Current Search: Moshell, Jack (x)
View All Items
- Title
- Towards Real-time Mixed Reality Matting in Natural Scenes.
- Creator
-
Beato, Nicholas, Hughes, Charles, Foroosh, Hassan, Tappen, Marshall, Moshell, Jack, University of Central Florida
- Abstract / Description
-
In Mixed Reality scenarios, background replacement is a common way to immerse a user in a synthetic environment. Properly identifying the background pixels in an image or video is a difficult problem known as matting. In constant color matting, research identifies and replaces a background that is a single color, known as the chroma key color. Unfortunately, the algorithms force a controlled physical environment and favor constant, uniform lighting. More generic approaches, such as natural...
Show moreIn Mixed Reality scenarios, background replacement is a common way to immerse a user in a synthetic environment. Properly identifying the background pixels in an image or video is a difficult problem known as matting. In constant color matting, research identifies and replaces a background that is a single color, known as the chroma key color. Unfortunately, the algorithms force a controlled physical environment and favor constant, uniform lighting. More generic approaches, such as natural image matting, have made progress finding alpha matte solutions in environments with naturally occurring backgrounds. However, even for the quicker algorithms, the generation of trimaps, indicating regions of known foreground and background pixels, normally requires human interaction or offline computation. This research addresses ways to automatically solve an alpha matte for an image in real-time, and by extension video, using a consumer level GPU. It do so even in the context of noisy environments that result in less reliable constraints than found in controlled settings. To attack these challenges, we are particularly interested in automatically generating trimaps from depth buffers for dynamic scenes so that algorithms requiring more dense constraints may be used. We then explore a sub-image based approach to parallelize an existing hierarchical approach on high resolution imagery by taking advantage of local information. We show that locality can be exploited to significantly reduce the memory and compute requirements of previously necessary when computing alpha mattes of high resolution images. We achieve this using a parallelizable scheme that is both independent of the matting algorithm and image features. Combined, these research topics provide a basis for Mixed Reality scenarios using real-time natural image matting on high definition video sources.
Show less - Date Issued
- 2012
- Identifier
- CFE0004515, ucf:49284
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004515
- Title
- STUDY OF HUMAN ACTIVITY IN VIDEO DATA WITH AN EMPHASIS ON VIEW-INVARIANCE.
- Creator
-
Ashraf, Nazim, Foroosh, Hassan, Hughes, Charles, Tappen, Marshall, Moshell, Jack, University of Central Florida
- Abstract / Description
-
The perception and understanding of human motion and action is an important area of research in computer vision that plays a crucial role in various applications such as surveillance, HCI, ergonomics, etc. In this thesis, we focus on the recognition of actions in the case of varying viewpoints and different and unknown camera intrinsic parameters. The challenges to be addressed include perspective distortions, differences in viewpoints, anthropometric variations,and the large degrees of...
Show moreThe perception and understanding of human motion and action is an important area of research in computer vision that plays a crucial role in various applications such as surveillance, HCI, ergonomics, etc. In this thesis, we focus on the recognition of actions in the case of varying viewpoints and different and unknown camera intrinsic parameters. The challenges to be addressed include perspective distortions, differences in viewpoints, anthropometric variations,and the large degrees of freedom of articulated bodies. In addition, we are interested in methods that require little or no training. The current solutions to action recognition usually assume that there is a huge dataset of actions available so that a classifier can be trained. However, thismeans that in order to define a new action, the user has to record a number of videos fromdifferent viewpoints with varying camera intrinsic parameters and then retrain the classifier, which is not very practical from a development point of view. We propose algorithms that overcome these challenges and require just a few instances of the action from any viewpoint with any intrinsic camera parameters. Our first algorithm is based on the rank constraint on the family of planar homographies associated with triplets of body points. We represent action as a sequence of poses, and decompose the pose into triplets. Therefore, the pose transition is brokendown into a set of movement of body point planes. In this way, we transform the non-rigid motion of the body points into a rigid motion of body point planes. We use the fact that the family of homographies associated with two identical poses would have rank 4 to gauge similarity of the pose between two subjects, observed by different perspective cameras and from different viewpoints. This method requires only one instance of the action. We then show that it is possible to extend the concept of triplets to line segments. In particular, we establish that if we look at the movement of line segments instead of triplets, we have more redundancy in data thus leading to better results. We demonstrate this concept on (")fundamental ratios.(") We decompose a human body pose into line segments instead of triplets and look at set of movement of line segments. This method needs only three instances of the action. If a larger dataset is available, we can also apply weighting on line segments for better accuracy. The last method is based onthe concept of (")Projective Depth("). Given a plane, we can find the relative depth of a point relative to the given plane. We propose three different ways of using (")projective depth:(") (i) Triplets - the three points of a triplet along with the epipole defines the plane and the movement of points relative to these body planes can be used to recognize actions; (ii) Ground plane - if we are able to extract the ground plane, we can find the (")projective depth(") of the body points withrespect to it. Therefore, the problem of action recognition would translate to curve matching; and (iii) Mirror person (-) We can use the mirror view of the person to extract mirror symmetric planes. This method also needs only one instance of the action. Extensive experiments are reported on testing view invariance, robustness to noisy localization and occlusions of bodypoints, and action recognition. The experimental results are very promising and demonstrate the efficiency of our proposed invariants.
