Current Search: Seal, Sudipta (x)
View All Items
Pages
- Title
- FUNDAMENTAL ASPECTS OF REGENERATIVE CERIUM OXIDE NANOPARTICLES AND THEIR APPLICATIONS IN NANOBIOTECHNOLOGY.
- Creator
-
Patil, Swanand, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide...
Show moreCerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1µM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide nanoparticles reduced the cellular damages to the normal breast epithelial cell line (CRL 8798) induced by X-rays and to the Keratinocyte cell line induced by UV irradiation. Cerium oxide nanoparticles were also found to be neuroprotective to adult rat spinal cord and retinal neurons. We propose that cerium oxide nanoparticles act as free radical scavenger (via redox reactions on its surface) to decrease the ROS induced cellular damages. Additionally, UV-visible spectroscopic studies indicated that cerium oxide nanoparticles possess auto-regenerative property by switching its oxidation state between Ce3+ and Ce4+. The auto-regenerative antioxidant property of these nanoparticles appears to be a key component in all the biological applications discussed in the present study.
Show less - Date Issued
- 2006
- Identifier
- CFE0001271, ucf:46932
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001271
- Title
- ARC-DISCHARGE IN SOLUTION: A NOVEL SYNTHESIS METHOD FOR CARBON NANOTUBES AND IN SITU DECORATION OF CARBON NANOTUBES WITH NANOPARTICLES.
- Creator
-
Bera, Debasis, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Nanotechnology has reached the status of the 21st century's leading science and technology based on fundamental and applied research during the last two decades. An important feature of nanotechnology is to bridge the crucial dimensional gap between the atomic and molecular fundamental sciences and microstructural scale of engineering. Accordingly, it is very important to have an in-depth understanding of the synthesis of nanomaterials for the use of state-of-the-art high technological...
Show moreNanotechnology has reached the status of the 21st century's leading science and technology based on fundamental and applied research during the last two decades. An important feature of nanotechnology is to bridge the crucial dimensional gap between the atomic and molecular fundamental sciences and microstructural scale of engineering. Accordingly, it is very important to have an in-depth understanding of the synthesis of nanomaterials for the use of state-of-the-art high technological devices with enhanced properties. Recently, the 'bottom-up' approach for the fabrication of nanomaterials has received a great deal of attention for its simplicity and cost effectiveness. Tailoring the various parameters during synthesis of selected nanoparticles can be used to fabricate technologically important components. During the last decade, carbon nanotubes (CNTs) have been envisioned for a host of different new applications. Although carbon nanotubes can be synthesized using a variety of techniques, large-scale synthesis is still a great challenge to the researchers. Three methods are commonly used for commercial and bulk productions of carbon nanotubes: arc-discharge, chemical vapor deposition and laser ablation. However, low-cost, large-scale production of high-quality carbon nanotubes is yet to be reported. One of the objectives of the present research is to develop a simplified synthesis method for the production of large-scale, low-cost carbon nanotubes with functionality. Herein, a unique, simple, inexpensive and one-step synthesis route of CNTs and CNTs decorated with nanoparticles is reported. The method is simple arc-discharge in solution (ADS). For this new method, a full-fledged optoelectronically controlled instrumen is reported here to achieve high efficiency and continuous bulk production of CNTs. In this system, a constant gap between the two electrodes is maintained using a photosensor which allows a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analogue electronic unit, as controller. This computerized feed system was also used in single process step to produce in situ-decorated CNTs with a variety of industrially important nanoparticles. To name a few, we have successfully synthesized CNTs decorated with 3-4 nm ceria, silica and palladium nanoparticles for many industrially relevant applications. This process can be extended to synthesize decorated CNTs with other oxide and metallic nanoparticles. Sixty experimental runs were carried out for parametric analysis varying process parameters including voltage, current and precursors. The amount of yield with time, rate of erosion of the anode, and rate of deposition of carbonaceous materials on the cathode electrode were investigated. Normalized kinetic parameters were evaluated for different amperes from the sets of runs. The production rate of pristine CNT at 75 A is as high as 5.89 ± 0.28 g.min-1. In this study, major emphasis was given on the characterizations of CNTs with and without nanoparticles using various techniques for surface and bulk analysis of the nanostructures. The nanostructures were characterized using transmission electron