Current Search: Schelling, Patrick (x)
View All Items
- Title
- DENSITY-FUNCTIONAL THEORY APPLIED TO PROBLEMS IN CATALYSIS AND ELECTROCHEMISTRY.
- Creator
-
Kumar, Santosh, Schelling, Patrick, University of Central Florida
- Abstract / Description
-
We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces below one monolayer coverage using density-functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at stoichiometric ceria (111) surface. In contrast to experiment results, we do not find a...
Show moreWe study the structure and energetics of water molecules adsorbed at ceria (111) surfaces below one monolayer coverage using density-functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at stoichiometric ceria (111) surface. In contrast to experiment results, we do not find a strong coverage dependence of the adsorption energy. For the case of reduced surface, our results show that it may not be energetically favorable for water to oxidize oxygen vacancy site at the surface. Instead, oxygen vacancies tend to result in water more strongly binding to the surface. The result of this attractive water-vacancy interaction is that the apparent concentration of oxygen vacancies at the surface is enhanced in the presence of water. Finally, we discuss this problem with reference to recent experimental and theoretical studies of vacancy clustering at the (111) ceria surface. We also describe the simulation results for the structure and dynamics of liquid water using the SIESTA electronic structure approach. We find that the structure of water depends strongly on the particular basis set used. Applying a systematic approach to varying the basis set, we find that the basis set which results in good agreement with experimental binding energies for isolated water dimers also provides a reasonable description of the radial distribution functions of liquid water. We show that the structure of liquid water varies in a systematic fashion with the choice of basis set. Comparable to many other first-principle studies of liquid water using gradient-corrected density functionals, the liquid is found to be somewhat overstructured. The possibility of further improvements through a better choice of the basis set is discussed. We find that while improvements are likely to be possible, application to large-scale systems will require use of a computational algorithm whose computational cost scales linearly with system size. Finally, we study the molecular and atomic adsorption of oxygen on the gold nano-clusters. We show multiple stable and metastable structures for atomically and molecularly adsorbed oxygen to the gold cluster. We plan to predict the reaction pathway and calculate activation energy barrier for desorption of molecular oxygen from the atomically adsorbed gold cluster which is very important for any catalytic reaction occurring using gold nanoparticles.
Show less - Date Issued
- 2006
- Identifier
- CFE0001211, ucf:46938
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001211
- Title
- ELECTRICAL CAPACITANCE VOLUME TOMOGRAPHY OF HIGH CONTRAST DIELECTRICS USING A CUBOID GEOMETRY.
- Creator
-
Nurge, Mark, Schelling, Patrick, University of Central Florida
- Abstract / Description
-
An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of...
Show moreAn Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.
Show less - Date Issued
- 2007
- Identifier
- CFE0001591, ucf:47119
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001591
- Title
- Characterization of online archives of astronomical imaging vis-(&)#224;-vis serendipitous asteroids, and their astrometric properties.
- Creator
-
Denis, Jean-Marc, Fernandez, Yanga, Britt, Daniel, Schelling, Patrick, University of Central Florida
- Abstract / Description
-
The identification of known asteroids on existing CCD pictures would allow us to obtain accurate astrometric and photometric asteroid properties. Some asteroids might have ambiguous orbital elements, thus their identification along with their exact positions on multiple picture frames could significantly improve their orbital elements. Furthermore, the possibility of identifying known asteroids on older pictures, sometimes preceding their discovery date, might allow the study of non...
Show moreThe identification of known asteroids on existing CCD pictures would allow us to obtain accurate astrometric and photometric asteroid properties. Some asteroids might have ambiguous orbital elements, thus their identification along with their exact positions on multiple picture frames could significantly improve their orbital elements. Furthermore, the possibility of identifying known asteroids on older pictures, sometimes preceding their discovery date, might allow the study of non-gravitational effects like the Yarkovsky effect.Identifying a potential Yarkovsky effect on asteroids is challenging because it is extremely weak. However, this effect cumulates with time, therefore, it is necessary to find astronomical pictures that are as old as possible. In addition, we need to collect high quality CCD pictures and use a methodology that would allow obtaining a statistically significant sample of asteroids. To accomplish this, we decided to use the online archive of the Subaru telescope at Mauna Kea Hawaii because it has a prime-focus camera with a very high resolution of 80 millions pixels very well suited to capture serendipitous asteroids. In addition, the Subaru online archive has pictures from the last 10 years.The methodology used in this thesis is to build a database that contains the orbital elements of all the known asteroids, allowing us to write a program that calculates the approximate position of all the asteroids at the date and time of each CCD picture we collect. To obtain a more precise position, the program also interfaces the JPL NASA Horizons on-line computation service. Every time an asteroid is found on a picture, Horizons sends its theoretical location back to the program. A later visual identification of this asteroid at this theoretical location on the picture triggers its input into our sample for further study. This method allowed us to visually confirm 508 distinct asteroids on 692 frames with an average diameter of 3.6 km. Finally, we use the theory (given in appendix A) to calculate the theoretical drift of these asteroids that we compare with the one we measured on the CCD pictures.