Show less - Date Issued
- 2012
- Identifier
- CFE0004352, ucf:49449
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004352
- Title
- Automatic Scenario Generation using Procedural Modeling Techniques.
- Creator
-
Martin, Glenn, Hughes, Charles, Moshell, Jack, Fiore, Stephen, Orooji, Ali, University of Central Florida
- Abstract / Description
-
Training typically begins with a pre-existing scenario. The training exercise is performed and then an after action review is sometimes held. This (")training pipeline(") is repeated for each scenario that will be used that day. This approach is used routinely and often effectively, yet it has a number of aspects that can result in poor training. In particular, this process commonly has two associated events that are undesirable. First, scenarios are re-used over and over, which can reduce...
Show moreTraining typically begins with a pre-existing scenario. The training exercise is performed and then an after action review is sometimes held. This (")training pipeline(") is repeated for each scenario that will be used that day. This approach is used routinely and often effectively, yet it has a number of aspects that can result in poor training. In particular, this process commonly has two associated events that are undesirable. First, scenarios are re-used over and over, which can reduce their effectiveness in training. Second, additional responsibility is placed on the individual training facilitator in that the trainer must now track performance improvements between scenarios. Taking both together can result in a multiplicative degradation in effectiveness. Within any simulation training exercise, a scenario definition is the starting point. While these are, unfortunately, re-used and over-used, they can, in fact, be generated from scratch each time. Typically, scenarios include the entire configuration for the simulators such as entities used, time of day, weather effects, entity starting locations and, where applicable, munitions effects. In addition, a background story (exercise briefing) is given to the trainees. The leader often then develops a mission plan that is shared with the trainee group. Given all of these issues, scientists began to explore more purposeful, targeted training. Rather than an ad-hoc creation of a simulation experience, there was an increased focus on the content of the experience and its effects on training. Previous work in scenario generation, interactive storytelling and computational approaches, while providing a good foundation, fall short on addressing the need for adaptive, automatic scenario generation. This dissertation addresses this need by building up a conceptual model to represent scenarios, mapping that conceptual model to a computational model, and then applying a newer procedural modeling technique, known as Functional L-systems, to create scenarios given a training objective, scenario complexity level desired, and sets of baseline and vignette scenario facets.A software package, known as PYTHAGORAS, was built and is presented that incorporates all these contributions into an actual tool for creating scenarios (both manual and automatic approaches are included). This package is then evaluated by subject matter experts in a scenario-based (")Turing Test(") of sorts where both system-generated scenarios and human-generated scenarios are evaluated by independent reviewers. The results are presented from various angles.Finally, a review of how such a tool can affect the training pipeline is included. In addition, a number of areas into which scenario generation can be expanded are reviewed. These focus on additional elements of both the training environment (e.g., buildings, interiors, etc.) and the training process (e.g., scenario write-ups, etc.).
Show less - Date Issued
- 2012
- Identifier
- CFE0004265, ucf:49525
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004265
- Title
- DIGITAL INTERACTIVE GAMES FOR ASSESSMENT: A STUDY OF THE EFFECTIVENESS OF A DIGITAL GAME AS A MEASURE OF STUDENTS' UNDERSTANDING OF BOOLEAN LOGIC.
