Current Search: Rajaraman, Swaminathan (x)
View All Items
- Title
- Size, Charge and Dose Dependent In-vitro Kinetics of Polystyrene Nanoparticles.
- Creator
-
Abdellatif, Yasmine, Gesquiere, Andre, Kang, Hyeran, Rajaraman, Swaminathan, University of Central Florida
- Abstract / Description
-
The aim of the study described herein is to quantify the in-vitro kinetics of internalization of polystyrene nanoparticles (PS NPs) by cells. We used different charges, sizes and doses of fluorescently labelled PS NPs. Nanoparticles were characterized with UV-Vis, Fluorescence emission Dynamic Light Scattering (DLS) and Zeta potential for knowing their absorption, fluorescence spectra, size, charge, respectively. Additionally, cell viability was tested to know the toxicity of PS NPs. The...
Show moreThe aim of the study described herein is to quantify the in-vitro kinetics of internalization of polystyrene nanoparticles (PS NPs) by cells. We used different charges, sizes and doses of fluorescently labelled PS NPs. Nanoparticles were characterized with UV-Vis, Fluorescence emission Dynamic Light Scattering (DLS) and Zeta potential for knowing their absorption, fluorescence spectra, size, charge, respectively. Additionally, cell viability was tested to know the toxicity of PS NPs. The quantitative uptake, the kinetics profile and rate of uptake were studied by using a new in-vitro fluorescence assay. This was achieved quantitatively and qualitatively by fluorescent plate reader and confocal imaging, respectively. It was found that the amine PS NPs are higher in cytotoxicity than the carboxy PS NPs due to the proton sponge phenomenon. It was observed that the fraction uptake of PS NPs changes by changing the physiochemical properties as charge, size (&) dose. The fraction uptake of neutral and amine PS NPs was higher than that of carboxy PS NPs. For the neutral PS NPs, the uptake depends on the macropinocytosis. For the amine PS NPs, the uptake depends on the electrostatic interaction and the rapid regeneration of new binding sites. Regarding the dose of PS NPs, for the amine PS NPs, it was found that the concentrations lower and higher than 5nM had lower fraction uptake, because the 5nM achieved the balance between the available number of binding sites and the rapid regeneration of new binding sites. For the kinetics profile of the amine and carboxy PS NPs, by comparing both of them, it was observed that the rate of uptake of applied doses lower than 5nM was different, but higher than 5nM was similar. However, for the neutral Ps NPs, they exhibit a steady state of rate of uptake in between the amine and carboxy PS NPs. Also, it was confirmed by the confocal images that as the concentration of amine PS NPs increase, the stress on the cells increase, leading to the cell death. These results were aligned with the results obtained from the cytotoxicity test.
Show less - Date Issued
- 2018
- Identifier
- CFE0007386, ucf:52744
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007386
- Title
- Fluorescence Lifetime Imaging and Spectroscopy Aided Tracking of ZnO and CdS:Mn/ZnS/ N-acetyl cysteine (NAC) Quantum Dots in Citrus Plants.
- Creator
-
Washington, Torus, Gesquiere, Andre, Rajaraman, Swaminathan, Zhai, Lei, University of Central Florida
- Abstract / Description
-
In this thesis, we present an efficacious way of tracking nanoparticle movement in plant tissue through the use of fluorescence lifetime imaging (FLIM) and spectroscopy as well as a review of nanoparticle uptake in plants and the proposed mechanisms governing them. Given the increasing number of nanomaterials in agriculture and society as a whole, proper imaging tools and proactive measures must be taken to track nanoparticle movement in plant tissues and create infrastructure and products to...