microscopy, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy and scanning electron microscopy, x-ray photo electron spectroscopy, x-ray diffraction studies, and surface area analysis. Electron microscopy investigations show that the CNTs, collected from the water and solutions, are highly pure except the presence of some amorphous carbon. Thermogravimetric analysis and chemical oxidation data of CNTs show the good agreement with electron microscopy analysis. The surface area analysis depicts very high surface area. For pristine multi-walled carbon nanotubes, the BET surface area is approximately 80 m2.g-1. X-ray diffraction studies on carbon nanotubes shows that the products are clean. Nano-sized palladium decorated carbon nanotubes are supposed to be very efficient for hydrogen storage. The synthesis for in-situ decoration of palladium nanoparticles on carbon nanotubes using the arc discharge in solution process has been extensively carried out for possible hydrogen storage applications and electronic device fabrication. Palladium nanoparticles were found to form during the reduction of palladium tetra-chloro-square planar complex. The formation of such a complex was investigated using ultraviolet-visible spectroscopic method. Pd-nanoparticles were simultaneously decorated on carbon nanotubes during the rolling of graphene sheets in the arc-discharge process. Zero-loss energy filtered transmission electron microscopy and scanning transmission electron microscopy confirm the presence of 3 nm palladium nanoparticles. The deconvoluted X-ray photoelectron spectroscopy envelope shows the presence of palladium. Surface area measurements using BET method show a surface area of 28 m2.g-1. The discrepancy with pristine CNTs can be explained considering the density of palladium (12023 kg.m-3). Energy dispersive spectroscopy suggests no functionalization of chlorine to the sidewall of carbon nanotubes. The presence of dislodged graphene sheets with wavy morphology as observed with high-resolution transmission electron microscopy supports the formation of CNTs through the 'scroll mechanism'.
Show less - Date Issued
- 2005
- Identifier
- CFE0000450, ucf:46388
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000450
- Title
- PROBING AND TUNING THE SIZE, MORPHOLOGY, CHEMISTRY AND STRUCTURE OF NANOSCALE CERIUM OXIDE.
- Creator
-
Kuchibhatla, Satyanarayana, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Cerium oxide (ceria)-based materials in the nanoscale regime are of significant fundamental and technological interest. Nanoceria in pure and doped forms has current and potential use in solid oxide fuel cells, catalysis, UV- screening, chemical mechanical planarization, oxygen sensors, and bio-medical applications. The characteristic feature of Ce to switch between the +3 and + 4 oxidation states renders oxygen buffering capability to ceria. The ease of this transformation was expected to be...
Show moreCerium oxide (ceria)-based materials in the nanoscale regime are of significant fundamental and technological interest. Nanoceria in pure and doped forms has current and potential use in solid oxide fuel cells, catalysis, UV- screening, chemical mechanical planarization, oxygen sensors, and bio-medical applications. The characteristic feature of Ce to switch between the +3 and + 4 oxidation states renders oxygen buffering capability to ceria. The ease of this transformation was expected to be enhanced in the nanoceria. In most the practical scenarios, it is necessary to have a stable suspension of ceria nanoparticles (CNPs) over longer periods of time. However, the existing literature is confined to short term studies pertaining to synthesis and property evaluation. Having understood the need for a comprehensive understanding of the CNP suspensions, this dissertation is primarily aimed at understanding the behavior of CNPs in various chemical and physical environments. We have synthesized CNPs in the absence of any surfactants at room temperature and studied the aging characteristics. After gaining some understanding about the behavior of this functional oxide, the synthesis environment and aging temperature were varied, and their affects were carefully analyzed using various materials analysis techniques such as high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), and X-ray photoelectron spectroscopy (XPS). When the CNPs were aged at room temperature in as-synthesized condition, they were observed to spontaneously assemble and evolve as fractal superoctahedral structures. The reasons for this unique polycrystalline morphology were attributed to the symmetry driven assembly of the individual truncated octahedral and octahedral seed of the ceria. HRTEM and Fast Fourier Transform (FFT) analyses were used to explain the agglomeration behavior and evolution of the octahedral morphology. Some of the observations were supported by molecular dynamic simulations. Poly (ethylene glycol) (PEG) and ethylene glycol (EG) were used to control the kinetics of this morphology evolution. The ability to control the agglomeration of CNPs in these media stems from the lower dielectric constant and an increased viscosity of the EG and PEG based