- Creator
-
Haji Mohammad Ali Sabbagh, Shabnam, Moshell, Jack, Underberg, Natalie, Lindgren, Robb, University of Central Florida
- Abstract / Description
-
Digital games have been used mostly for entertainment but recently researchers have started to use digital games in other areas such as education and training. Researchers have shown that digital games can provide a compelling, creative, and collaborative environment for learning. However, the popularity of computers and the Internet brings this question to mind: Are the assessment methods falling behind and remaining traditional? Will the traditional methods of learning and knowledge...
Show moreDigital games have been used mostly for entertainment but recently researchers have started to use digital games in other areas such as education and training. Researchers have shown that digital games can provide a compelling, creative, and collaborative environment for learning. However, the popularity of computers and the Internet brings this question to mind: Are the assessment methods falling behind and remaining traditional? Will the traditional methods of learning and knowledge assessment be sufficient for this new generation who are starving for new technology?This study investigates the effectiveness of using a digital interactive game as an assessments method (-) in this case a mini-game that was designed to assess the student's knowledge on basic Boolean logic. The study reports on the performance differences of the students who participated in this study and correlations between the performance of these students in a digital interactive game, written tests and their in-class performance to examine the effectiveness of using a digital game as a new knowledge assessment method.
Show less - Date Issued
- 2014
- Identifier
- CFE0005343, ucf:50494
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005343
- Title
- Virtual Router Approach for Wireless Ad Hoc Networks.
- Creator
-
Ho, Ai, Hua, Kien, Guha, Ratan, Moshell, Jack, Zou, Changchun, Wang, Ching, University of Central Florida
- Abstract / Description
-
Wireless networks have become increasingly popular in recent years. There are two variations of mobile wireless networks: infrastructure mobile networks and infrastructureless mobile networks. The latter are also known as mobile ad hoc network (MANET). MANETs have no fixed routers. Instead, mobile nodes function as relay nodes or routers, which discover and maintain communication connections between source nodes and destination nodes for various data transmission sessions. In other words, an...
Show moreWireless networks have become increasingly popular in recent years. There are two variations of mobile wireless networks: infrastructure mobile networks and infrastructureless mobile networks. The latter are also known as mobile ad hoc network (MANET). MANETs have no fixed routers. Instead, mobile nodes function as relay nodes or routers, which discover and maintain communication connections between source nodes and destination nodes for various data transmission sessions. In other words, an MANET is a self-organizing multi-hop wireless network in which all nodes within a given geographical area participate in the routing and data forwarding process. Such networks are scalable and self-healing. They support mobile applications where an infrastructure is either not available (e.g., rescue operations and underground networks) or not desirable (e.g., harsh industrial environments).In many ad hoc networks such as vehicular networks, links among nodes change constantly and rapidly due to high node speed. Maintaining communication links of an established communication path that extends between source and destination nodes is a significant challenge in mobile ad hoc networks due to movement of the mobile nodes. In particular, such communication links are often broken under a high mobility environment. Communication links can also be broken by obstacles such as buildings in a street environment that block radio signal. In a street environment, obstacles and fast moving nodes result in a very short window of communication between nodes on different streets. Although a new communication route can be established when a break in the communication path occurs, repeatedly reestablishing new routes incurs delay and substantial overhead. To address this limitation, we introduce the Virtual Router abstraction in this dissertation. A virtual router is a dynamically-created logical router that is associated with a particular geographical area. Its routing functionality is provided by the physical nodes (i.e., mobile devices) currently within the geographical region served by the virtual router. These physical nodes take turns in forwarding data packets for the virtual router. In this environment, data packets are transmitted from a source node to a destination node over a series of virtual routers. Since virtual routers do not move, this scheme is much less susceptible to node mobility. There can be two virtual router approaches: Static Virtual Router (SVR) and Dynamic Virtual Router (DVR). In SVR, the virtual routers are predetermined and shared by all communication sessions over time. This scheme requires each mobile node to have a map of the virtual routers, and use a global positioning system (GPS) to determine if the node is within the geographical region of a given router. DVR is different from SVR with the following distinctions: (1) virtual routers are dynamically created for each communication sessions as needed, and deprecated after their use; (2) mobile nodes do not need to have a GPS; and (3) mobile nodes do not need to know whereabouts of the virtual routers.In this dissertation, we apply Virtual Router approach to address mobility challenges in routing data. We first propose a data routing protocol that uses SVR to overcome the extreme fast topology change in a street environment. We then propose a routing protocol that does not require node locations by adapting a DVR approach. We also explore how the Virtual Router Approach can reduce the overhead associated with initial route or location requests used by many existing routing protocols to find a destination. An initial request for a destination is expensive because all the nodes need to be reached to locate the destination. We propose two broadcast protocols; one in an open terrain environment and the other in a street environment. Both broadcast protocols apply SVR. We provide simulation results to demonstrate the effectiveness of the proposed protocols in handling high mobility. They show Virtual Router approach can achieve several times better performance than traditional routing and broadcast approach based on physical routers (i.e., relay nodes).