Show less - Date Issued
- 2012
- Identifier
- CFE0004299, ucf:49460
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004299
- Title
- Chemistry and dissipation at mineral surfaces in the space environment.
- Creator
-
Tucker, William, Schelling, Patrick, Britt, Daniel, Kara, Abdelkader, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation,...
Show moreThe composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation, experimental results are first presented which demonstrate that mineral grains subjected to high temperatures in a reducing environment lead to iron nanoparticles which are strongly catalytic for the formation of complex organic species. Next, results obtained using molecular-dynamics simulations demonstrate that uncoordinated surface atoms in metallic nanoparticles result in plastic deformation, strong dissipation and adhesion during collisions. This can be contrasted with previous simulations which demonstrate significantly weaker dissipation when surface atoms are passivated. Calculations of critical sticking velocities demonstrate that simple coarse- grain models are insufficient for predicting the adhesive behavior of sub-micron sized grains. Next, results are presented describing a computational study illuminating the role of surface chemistry on adhesion and dissipation for iron nanoparticle collisions, which in the case of free radical adsorbates may also contribute to the creation of more complex species. Lastly, to further elucidate dissipation, the direct coupling of harmonic vibrational modes in the dissipation process is established. The results demonstrate broad participation of low and high-frequency modes during a collision during a timescale less than time required for particles to rebound. Hence, our results demonstrate extremely strong likelihood of adhesion during collisions. This approach provides a way to use density-functional theory calculations to directly compute dissipative couplings at mineral interfaces.
Show less - Date Issued
- 2019
- Identifier
- CFE0007545, ucf:52592
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007545
- Title
- A theoretical and experimental investigation of the physical and chemical properties of solid nanoscale interfaces.
- Creator
-
Matos, Jeronimo, Kara, Abdelkader, Heinrich, Helge, Schelling, Patrick, Masunov, Artem, University of Central Florida
- Abstract / Description
-
With the emerging interest in nanoscale materials, the fascinating field of surface science is rapidly growing and presenting challenges to the design of both experimental and theoretical studies. The primary aim of this dissertation is to shed some light on the physical and chemical properties of selected nanoscale materials at the interface. Furthermore, we will discuss the effective application of cutting edge theoretical and experimental techniques that are invaluable tools for...
Show moreWith the emerging interest in nanoscale materials, the fascinating field of surface science is rapidly growing and presenting challenges to the design of both experimental and theoretical studies. The primary aim of this dissertation is to shed some light on the physical and chemical properties of selected nanoscale materials at the interface. Furthermore, we will discuss the effective application of cutting edge theoretical and experimental techniques that are invaluable tools for understanding the systems at hand. To this effect, we use density functional theory (DFT) with the inclusion of van der Waals (vdW) interactions to study the effect of long-range interactions on the adsorption characteristics of various organic molecules (i.e. benzene, olympicene radical, and sexithiophene) on transition metal surfaces. Secondly, the detailed analysis of x-ray absorption spectroscopy (XAS), scanning transmission electron microscopy (STEM), x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements will be presented. These investigations will be dedicated to the study of (i) the effect of pre-treatment on the coarsening behavior of Pt nanoparticles (NPs) supported on ?-Al2O3 and (ii) deconvoluting the intrinsic (size effects) and extrinsic (ligand effects) physical and electronic properties of Au NPs encapsulated by polystyrene 2-vinylpiridine ligands.
Show less - Date Issued
- 2015
- Identifier
- CFE0005975, ucf:50783
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005975
- Title
- Theoretical And Computational Studies Of Diffusion Of Adatom Islands And Reactions Of Molecules On Surfaces.