Show moreIn this thesis, we present an efficacious way of tracking nanoparticle movement in plant tissue through the use of fluorescence lifetime imaging (FLIM) and spectroscopy as well as a review of nanoparticle uptake in plants and the proposed mechanisms governing them. Given the increasing number of nanomaterials in agriculture and society as a whole, proper imaging tools and proactive measures must be taken to track nanoparticle movement in plant tissues and create infrastructure and products to keep things sustainable and safe. Herein we report a ZnO comparable nanoparticle(-) a CdS:Mn/ZnS/ N-acetyl cysteine (NAC) quantum dot(-) which boasts longer lifetimes and suitable fluorescent properties above ZnO to properly delineate from plant tissue fluorescence of chlorophyll and cinnamic acids. In addition to FLIM mapping, quantum dot localization in plant vascular tissue was clearly seen and confirmed via characteristic emission spectra and time correlated single photon counting decay curves (TCSPC). Most quantum dots were seen to reside in the xylem. Plant age and structure was seen to affect uptake. QD size likely restricted extensive translocation. Inhibitive effects of QDs were likely water and mechanical stress. We surmise that travel of the cadmium quantum dots up the leaf and branch plant tissues is likely most governed by diffusion as the quantum dots bound to the cell structures create a diffusion gradient which aids travel up the leaf.
Show less - Date Issued
- 2017
- Identifier
- CFE0006820, ucf:51772
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006820
- Title
- Design and Implementation of Silicon-Based MEMS Resonators for Application in Ultra Stable High Frequency Oscillators.
- Creator
-
Shahraini, Sarah, Abdolvand, Reza, Gong, Xun, Sundaram, Kalpathy, Kapoor, Vikram, Rajaraman, Swaminathan, University of Central Florida
- Abstract / Description
-
The focus of this work is to design and implement resonators for ultra-stable high-frequency ((>)100MHz) silicon-based MEMS oscillators. Specifically, two novel types of resonators are introduced that push the performance of silicon-based MEMS resonators to new limits. Thin film Piezoelectric-on-Silicon (TPoS) resonators have been shown to be suitable for oscillator applications due to their combined high quality factor, coupling efficiency, power handling and doping-dependent temperature...
Show moreThe focus of this work is to design and implement resonators for ultra-stable high-frequency ((>)100MHz) silicon-based MEMS oscillators. Specifically, two novel types of resonators are introduced that push the performance of silicon-based MEMS resonators to new limits. Thin film Piezoelectric-on-Silicon (TPoS) resonators have been shown to be suitable for oscillator applications due to their combined high quality factor, coupling efficiency, power handling and doping-dependent temperature-frequency behavior. This thesis is an attempt to utilize the TPoS platform and optimize it for extremely stable high-frequency oscillator applications.To achieve the said objective, two main research venues are explored. Firstly, quality factor is systematically studied and anisotropy of single crystalline silicon (SCS) is exploited to enable high-quality factor side-supported radial-mode (aka breathing mode) TPoS disc resonators through minimization of anchor-loss. It is then experimentally demonstrated that in TPoS disc resonators with tethers aligned to [100], unloaded quality factor improves from ~450 for the second harmonic mode at 43 MHz to ~11,500 for the eighth harmonic mode at 196 MHz. Secondly, thickness quasi-Lam(&)#233; modes are studied and demonstrated in TPoS resonators for the first time. It is shown that thickness quasi-Lam(&)#233; modes (TQLM) could be efficiently excited in silicon with very high quality factor (Q). A quality factor of 23.2 k is measured in vacuum at 185 MHz for a fundamental TQLM-TPoS resonators designed within a circular acoustic isolation frame. Quality factor of 12.6 k and 6 k are also measured for the second- and third- harmonic TQLM TPoS resonators at 366 MHz and 555 MHz respectively. Turn-over temperatures between 40 (&)deg;C to 125 (&)deg;C are also designed and measured for TQLM TPoS resonators fabricated on degenerately N-doped silicon substrates. The reported extremely high quality factor, very low motional resistance, and tunable turn-over temperatures (>)80 (&)#186;C make these resonators a great candidate for ultra-stable oven-controlled high-frequency MEMS oscillators.
Show less - Date Issued
- 2019
- Identifier
- CFE0007861, ucf:52775
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007861