Show less - Date Issued
- 2011
- Identifier
- CFE0004119, ucf:49090
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004119
- Title
- AR Physics: Transforming physics diagrammatic representations on paper into interactive simulations.
- Creator
-
Zhou, Yao, Underberg-Goode, Natalie, Lindgren, Robb, Moshell, Jack, Peters, Philip, University of Central Florida
- Abstract / Description
-
A problem representation is a cognitive structure created by the solver in correspondence to the problem. Sketching representative diagrams in the domain of physics encourages a problem solving strategy that starts from 'envisionment' by which one internally simulates the physical events and predicts outcomes. Research studies also show that sketching representative diagrams improves learner's performance in solving physics problems. The pedagogic benefits of sketching representations on...
Show moreA problem representation is a cognitive structure created by the solver in correspondence to the problem. Sketching representative diagrams in the domain of physics encourages a problem solving strategy that starts from 'envisionment' by which one internally simulates the physical events and predicts outcomes. Research studies also show that sketching representative diagrams improves learner's performance in solving physics problems. The pedagogic benefits of sketching representations on paper make this traditional learning strategy remain pivotal and worthwhile to be preserved and integrated into the current digital learning landscape.In this paper, I describe AR Physics, an Augmented Reality based application that intends to facilitate one's learning of physics concepts about objects' linear motion. It affords the verified physics learning strategy of sketching representative diagrams on paper, and explores the capability of Augmented Reality in enhancing visual conceptions. The application converts the diagrams drawn on paper into virtual representations displayed on a tablet screen. As such learners can create physics simulation based on the diagrams and test their (")envisionment(") for the diagrams. Users' interaction with AR Physics consists of three steps: 1) sketching a diagram on paper; 2) capturing the sketch with a tablet camera to generate a virtual duplication of the diagram on the tablet screen, and 3) placing a physics object and configuring relevant parameters through the application interface to construct a physics simulation.A user study about the efficiency and usability of AR Physics was performed with 12 college students. The students interacted with the application, and completed three tasks relevant to the learning material. They were given eight questions afterwards to examine their post-learning outcome. The same questions were also given prior to the use of the application in order to comparewith the post results. System Usability Scale (SUS) was adopted to assess the application's usability and interviews were conducted to collect subjects' opinions about Augmented Reality in general. The results of the study demonstrate that the application can effectively facilitate subjects' understanding the target physics concepts. The overall satisfaction with the application's usability was disclosed by the SUS score. Finally subjects expressed that they gained a clearer idea about Augmented Reality through the use of the application.
Show less - Date Issued
- 2014
- Identifier
- CFE0005566, ucf:50292
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005566
- Title
- Exploring sparsity, self-similarity, and low rank approximation in action recognition, motion retrieval, and action spotting.
- Creator
-
Sun, Chuan, Foroosh, Hassan, Hughes, Charles, Tappen, Marshall, Sukthankar, Rahul, Moshell, Jack, University of Central Florida
- Abstract / Description
-
This thesis consists of $4$ major parts. In the first part (Chapters $1-2$), we introduce the overview, motivation, and contribution of our works, and extensively survey the current literature for $6$ related topics. In the second part (Chapters $3-7$), we explore the concept of ``Self-Similarity" in two challenging scenarios, namely, the Action Recognition and the Motion Retrieval. We build three-dimensional volume representations for both scenarios, and devise effective techniques that can...