- Creator
-
Shah, Syed Islamuddin, Rahman, Talat, Kara, Abdelkader, Schelling, Patrick, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The work presented in this dissertation focuses on the study of post deposition spatial and temporal evolution of adatom islands and molecules on surfaces using ab initio and semiemperical methods. It is a microscopic study of the phenomena of diffusion and reaction on nanostructured surfaces for which we have developed appropriate computational tools,as well as implemented others that are available. To map out the potential energy surface on which the adatom islands and molecules move, we...
Show moreThe work presented in this dissertation focuses on the study of post deposition spatial and temporal evolution of adatom islands and molecules on surfaces using ab initio and semiemperical methods. It is a microscopic study of the phenomena of diffusion and reaction on nanostructured surfaces for which we have developed appropriate computational tools,as well as implemented others that are available. To map out the potential energy surface on which the adatom islands and molecules move, we have carried out ab initio electronic structure calculations based on density functional theory (DFT) for selected systems. For others, we have relied on semiempirical interatomic potentials derived from the embedded atom method. To calculate the activation energy barriers, we have employed the (")drag(") method in most cases and verified its reliability by employing the more accurate nudged elastic band method for selected systems. Temporal and spatial evolution of the systems of interest have been calculated using the kinetic Monte Carlo (KMC), or the more accurate (complete) Self Learning kinetic Monte Carlo (SLKMC) method in the majority of cases, and ab initio molecular dynamics simulations in others. We have significantly enhanced the range of applicability of the SLKMC method by introducing a new pattern recognitionscheme which by allowing occupancy of the (")fcc(") and (")hcp(") sites (and inclusion of (")top(") site in the pattern recognition as well) is capable of simulating the morphological evolution of three dimensional adatom islands, a feature not feasible via the earlier - proposed SLKMC method. Using SLKMC (which allows only fcc site occupancy on fcc(111) surface), our results of the coarsening of Ag islands on the Ag(111) surface show that during early stages, coarsening proceeds as a sequence of selected island sizes, creating peaks and valleys in the island-size distribution. This island size selectivity is independent of initial conditions andresults from the formation of kinetically stable islands for certain sizes as dictated by the relative energetics of edge atom detachment/attachment processes together with the large activation barrier for kink detachment.On applying the new method, SLKMC-II, to examine the self diffusion of smalladatom islands (1-10 atoms) of Cu on Cu(111), Ag on Ag(111) and Ni on Ni(111), wefind that for the case of Cu and Ni islands, diffusion is dominated by concerted processes(motion of island as a whole), whereas in the case of Ag, islands of size 2-9 atoms diffusethrough concerted motion whereas the 10-atom island diffuses through single atom processes.Effective energy barriers for the self diffusion of these small Cu islands is 0.045 eV/atom,for Ni it is 0.060 eV/atom and for Ag it is 0.049 eV/atom, increasing almost linearly withisland size.Application of DFT based techniques have allowed us to address a few issues stemmingfrom experimental observations on the effect of adsorbates such as CO on the structure and stability of bimetallic systems (nanoparticles and surfaces). Total energy calculationsof Ni-Au nanoparticles show Ni atoms to prefer to be in the interior of the nanoparticle.CO molecules, however, prefer to bind to a Ni atom if present on the surface. Using abinitio molecular dynamics simulations, we confirm that the presence of CO molecule induces diffusion of Ni atom from the core of the Ni-Au nanoparticle to its surface, making the nanoparticle more reactive. These results which help explain a set of experimental data are rationalized through charge transfer analysis.Similar to the case of Ni-Au system, it is found that methoxy (CH$_{3}$O) may also induce diffusion of inner atoms to the surface on bimetallic Au-Pt systems. Our total energy DFT calculations show that it is more favorable for methoxy to bind to a Pt atom in the top Au layer than to a Au atom in Au-Pt system thereby explaining experimental observations.To understand questions related to the dependence of product selectivity on ambientpressure for ammonia decomposition on RuO2(110), we have carried out an extensivecalculation of the reaction pathways and energy barriers for a large number of intermediate products. On combining the reaction energetics from DFT, with KMC simulations, we showthat under UHV conditions, selectivity switches from N2 ( ? 100 % selectivity) at T = 373Kto NO at T = 630K, whereas under ambient conditions, N2 is still the dominant productbut maximum selectivity is only 60%. An analysis based on thermodynamics alone shows a contradiction between experimental data at UHV with those under ambient pressure. Ourcalculations of the reaction rates which are essential for KMC simulations removes this apparentinconsistency and stresses the need to incorporate kinetics of processes in order toextract information on reaction selectivity.
