONAL GUIDED MODE RESONANT STRUCTURES FOR SPECTRAL FILTERING APPLICATIONS.
- Creator
-
Boonruang, Sakoolkan, Moharam, M. G., University of Central Florida
- Abstract / Description
-
Guided mode resonant (GMR) structures are optical devices that consist of a planar waveguide with a periodic structure either imbedded in or on the surface of the structure. The resonance anomaly in GMR structures has many applications as dielectric mirrors, tunable devices, sensors,and narrow spectral band reflection filters. A desirable response from a resonant grating filter normally includes a nearly 100% narrowband resonant spectral reflection (transmission), and a broad angular...
Show moreGuided mode resonant (GMR) structures are optical devices that consist of a planar waveguide with a periodic structure either imbedded in or on the surface of the structure. The resonance anomaly in GMR structures has many applications as dielectric mirrors, tunable devices, sensors,and narrow spectral band reflection filters. A desirable response from a resonant grating filter normally includes a nearly 100% narrowband resonant spectral reflection (transmission), and a broad angular acceptance at either normal incidence or an oblique angle of incidence. This dissertation is a detailed study of the unique nature of the resonance anomaly in GMR structures with two-dimensional (2-D) periodic perturbation. Clear understanding of the resonance phenomenon is developed and novel 2-D GMR structures are proposed to significantly improve the performance of narrow spectral filters. In 2-D grating diffraction, each diffracted order inherently propagates in its distinct diffraction plane. This allows for coupled polarization dependent resonant leaky modes with one in each diffraction plane. The nature of the interaction between these non-collinear guides and its impact on spectral and angular response of GMR devices is investigated and quantified for 2-D structures with rectangular and hexagonal grids. Based on the developed understanding of the underlying phenomenon, novel GMR devices are proposed and analyzed. A novel controllable multi-line guided mode resonant (GMR) filter is proposed. The separation of spectral wavelength resonances supported by a two-dimensional GMR structure can be coarse or fine depending on the physical dimensions of the structure and not the material properties. Multiple resonances are produced by weakly guided modes individually propagating along multiple planes of diffraction. Controllable two-line and three-line narrow-band reflection filter designs with spectral separation from a few up to hundreds of nanometers are exhibited using rectangular-lattice and hexagonal-lattice grating GMR structures, respectively. Broadening of the angular response of narrow band two-dimension guided mode resonant spectral filters, while maintaining a narrow spectral response, is investigated. The angular response is broadened by coupling the diffracted orders into multiple fundamental guided resonant modes. These guided modes have the same propagation constant but propagating in different planes inherent in multiple planes of diffraction of the 2-D gratings. The propagation constants of the guided resonant modes are determined from the physical dimensions of the grating (periodicity and duty cycle) and the incident direction. A five-fold improvement in the angular tolerance is achieved using a grating with strong second Bragg diffraction in order to produce a crossed diffraction. A novel dual grating structure with a second grating located on the substrate side is proposed to further broaden the angular tolerance of the spectral filter without degrading its spectral response. This strong second Bragg backward diffraction from the substrate grating causes two successive resonant bands to merge producing a resonance with symmetric broad angular response.
Show less - Date Issued
- 2007
- Identifier
- CFE0001825, ucf:47346
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001825
- Title
- Design and applications of volume holographic optical elements.
- Creator
-
Dunn, Steven C., Moharam, M.G., Engineering
- Abstract / Description
-
University of Central Florida College of Engineering Thesis; Volume gratings were studied both theoretically and experimentally in order to design and analyze practical volume holographic optical elements. The diffraction of finite (Gaussian) beams by transmission gratings is investigated.
- Date Issued
- 2001
- Identifier
- CFR0000781, ucf:52930
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFR0000781