Current Search: Rahman, Md Sharikur (x)
View All Items
- Title
- Assessing the Safety and Operational Benefits of Connected and Automated Vehicles: Application on Different Roadways, Weather, and Traffic Conditions.
- Creator
-
Rahman, Md Sharikur, Abdel-Aty, Mohamed, Eluru, Naveen, Hasan, Samiul, Yan, Xin, University of Central Florida
- Abstract / Description
-
Connected and automated vehicle (CAV) technologies have recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. Connected vehicle (CV) technologies provide real-time information about the surrounding traffic condition (i.e., position, speed, acceleration) and the traffic management center's decisions. The CV technologies improve the safety by increasing driver situational awareness and reducing crashes through vehicle-to-vehicle (V2V) and vehicle-to...
Show moreConnected and automated vehicle (CAV) technologies have recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. Connected vehicle (CV) technologies provide real-time information about the surrounding traffic condition (i.e., position, speed, acceleration) and the traffic management center's decisions. The CV technologies improve the safety by increasing driver situational awareness and reducing crashes through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). Vehicle platooning with CV technologies is another key element of the future transportation systems which helps to simultaneously enhance traffic operations and safety. CV technologies can also further increase the efficiency and reliability of automated vehicles (AV) by collecting real-time traffic information through V2V and V2I. However, the market penetration rate (MPR) of CAVs and the higher level of automation might not be fully available in the foreseeable future. Hence, it is worthwhile to study the safety benefits of CAV technologies under different MPRs and lower level of automation. None of the studies focused on both traffic safety and operational benefits for these technologies including different roadway, traffic, and weather conditions. In this study, the effectiveness of CAV technologies (i.e., CV /AV/CAV/CV platooning) were evaluated in different roadway, traffic, and weather conditions. To be more specific, the impact of CVs in reduced visibility condition, longitudinal safety evaluation of CV platooning in the managed lane, lower level of AVs in arterial roadway, and the optimal MPRs of CAVs for both peak and off-peak period are analyzed using simulation techniques. Currently, CAV fleet data are not easily obtainable which is one of the primary reasons to deploy the simulation techniques in this study to evaluate the impacts of CAVs in the roadway. The car following, lane changing, and the platooning behavior of the CAV technologies were modeled in the C++ programming language by considering realistic car following and lane changing models in PTV VISSIM. Surrogate safety assessment techniques were considered to evaluate the safety effectiveness of these CAV technologies, while the average travel time, average speed, and average delay were evaluated as traffic operational measures. Several statistical tests (i.e., Two sample t-test, ANOVA) and the modelling techniques (Tobit, Negative binomial, and Logistic regression) were conducted to evaluate the CAV effectiveness with different MPRs over the baseline scenario. The statistical tests and modeling results suggested that the higher the MPR of CAVs implemented, the higher were the safety and mobility benefits achieved for different roadways (i.e., freeway, expressway, arterials, managed lane), weather (i.e., clear, foggy), and traffic conditions (i.e., peak and off-peak period). Interestingly, from the safety and operation perspective, at least 30% and 20% MPR were needed to achieve both the safety and operational benefits of peak and off-peak period, respectively. This dissertation has major implications for improving transportation infrastructure by recommending optimal MPR of CAVs to achieve balanced mobility and safety benefits considering varying roadway, traffic, and weather condition.
Show less - Date Issued
- 2019
- Identifier
- CFE0007709, ucf:52442
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007709
- Title
- Applying Machine Learning Techniques to Analyze the Pedestrian and Bicycle Crashes at the Macroscopic Level.
- Creator
-
Rahman, Md Sharikur, Abdel-Aty, Mohamed, Eluru, Naveen, Hasan, Samiul, Yan, Xin, University of Central Florida
- Abstract / Description
-
This thesis presents different data mining/machine learning techniques to analyze the vulnerable road users' (i.e., pedestrian and bicycle) crashes by developing crash prediction models at macro-level. In this study, we developed data mining approach (i.e., decision tree regression (DTR) models) for both pedestrian and bicycle crash counts. To author knowledge, this is the first application of DTR models in the growing traffic safety literature at macro-level. The empirical analysis is based...
Show moreThis thesis presents different data mining/machine learning techniques to analyze the vulnerable road users' (i.e., pedestrian and bicycle) crashes by developing crash prediction models at macro-level. In this study, we developed data mining approach (i.e., decision tree regression (DTR) models) for both pedestrian and bicycle crash counts. To author knowledge, this is the first application of DTR models in the growing traffic safety literature at macro-level. The empirical analysis is based on the Statewide Traffic Analysis Zones (STAZ) level crash count data for both pedestrian and bicycle from the state of Florida for the year of 2010 to 2012. The model results highlight the most significant predictor variables for pedestrian and bicycle crash count in terms of three broad categories: traffic, roadway, and socio demographic characteristics. Furthermore, spatial predictor variables of neighboring STAZ were utilized along with the targeted STAZ variables in order to improve the prediction accuracy of both DTR models. The DTR model considering spatial predictor variables (spatial DTR model) were compared without considering spatial predictor variables (aspatial DTR model) and the models comparison results clearly found that spatial DTR model is superior model compared to aspatial DTR model in terms of prediction accuracy. Finally, this study contributed to the safety literature by applying three ensemble techniques (Bagging, Random Forest, and Boosting) in order to improve the prediction accuracy of weak learner (DTR models) for macro-level crash count. The model's estimation result revealed that all the ensemble technique performed better than the DTR model and the gradient boosting technique outperformed other competing ensemble technique in macro-level crash prediction model.
Show less - Date Issued
- 2018
- Identifier
- CFE0007358, ucf:52103
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007358