Show less - Date Issued
- 2013
- Identifier
- CFE0005254, ucf:50584
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005254
- Title
- Experimental confirmation of ballistic nanofriction and quasiparticle interference in Dirac materials.
- Creator
-
Lodge, Michael, Ishigami, Masahiro, Kaden, William, Schelling, Patrick, Del Barco, Enrique, Roy, Tania, University of Central Florida
- Abstract / Description
-
This dissertation is broadly divided into two parts. The first part details the development and usage of an experimental apparatus to measure the dry nanofriction for a well-defined interface at high sliding speeds. I leverage the sensitivity of a quartz crystal microbalance (QCM) to determine the drag coefficient of an ensemble of gold nanocrystals sliding on graphene at speeds up to 11 cm/s. I discuss the theories of velocity-dependent friction, especially at high sliding speeds, and QCM...
Show moreThis dissertation is broadly divided into two parts. The first part details the development and usage of an experimental apparatus to measure the dry nanofriction for a well-defined interface at high sliding speeds. I leverage the sensitivity of a quartz crystal microbalance (QCM) to determine the drag coefficient of an ensemble of gold nanocrystals sliding on graphene at speeds up to 11 cm/s. I discuss the theories of velocity-dependent friction, especially at high sliding speeds, and QCM modeling. I also discuss our synthesis protocols for graphene and molybdenum disulfide, as well as our protocol for fabricating a clean, graphene-laminated QCM device and nanocrystal ensemble. The design and fabrication of our QCM oscillator circuit is presented in detail. The quantitatively-measured the drag coefficient is compared against molecular dynamics simulations at both low and high sliding speeds. We show evidence of a predicted ultra-low friction regime and find that the interaction energy between gold nanocrystals and graphene is lower than previously assumed. In the second part of this dissertation, I detail the band structure measurement of a novel semimetal using scanning tunneling microscopy. In particular, I measured the energy-dependenceof quasiparticle interference patterns at the surface of zirconium silicon sulfide (ZrSiS), a topological nodal line semimetal whose charge carrier quasiparticles possess a pseudospin degree offreedom. The aims of this study were to (1) discover the shape of the band structure above the Fermi level along a high-symmetry direction, (2) discover the energetic location of the line node inthe same high-symmetry direction, and (3) discover the selection rules for k transitions. This study confirms the predicted linearity in E(k) of the band structure above the Fermi level. Additionally,we observe an energy-dependent mechanism for pseudospin scattering. This study also provides the first experimentally-derived estimation of the line node position in E(k).
Show less - Date Issued
- 2018
- Identifier
- CFE0007218, ucf:52222
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007218
- Title
- Multiscale simulation of laser ablation and processing of semiconductor materials.
- Creator
-
Shokeen, Lalit, Schelling, Patrick, Kar, Aravinda, Vaidyanathan, Rajan, Su, Ming, Kara, Abdelkader, University of Central Florida
- Abstract / Description
-
We present a multiscale model of laser-solid interactions in silicon based on an empirical potential developed under conditions of strong electronic excitations. The parameters of the interatomic potential depends on the temperature of the electronic subsystem Te, which is directly related to the density of the electron-hole pairs and hence the number of broken bonds. We analyze the dynamics of this potential as a function of electronic temperature Te and lattice temperature Tion. The...
