Current Search: Muise, Robert (x)
View All Items
- Title
- Fast Compressed Automatic Target Recognition for a Compressive Infrared Imager.
- Creator
-
Millikan, Brian, Foroosh, Hassan, Rahnavard, Nazanin, Muise, Robert, Atia, George, Mahalanobis, Abhijit, Sun, Qiyu, University of Central Florida
- Abstract / Description
-
Many military systems utilize infrared sensors which allow an operator to see targets at night. Several of these are either mid-wave or long-wave high resolution infrared sensors, which are expensive to manufacture. But compressive sensing, which has primarily been demonstrated in medical applications, can be used to minimize the number of measurements needed to represent a high-resolution image. Using these techniques, a relatively low cost mid-wave infrared sensor can be realized which has...
Show moreMany military systems utilize infrared sensors which allow an operator to see targets at night. Several of these are either mid-wave or long-wave high resolution infrared sensors, which are expensive to manufacture. But compressive sensing, which has primarily been demonstrated in medical applications, can be used to minimize the number of measurements needed to represent a high-resolution image. Using these techniques, a relatively low cost mid-wave infrared sensor can be realized which has a high effective resolution. In traditional military infrared sensing applications, like targeting systems, automatic targeting recognition algorithms are employed to locate and identify targets of interest to reduce the burden on the operator. The resolution of the sensor can increase the accuracy and operational range of a targeting system. When using a compressive sensing infrared sensor, traditional decompression techniques can be applied to form a spatial-domain infrared image, but most are iterative and not ideal for real-time environments. A more efficient method is to adapt the target recognition algorithms to operate directly on the compressed samples. In this work, we will present a target recognition algorithm which utilizes a compressed target detection method to identify potential target areas and then a specialized target recognition technique that operates directly on the same compressed samples. We will demonstrate our method on the U.S. Army Night Vision and Electronic Sensors Directorate ATR Algorithm Development Image Database which has been made available by the Sensing Information Analysis Center.
Show less - Date Issued
- 2018
- Identifier
- CFE0007408, ucf:52739
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007408
- Title
- Vehicle Tracking and Classification via 3D Geometries for Intelligent Transportation Systems.
- Creator
-
Mcdowell, William, Mikhael, Wasfy, Jones, W Linwood, Haralambous, Michael, Atia, George, Mahalanobis, Abhijit, Muise, Robert, University of Central Florida
- Abstract / Description
-
In this dissertation, we present generalized techniques which allow for the tracking and classification of vehicles by tracking various Point(s) of Interest (PoI) on a vehicle. Tracking the various PoI allows for the composition of those points into 3D geometries which are unique to a given vehicle type. We demonstrate this technique using passive, simulated image based sensor measurements and three separate inertial track formulations. We demonstrate the capability to classify the 3D...
Show moreIn this dissertation, we present generalized techniques which allow for the tracking and classification of vehicles by tracking various Point(s) of Interest (PoI) on a vehicle. Tracking the various PoI allows for the composition of those points into 3D geometries which are unique to a given vehicle type. We demonstrate this technique using passive, simulated image based sensor measurements and three separate inertial track formulations. We demonstrate the capability to classify the 3D geometries in multiple transform domains (PCA (&) LDA) using Minimum Euclidean Distance, Maximum Likelihood and Artificial Neural Networks. Additionally, we demonstrate the ability to fuse separate classifiers from multiple domains via Bayesian Networks to achieve ensemble classification.
Show less - Date Issued
- 2015
- Identifier
- CFE0005976, ucf:50790
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005976