Show moreThis thesis consists of $4$ major parts. In the first part (Chapters $1-2$), we introduce the overview, motivation, and contribution of our works, and extensively survey the current literature for $6$ related topics. In the second part (Chapters $3-7$), we explore the concept of ``Self-Similarity" in two challenging scenarios, namely, the Action Recognition and the Motion Retrieval. We build three-dimensional volume representations for both scenarios, and devise effective techniques that can produce compact representations encoding the internal dynamics of data. In the third part (Chapter $8$), we explore the challenging action spotting problem, and propose a feature-independent unsupervised framework that is effective in spotting action under various real situations, even under heavily perturbed conditions. The final part (Chapters $9$) is dedicated to conclusions and future works.For action recognition, we introduce a generic method that does not depend on one particular type of input feature vector. We make three main contributions: (i) We introduce the concept of Joint Self-Similarity Volume (Joint SSV) for modeling dynamical systems, and show that by using a new optimized rank-1 tensor approximation of Joint SSV one can obtain compact low-dimensional descriptors that very accurately preserve the dynamics of the original system, e.g. an action video sequence; (ii) The descriptor vectors derived from the optimized rank-1 approximation make it possible to recognize actions without explicitly aligning the action sequences of varying speed of execution or difference frame rates; (iii) The method is generic and can be applied using different low-level features such as silhouettes, histogram of oriented gradients (HOG), etc. Hence, it does not necessarily require explicit tracking of features in the space-time volume. Our experimental results on five public datasets demonstrate that our method produces very good results and outperforms many baseline methods.For action recognition for incomplete videos, we determine whether incomplete videos that are often discarded carry useful information for action recognition, and if so, how one can represent such mixed collection of video data (complete versus incomplete, and labeled versus unlabeled) in a unified manner. We propose a novel framework to handle incomplete videos in action classification, and make three main contributions: (i) We cast the action classification problem for a mixture of complete and incomplete data as a semi-supervised learning problem of labeled and unlabeled data. (ii) We introduce a two-step approach to convert the input mixed data into a uniform compact representation. (iii) Exhaustively scrutinizing $280$ configurations, we experimentally show on our two created benchmarks that, even when the videos are extremely sparse and incomplete, it is still possible to recover useful information from them, and classify unknown actions by a graph based semi-supervised learning framework.For motion retrieval, we present a framework that allows for a flexible and an efficient retrieval of motion capture data in huge databases. The method first converts an action sequence into a self-similarity matrix (SSM), which is based on the notion of self-similarity. This conversion of the motion sequences into compact and low-rank subspace representations greatly reduces the spatiotemporal dimensionality of the sequences. The SSMs are then used to construct order-3 tensors, and we propose a low-rank decomposition scheme that allows for converting the motion sequence volumes into compact lower dimensional representations, without losing the nonlinear dynamics of the motion manifold. Thus, unlike existing linear dimensionality reduction methods that distort the motion manifold and lose very critical and discriminative components, the proposed method performs well, even when inter-class differences are small or intra-class differences are large. In addition, the method allows for an efficient retrieval and does not require the time-alignment of the motion sequences. We evaluate the performance of our retrieval framework on the CMU mocap dataset under two experimental settings, both demonstrating very good retrieval rates.For action spotting, our framework does not depend on any specific feature (e.g. HOG/HOF, STIP, silhouette, bag-of-words, etc.), and requires no human localization, segmentation, or framewise tracking. This is achieved by treating the problem holistically as that of extracting the internal dynamics of video cuboids by modeling them in their natural form as multilinear tensors. To extract their internal dynamics, we devised a novel Two-Phase Decomposition (TP-Decomp) of a tensor that generates very compact and discriminative representations that are robust to even heavily perturbed data. Technically, a Rank-based Tensor Core Pyramid (Rank-TCP) descriptor is generated by combining multiple tensor cores under multiple ranks, allowing to represent video cuboids in a hierarchical tensor pyramid. The problem then reduces to a template matching problem, which is solved efficiently by using two boosting strategies: (i) to reduce the search space, we filter the dense trajectory cloud extracted from the target video; (ii) to boost the matching speed, we perform matching in an iterative coarse-to-fine manner. Experiments on 5 benchmarks show that our method outperforms current state-of-the-art under various challenging conditions. We also created a challenging dataset called Heavily Perturbed Video Arrays (HPVA) to validate the robustness of our framework under heavily perturbed situations.