Show moreWe present a multiscale model of laser-solid interactions in silicon based on an empirical potential developed under conditions of strong electronic excitations. The parameters of the interatomic potential depends on the temperature of the electronic subsystem Te, which is directly related to the density of the electron-hole pairs and hence the number of broken bonds. We analyze the dynamics of this potential as a function of electronic temperature Te and lattice temperature Tion. The potential predicts phonon spectra in good agreement with finite-temperature density-functional theory (DFT), including the lattice instability induced by the high electronic excitations. For 25fs pulse, a wide range of fluence values is simulated resulting in heterogeneous melting, homogenous melting, and ablation. The results presented demonstrate that phase transitions can usually be described by ordinary thermal processes even when the electronic temperature Te is much greater than the lattice temperature TL during the transition. However, the evolution of the system and details of the phase transitions depend strongly on Te and corresponding density of broken bonds. For high enough laser fluence, homogeneous melting is followed by rapid expansion of the superheated liquid and ablation. Rapid expansion of the superheated liquid occurs partly due to the high pressures generated by a high density of broken bonds. As a result, the system is readily driven into the liquid-vapor coexistence region, which initiates phase explosion. The results strongly indicates that phase explosion, generally thought of as an ordinary thermal process, can occur even under strong non-equilibrium conditions when Te (>)(>)TL. In summary, a detailed investigation of laser-solid interactions in silicon is presented for femtosecond laser pulse that yields strong far-from-equilibrium conditions.
Show less - Date Issued
- 2012
- Identifier
- CFE0004599, ucf:49206
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004599
- Title
- First Principles Studies of Pattern Formations and Reactions on Catalyst Surfaces.
- Creator
-
Le, Duy, Rahman, Talat, Roldan Cuenya, Beatriz, Schelling, Patrick, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
This dissertation undertakes theoretical research into the adsorption, pattern formation, and reactions of atoms, molecules, and layered materials on catalyst surfaces. These investigations are carried out from first-principles calculations of electronic and geometric structures using density functional theory (DFT) for predictions and simulations at the atomic scale. The results should be useful for further study of the catalytic activities of materials and for engineering functional...
Show moreThis dissertation undertakes theoretical research into the adsorption, pattern formation, and reactions of atoms, molecules, and layered materials on catalyst surfaces. These investigations are carried out from first-principles calculations of electronic and geometric structures using density functional theory (DFT) for predictions and simulations at the atomic scale. The results should be useful for further study of the catalytic activities of materials and for engineering functional nanostructures.The first part of the dissertation focuses on systematic first-principles simulations of the energetic pathways of CO oxidation on the Cu2O(100) surface. These simulations show CO to oxidize spontaneously on the O-terminated Cu2O(100) surface by consuming surface oxygen atoms. The O-vacancy on Cu2O(100) then is subsequently healed by dissociative adsorption of atmospheric O2 molecules.The second part discusses the pattern formation of hydrogen on two and three layers of Co film grown on the Cu(111) surface. It is found that increasing the pressure of H2 changes the hydrogen structure from 2H-(2 x 2) to H-p(1 x 1) through an intermediate structure of 6H-(3 x 3).The third part compares the results of different ways of introducing van der Waals (vdW) interactions into DFT simulations of the adsorption and pattern formation of various molecules on certain substrates. Examinations of the physisorption of five nucleobases on graphene and of n-alkane on Pt(111) demonstrate the importance of taking vdW interactions into account, and of doing so in a way that is best suited to the particular system in question. More importantly, as the adsorption of 1,4 diaminebenzene molecules on Au(111) shows inclusion of vdW interactions is crucial for accurate simulation of the pattern formation.The final part carries out first-principles calculations of the geometric and electronic structure of the Moire pattern of a single layer of Molybdenum disulfide (MoS2) on Cu(111). The results reveal three possible stacking types. They also demonstrate that the MoS2 layer to be chemisorbed, albeit weakly, and that, while Cu surface atoms are vertically disordered, the layer itself is not strongly buckled.
Show less - Date Issued
- 2012
- Identifier
- CFE0004224, ucf:48991
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004224
- Title
- Thermally annealled plasmonic nanostructures.
- Creator
-
Wang, Chaoming, Su, Ming, Coffey, Kevin, Chai, Xinqing, Schelling, Patrick, University of Central Florida
- Abstract / Description
-
Localized surface plasmon resonance (LSPR) is induced in metal nanoparticles by resonance between incident photons and conduction electrons in nanoparticles. For noble metal nanoparticles, LSPR can lead to strong absorbance of ultraviolet-violet light. Although it is well known that LSPR depends on the size and shape of nanoparticles, the inter-particle spacing, the dielectric properties of metal and the surrounding medium, the temperature dependence of LSPR is not well understood. By...