solvents. CNPs when synthesized and aged in frozen conditions, i.e. in ice, were found to form one dimensional, high aspect ratio structures. A careful analysis has provided some evidence that the CNPs use the porous channels in ice as a template and undergo oriented attachment to form nanorods. When the aging treatment was done near freezing temperature in solution, the nanorods were not observed, confirming the role of channels in ice. When synthesized in aqueous media such as DI water, PEG and EG; CNPs were observed to exhibit a reversible oxidation state switching between +3 and +4. Band gap values were computed from the optical absorption data. The changes in the band gap values observed were attributed to the changes in the oxidation state of CNPs as opposed to the quantum confinement effects, as expected in other nanoparticle systems. The work presented in this dissertation demonstrates, with evidence, that in order to obtain a comprehensive understanding of the properties of nanoscale materials it is of paramount importance to monitor their behavior over relatively longer periods of time under various ambient environments. While the solution based techniques offer a versatility and low cost route to study the fundamental properties of nanomaterials, they suffer some inherent problems such as precursor contamination and uncontrolled chemical reactions. Especially when analyzing the behavior of ceria-based materials for applications like solid oxide fuel cells, a great control in the density and crystalline quality are desired. In order to achieve this, as a first step pure ceria thin films were synthesized using oxygen plasma assisted molecular beam epitaxy (OPA-MBE). The ceria films were analyzed using various in situ and ex situ techniques to study the crystal structure, growth mode and epitaxial quality of the films. It was observed that the epitaxial orientation of the ceria films could be tuned by varying the deposition rate. When the films were grown at low deposition rate (< 8 Å/min) ceria films with epitaxial (200) orientation were observed where as the films grown at high deposition rates (up to 30 Å/min) showed (111) orientation. Theoretical simulations were used to confirm some of the experimental facts observed in both nanoparticles and thin films.
Show less - Date Issued
- 2008
- Identifier
- CFE0002163, ucf:47499
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002163
- Title
- UNDERSTANDING THE LOW TEMPERATURE ELECTRICAL PROPERTIESOF NANOCRYSTALLINE SNO2 FOR GAS SENSOR APPLICATIONS.
- Creator
-
Drake, Christina, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Nanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2...
Show moreNanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2 that makes it suitable for room temperature gas detectors. Studies were carried out in order to understand how various synthesis methods affect the surfaces on the nano-oxides, interactions of a target gas (in this study hydrogen) with different surface species, and changes in the electrical properties as a function of dopants and grain size. A correlation between the surface reactions and the electrical response of doped nanocrystalline metal-oxide-semiconductors exposed to a reducing gas is established using Fourier Transform Infrared (FTIR) Spectroscopy attached to a specially built custom designed catalytic cell. First principle calculations of oxygen vacancy concentrations from absorbance spectra are presented. FTIR is used for effectively screening of these nanostructures for gas sensing applications. The effect of processing temperature on the microstructural evolution and on the electronic properties of nanocrystalline trivalent dopedSnO2 is also presented. This study includes the effect of dopants (In and Ce) on the growth of nano-SnO2, as well as their effects on the electronic properties and gas sensor behavior of the nanomaterial at room temperature. Band bending affects are also investigated for this system and are related to enhanced low temperature gas sensing. The role and importance of oxygen vacancies in the electronic and chemical behavior of surface modified nanocrystalline SnO2 are explored in this study. A generalized explanation for the low temperature gas sensor behavior of nanocrystalline oxide is presented that can be generalized to other nano-oxide systems and be useful in specific engineering of other nanomaterials. Deeper understanding of how nano-oxides react chemically and electronically would be extremely beneficial to issues present in current low cost, low temperature sensor technology. Ability to exactly monitor and then engineer the chemistry of nanostructures in the space charge region as well as the surface is also of great significance. Knowledge of the mechanisms responsible for enhanced sensor response in this material system could viably be applied to other material systems for sensor applications.
Show less - Date Issued
- 2007
- Identifier
- CFE0001668, ucf:47214
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001668
- Title
- VACANCY ENGINEERED DOPED AND UNDOPED NANOCRYSTALLINE RARE EARTH OXIDE PARTICLES FOR HIGH TEMPERATURE OXIDATION RESISTANT COATINGS.