Show less - Date Issued
- 2014
- Identifier
- CFE0005554, ucf:50290
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005554
- Title
- GAYME: The development, design and testing of an auto-ethnographic, documentary game about quarely wandering urban/suburban spaces in Central Florida.
- Creator
-
Moran, David, Moshell, Jack, Santana, Maria, Kim, Si Jung, McDaniel, Thomas, Vie, Stephanie, Pugh, William, University of Central Florida
- Abstract / Description
-
GAYME is a transmedia story-telling world that I have created to conceptually explore the dynamics of queering game design through the development of varying game prototypes. The final iteration of GAYME is @deadquarewalking*. It is a documentary game and a performance art installation that documents a carless, gay/queer/quare man's journey on Halloween to get to and from one of Orlando's most well-known gay clubs - the Parliament House Resort. "The art of cruising" city streets to seek out...
Show moreGAYME is a transmedia story-telling world that I have created to conceptually explore the dynamics of queering game design through the development of varying game prototypes. The final iteration of GAYME is @deadquarewalking*. It is a documentary game and a performance art installation that documents a carless, gay/queer/quare man's journey on Halloween to get to and from one of Orlando's most well-known gay clubs - the Parliament House Resort. "The art of cruising" city streets to seek out queer/quare companionship particularly amongst gay, male culture(s) is well-documented in densely, populated cities like New York, San Francisco and London, but not so much in car-centric, urban environments like Orlando that are less oriented towards pedestrians. Cruising has been and continues to be risky even in pedestrian-friendly cities but in Orlando cruising takes on a whole other dimension of danger. In 2011-2012, The Advocate magazine named Orlando one of the gayest cities in America (Breen, 2012). Transportation for America (2011) also named the Orlando metropolitan region the most dangerous city in the country for pedestrians. Living in Orlando without a car can be deadly as well as a significant barrier to connecting with other people, especially queer/quare people, because of Orlando's car-centric design. In Orlando, cars are sexy. At the same time, the increasing prevalence in gay, male culture(s) of geo-social, mobile phone applications using Global Positioning Systems (GPS) and location aware services, such as Grindr (Grindr, LLC., 2009) and even FourSquare (Crowley and Selvadurai, 2009) and Instagram (Systrom and Krieger, 2010), is shifting the way gay/queer/quare Orlandoans co-create social and sexual networks both online and offline. Urban and sub-urban landscapes have transformed into hybrid "techno-scapes" overlaying "the electronic, the emotional and the social with the geographic and the physical" (Hjorth, 2011). With or without a car, gay men can still geo-socially cruise Orlando's car-centric, street life with mobile devices. As such emerging media has become more pervasive, it has created new opportunities to quarely visualize Orlando's "technoscape" through phone photography and hashtag metadata while also blurring lines between the artist and the curator, the player and the game designer.This project particularly has evolved to employ game design as an exhibition tool for the visualization of geo-social photography through hashtag play. Using hashtags as a game mechanic generates metadata that potentially identifies patterns of play and "ways of seeing" across player experiences as they attempt to make meaning of the images they encounter in the game. @deadquarewalking also demonstrates the potential of game design and geo-social, photo-sharing applications to illuminate new ways of documenting and witnessing the urban landscapes that we both collectively and uniquely inhabit.*In Irish culture, (")quare(") can mean (")very(") or (")extremely(") or it can be a spelling of the rural or Southern pronunciation of the word (")queer.(") Living in the American Southeast, I personally relate more to the term (")quare(") versus (")queer.(") Cultural theorist E. Patrick Johnson (2001) also argues for (")quareness(") as a way to question the subjective bias of whiteness in queer studies that risks discounting the lived experiences and material realities of people of color. Though I do not identify as a person of color and would be categorized as white or European American, (")quareness(") has an important critical application for considering how Orlando's urban design is intersectionally racialized, gendered and classed.
Show less - Date Issued
- 2014
- Identifier
- CFE0005214, ucf:50641
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005214