Show moreLocalized surface plasmon resonance (LSPR) is induced in metal nanoparticles by resonance between incident photons and conduction electrons in nanoparticles. For noble metal nanoparticles, LSPR can lead to strong absorbance of ultraviolet-violet light. Although it is well known that LSPR depends on the size and shape of nanoparticles, the inter-particle spacing, the dielectric properties of metal and the surrounding medium, the temperature dependence of LSPR is not well understood. By thermally annealing gold nanoparticle arrays formed by nanosphere lithography, a shift of LSPR peak upon heating has been shown. The thermal characteristics of the plasmonic nanoparticles have been further used to detect chemicals such as explosive and mercury vapors, which allow direct visual observation of the presence of mercury vapor, as well as thermal desorption measurements.
Show less - Date Issued
- 2012
- Identifier
- CFE0004454, ucf:49322
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004454
- Title
- Atomic-scale simulation of physical and chemical processes during space weathering and planet formation.
- Creator
-
Quadery, Abrar, Schelling, Patrick, Britt, Daniel, Peale, Robert, Kara, Abdelkader, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
We investigate the mechanisms of space weathering and dust grain collisions, two topics of interests from planetary sciences, using atomic-scale simulations. Space weathering is the change in chemical and physical properties of minerals exposed to solar radiation and micrometeorite bombardment on surfaces of airless planetary bodies like the Moon and asteroids. An understanding of the connection between the surface evolution of the minerals and the underlying thermodynamic and kinetic factors...
Show moreWe investigate the mechanisms of space weathering and dust grain collisions, two topics of interests from planetary sciences, using atomic-scale simulations. Space weathering is the change in chemical and physical properties of minerals exposed to solar radiation and micrometeorite bombardment on surfaces of airless planetary bodies like the Moon and asteroids. An understanding of the connection between the surface evolution of the minerals and the underlying thermodynamic and kinetic factors is still missing. We address this issue and determine the time evolution of Frenkel defects in the silicate minerals olivine ((Mg,Fe)$_2$SiO$_4$) and orthopyroxene ((Mg,Fe)SiO$_3$) using molecular dynamics with a pair potential. Defect diffusion and clustering are observed in both the minerals. Cation diffusion occurs more readily in olivine than in orthopyroxene and leads to faster annealing in the former. In orthopyroxene, diffusion of anion defects, especially oxygen interstitials, occurs more rapidly and also exhibits anisotropy, which hinders the annealing process. This difference in defect evolution may explain the experimental observation that surface modifications due to irradiation is more pronounced in orthopyroxene than in olivine. Dust grain collision is the dominant process in the initial stage of planet formation, however, the mechanisms by which dust grains grow to larger aggregates and eventually to kilometer sized planetesimal is still not understood. We explore the role of surface chemistry in energy dissipation and grain adhesion during collision of amorphous silica (SiO$_2$) nanograins using molecular dynamics with a reactive potential, namely ReaxFF. We found nonhydroxylated amorphous silica nanoparticles stick with higher probability than their hydroxylated counterpart. This difference is attributed to the preponderance of unsatisfied dangling bonds on the dry silicate surface which facilitate bond formation during collision, and thereby provide a mechanism for energy dissipation. The speed below which sticking occurs in the dry nanograins is much higher than that found in Earth-based experiments, which suggests any experimental study of dust grain collision should take into account of the chemical environment. We probe into the nanograin collisions further and carry out atomistic simulatons of collisions of molten silica nanograins. We observed in the molten state, amorphous silica is more sticky than it is in the solid phase. This happens due to increased viscoelastic energy dissipation. The result may explain how rocky planets originated from the inner rings of the protoplanetay disks where temperatures were as high as $\sim$ 2000 K. In order to increase the range of materials that could be simulated with ReaxFF potential, and also to examine the different oxidation states of iron associated with nanophase iron formation during space weathering, we made attempt to develop ReaxFF potential for fayalite (Fe$_2$SiO$_4$). We found out fundamental limitations of ReaxFF model to describe three-component minerals. However, during the fitting process we developed a model for iron silicide (FeSi), and made attempt to improve the silica model to obtain better elastic properties. We report here the fitting processes and the observed limitations of ReaxFF model.
Show less - Date Issued
- 2017
- Identifier
- CFE0006907, ucf:51691
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006907
- Title
- Planar Organic Photovoltaic Devices.