- Creator
-
THANNEERU, RANJITH, SEAL, SUDIPTA, University of Central Florida
- Abstract / Description
-
Rare earth oxides with trivalent lattice dopants have been of great interest to researchers in the recent years due to its potential applications in catalysis and high temperature protective coatings. The ability to store oxygen in rare earths is the basis for catalysis because of the ability to change valence states which causes the presence of intrinsic oxygen vacancies in the crystal lattice. Although, several doped-rare earth oxide systems in micron scale have been investigated, the...
Show moreRare earth oxides with trivalent lattice dopants have been of great interest to researchers in the recent years due to its potential applications in catalysis and high temperature protective coatings. The ability to store oxygen in rare earths is the basis for catalysis because of the ability to change valence states which causes the presence of intrinsic oxygen vacancies in the crystal lattice. Although, several doped-rare earth oxide systems in micron scale have been investigated, the doping effect in cerium oxide nanoparticles with well characterized particle size has not been studied. The doping of ceria at that small size can be very beneficial to further improve its catalytic properties and alter the high temperature phases in alloy systems. Cost effective room temperature chemical methods are used in the current work to synthesize uniformly distributed undoped and doped (dopants: La, Nd, Sm, Gd, Y and Yb) rare earth oxide nanoparticles. In the present study, the variation of the properties in nanocrystalline ceria (NC) synthesized by microemulsion method is studied as a function of dopant size and its concentration. To further understand, the role of dopant (cation) size on the oxygen vacancy concentration, doped nanocrystalline oxide powders were analyzed by Raman Spectroscopy, X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). XRD studies showed that lattice parameter change in nanocrystalline oxide by doping trivalent rare earth elements is largely depending on size of trivalent ions. It showed that by doping larger cations (Gd3+ and Y3+) compare to Ce3+ causes lattice expansion where as smaller cations (Yb3+) leads to lattice contraction. It also showed that the lattice expansion or contraction is directly proportional to dopant concentration. The results of Raman Spectroscopy showed that the correlation length decreases resulting in increase in oxygen vacancies for larger trivalent dopants (Sm3+, Gd3+ and Y3+). However, the correlation length increases resulting in decrease in oxygen vacancies for smaller trivalent dopants (Yb3+) compare to nanocrystalline ceria. These nanostructured oxides are further applied to develop high temperature oxidation resistance coatings for austenitic steels. The present study investigates the role of oxygen vacancies in the performance of high temperature oxidation resistance as a function of various trivalent dopants and dopant concentration. NC and La3+ doped nanocrystalline ceria (LDN) particles were coated on AISI 304 stainless steels (SS) and exposed to 1243K in dry air for longer duration and subjected to cycling. The results are further compared with that of micro-ceria (MC) coatings. The coated samples showed 90% improvement in oxidation resistance compared to uncoated and MC coated steels as seen from the SEM cross-sectional studies. XRD analysis showed the presence of chromia in both NC and 20 LDN samples which is absent in uncoated steels. From SIMS depth profiles, Fe, Ni depletion zones are observed in presence of LDN coated sample indicating diffusion through the oxide layer. The role of oxygen vacancies in the nanoceria coatings on the early formation of protective chromia layer is discussed and compared to its micron counterpart. This study helps in understanding the role of oxygen vacancies to protect austenitic stainless steel at high temperature and confirms the oxygen inward diffusion rather cation outward diffusion in rare earth oxide coatings. It also gives an idea to identify the type of dopant and its concentration in nanocrystalline cerium oxide which supplies the critical oxygen partial pressure required at high temperature to form primarily impervious chromia layer.
Show less - Date Issued
- 2007
- Identifier
- CFE0001711, ucf:47306
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001711
- Title
- TUNABLE NANOSTRUCTURE ANTI-REFLECTIVE COATINGS.
- Creator
-
Brinley, Erik, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Research was conducted on broadband, anti-reflective coatings for fused silica and chalcogenide substrates in the infrared region of light. Using chemical preparation to create nano-porous through nano-particle based sol-gel solutions, the alteration of optical properties including refractive index and optical thickness was conducted. The nano-particles can modify the coating surface to allow only zero-order diffracted wave propagation reducing scattering while a partially graded profile of...