- Creator
-
Alzubi, Feras, Khondaker, Saiful, Chow, Lee, Schelling, Patrick, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
Organic Photovoltaic devices (OPV) are considered to be attractive candidates for clean and renewable energy source because of their potential for low cost of fabrication, easy processing, and their mechanical flexibility. The device efficiency of OPV cells are limited by several factors. Among them are: (i) donor-acceptor interface, (ii) morphology of the materials, (iii) electrode-organic semiconductor (OSC) interface and (iv) device architecture such as active material thickness and...
Show moreOrganic Photovoltaic devices (OPV) are considered to be attractive candidates for clean and renewable energy source because of their potential for low cost of fabrication, easy processing, and their mechanical flexibility. The device efficiency of OPV cells are limited by several factors. Among them are: (i) donor-acceptor interface, (ii) morphology of the materials, (iii) electrode-organic semiconductor (OSC) interface and (iv) device architecture such as active material thickness and electrode separation. Although, the donor-acceptor interface has been studied in detail, the commonly prevalent vertical OPV device structure does not allow a good understanding of the other key issues as the vertical structure limits one of the electrode to be a transparent electrode as well as introducing inseparable relation between the electrodes separation and the active material thickness. In addition, it is also well known that the charge transport in OSC is anisotropic and the charge mobility is better in lateral direction rather than vertical direction. In order to address some of these issues, we fabricated OPV devices in a planar device structure where cathode and anode of dissimilar metals are in-plane with each other and their photovoltaic behaviors were studied. We used poly(3-hexylthiophene) and [6,6]-pheny1 C61-butyric acid methy1 ester (P3HT:PCBM) blend as an active material. In particular, we present a detailed study about the effects of the structural parameters such as the channel length, the active layer thickness, and the work function of the electrodes on the open circuit voltage (Voc), short circuit current (Isc), fill factor (FF) and the power conversion efficiency (PCE).In order to determine the suitable anode and cathode for the planar organic photovoltaic (P-OPV) structure, we first fabricated and measured organic field effect transistor (OFET) devices with different contacts and studied the effect of barrier height at the P3HT:PCBM/electrode interface on the device output and transport properties. The study showed a clear effect of varying the contact material on the charge injection mechanism and on the carriers mobilities. The results have also shown that Au with high hole mobility and on current in the p-channel can be used as an anode (holes extractor) in the P-OPV device while In, Cr, and Ti that showed a reasonable value of electron mobility can be good candidates for cathode (electron extractor). We also found that, Ag, Al, and Mg showed large barrier which resulted in large threshold voltage in the I-V curve making them undesired cathode materials in the P-OPV device. We then fabricated P-OPV devices with Au as an anode material and varied the cathode material to study the effect of the interface between the P3HT:PCBM layer and the cathode material. When Al, Mg, or Ag used as a cathode material no PV behavior was observed, while PV behavior was observed for In, Cr, and Ti cathode materials. The PV behavior and the characteristic parameters including Voc, Isc, FF and PCE were affected by varying the cathode material. The results have shown that the P-OPV device performance can be affected by the cathode material depending on the properties and the work function of the metal.We have also studied the effect of varying the P3HT:PCBM layer thickness at a fixed channel length for Cr and Ti cathode materials and Au as anode. While Voc and FF values do not change, Isc and PCE increase with increasing the layer thickness due to the increase of the light absorption and charges generation. Moreover, we studied the effect of varying the channel length at a fixed film thickness; and showed that the values of Isc and PCE increase with decreasing channel length while Voc and FF maintain the same value. In this thesis we will also present the results on experimentally defining and testing the illuminated area in the P-OPV device by using different measurement set-ups and different electrodes patterns. The results prove that the illuminated area in the P-OPV device is the area enclosed between the two electrodes. Lastly, we will present the effect of the P3HT:PCBM ratio on the P-OPV device performance. We show that 1:2 ratio is the optimized ratio for the P-OPV device. The detailed results in this thesis show a potential opportunity to help improving and understanding the design of OPV device by understanding the effects of the device structural parameters.
Show less - Date Issued
- 2013
- Identifier
- CFE0004804, ucf:49754
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004804
- Title
- Computational Approach to the Problems of Electro- and Photo-Catalysis.
- Creator
-
Zuluaga, Sebastian, Stolbov, Sergey, Schelling, Patrick, Roldan Cuenya, Beatriz, Masunov, Artem, University of Central Florida
- Abstract / Description
-
The main objective of this work is to gain basis for rational design of catalysts used in fuel cells for conversion of chemical energy stored in hydrogen molecules into electric energy, as well as photo-catalysts used for hydrogen production from water under solar irradiation. This objective is achieved by applying the first principles computational approach to reveal relationship among compositions of materials under consideration, their electronic structure and catalytic activity. A major...
Show moreThe main objective of this work is to gain basis for rational design of catalysts used in fuel cells for conversion of chemical energy stored in hydrogen molecules into electric energy, as well as photo-catalysts used for hydrogen production from water under solar irradiation. This objective is achieved by applying the first principles computational approach to reveal relationship among compositions of materials under consideration, their electronic structure and catalytic activity. A major part of the work is focused on electro-catalysts for hydrogen fuel cells. Platinum (Pt) is widely used in the electrodes of fuel cells due to its good catalytic properties. However, Pt is an expensive and scarce element, its catalytic activity is not optimal and also it suffers from CO poisoning at anode. Therefore the search for new catalytic materials is needed for large scale implementation of fuel cells. The main direction of search of more efficient electro-catalysts is based in the design in which an active element monoatomic layer (AE) is deposited on a metal substrate (MS) made of a cost-effective material. Two goals are achieved by doing this: on the one hand, the cost of the catalytic system is reduced by reducing the amount of the AE in the system and on the other hand the catalytic properties of the AE can be tuned through its interactions with the MS. In the first part of this work the Pd-based alloys and layered structures have been studied as promising electro-catalysts for the ORR on the fuel cell cathodes, more precisely Pd-Co alloys and Pd/M/Pd (M=Co,Fe). There exists a robust model linking the activity of a surface toward ORR to computable thermodynamic properties of the system and further to the binding energies of the ORR intermediates on the catalyst surface. A more challenging task is to find how to tune these binding energies through modification of the surface electronic structure that can be achieved by varying the surface composition and/or morphology. To resolve this challenge, the electronic structure, binding energies of intermediates and the ORR free energies have been calculated within the density functional theory (DFT) approximation. The results presented in this work show that in contrast to the widely accepted notion, the strain exerted by a substrate on AE hardly affects the surface activity toward ORR, while the hybridization of the electronic states of the AE-and MS-electronic states is the key factor controlling the catalytic properties of these systems. Next it is shown that the catalytic activity of the promising anode electrocatalysts, such as Pt/M, M=Au, Ru and Pd, is also determined by the AE-MS hybridization with a minor effect of the strain. Furthermore, we have shown that, if AE is weakly bound to the substrate (as it is for Pt/Au), surface reconstruction occurs. This leads to the breaking of the relation between the electronic structure of the clean surface and the reactivity of the sytem. Other kind of promising ORR catalysts is designed in the form of Ru nanoparticles modified by chalcogens. In this work, I present the results obtained for small Ru clusters and flat Ru facets modified with chalcogens (S, Se and Te). The O and OH binding energies are chosen as descriptors of the ORR. The results on the two systems are compared, concluding that large clusters with relative large flat facets have higher catalytic activity due to the absence of low coordinated and thus high reactive Ru atoms. Regarding the problem of the hydrogen production via photo-catalytic splitting of water, one of the challenges is tuning the band gap of the photo-anodes to optimal levels. Graphitic carbon nitride (g-C3N4) is a promising material to be used as a photo-anode, however, a reduction of the band gap width by rational doping of the material would improve the efficiency significantly. This issue is addressed in the last chapter of this work. Two problems are considered: a) the stability of the doped system and b) the band gap width. To address the first problem the ab-initio thermodynamics approach has been used, finding that the substitution of C and N with the doping agent (B, C, N, O, Si and P) is thermodynamically preferred over the interstitial addition of dopant to the g-C3N4 structure. However, due to high kinetic energy barriers for the detachment of C and N atoms, involved in the substitution doping, the interstitial addition found to be kinetically more favorable. Since the density functional theory fails to reproduce the band gap of semiconductors correctly, the GW approximation was used to study the band gap of the system. The results indicate that the g-C3N4 system maintain its semiconductor character if doped with B, O and P under certain conditions, while reducing the band gap.
Show less - Date Issued
- 2013
- Identifier
- CFE0005288, ucf:50546
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005288