Show moreResearch was conducted on broadband, anti-reflective coatings for fused silica and chalcogenide substrates in the infrared region of light. Using chemical preparation to create nano-porous through nano-particle based sol-gel solutions, the alteration of optical properties including refractive index and optical thickness was conducted. The nano-particles can modify the coating surface to allow only zero-order diffracted wave propagation reducing scattering while a partially graded profile of refractive index due surface evaporation lessened the precise phase relations of typical homogeneous coatings. My study of silica and titania sol-gel, and hybrid mixtures of the two were used to obtain the optical properties of the materials. The choice of experiments were rooted in theoretically calculated values, and parameters were selected based on quarter wavelength thickness and square root of refractive index theories of destructive cancellation of rebound waves for reduction of reflection. The fused silica system required anti-reflection in the region of 1.0-1.6 micrometer wavelength of the near-infrared. The base, uncoated transmission in this region is ~91%. A maximum transmission of 98% and no less than 97.3% over the entire region of interest was achieved. The chalcogenide system required anti-reflection in the regions of 1.0-1.6 and 3.5-5.0 micrometers of the near- and mid-infrared. The base, uncoated transmission of these regions is 61.9%. A maximum of 95% transmission was achieved for the 1.0-1.6 region and 87% for the 3.5-5.0 region. Solutions and coatings were characterized by Scanning Electron Microscope, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy, particle size, elipsometry, UV-Vis-NIR, and FTIR to reveal the science behind the development and synthesis of nano optical coatings.
Show less - Date Issued
- 2007
- Identifier
- CFE0001641, ucf:47247
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001641
- Title
- PLASMA PROCESSING FOR RETENTION OF NANOSTRUCTURES.
- Creator
-
Venkatachalapathy, Viswanathan, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Plasma spray processing is a technique that is used extensively in thermal barrier coatings on gas and steam turbine components, biomedical implants and automotive components. Many processing parameters are involved to achieve a coating with certain functionality. The coating could be required to function as thermal barrier, wear resistant, corrosion resistant or a high temperature oxidation resistant coating. Various parameters, such as, nozzle and electrode design, powder feeding system,...
Show morePlasma spray processing is a technique that is used extensively in thermal barrier coatings on gas and steam turbine components, biomedical implants and automotive components. Many processing parameters are involved to achieve a coating with certain functionality. The coating could be required to function as thermal barrier, wear resistant, corrosion resistant or a high temperature oxidation resistant coating. Various parameters, such as, nozzle and electrode design, powder feeding system, spray distances, substrate temperature and roughness, plasma gas flow rates and others can greatly alter the coating quality and resulting performance. Feedstock (powder or solution precursor) composition and morphology are some of the important variables, which can affect the high end coating applications. The amount of heat a plasma plume has to offer to the particles being processed as a coating depends primarily on the dissociation of the atoms of gaseous mixtures being used to create the plasma and the residence time required for the particle to stay in the flame. The parameters that are conducive for nanostructured retention could be found out if the residence time of the particles in the flame and the available heat in the plume for various gas combinations could be predicted. If the feedstock is a liquid precursor instead of a powder feedstock, the heat that has to be offered by the plasma could be increased by suitable gas combination to achieve a good quality coating. Very little information is available with regard to the selection of process parameters and processing of nano materials feedstock to develop nanostructured coatings using plasma spray. In this study, it has been demonstrated that nano ceramics or ceramic composites either in the form of coatings or bulk free form near net components could be processed using DC plasma spray. For powder feedstock, analytical heat transfer calculations could predict the particle states for a given set of parameters by way of heat input from the plasma to the particles. The parameter selection is rendered easier by means of such calculations. Alumina nano ceramic particles are processed as a coating. During Spray drying, a process of consolidation of nano alumina particles to spherical agglomerates, parameter optimization for complete removal of moisture has been achieved. The parameters are tested for alumina nanoparticles with a plasma torch for the veracity of calculations. The amount of heat transfer from the surface of the agglomerates to the core has been quantified as a function of velocity of particles. Since preparation of nanostructured feedstock for plasma spray is expensive and cumbersome, alternative solution precursor route for direct pyrolysis of precursor to coating has been studied in case of nanocrystalline rare earth oxides. Thus, it has also been shown by this research that nanostructured coatings could be either from a powder feedstock or a solution precursor feedstock. MoSi2-Si3N4, Ni-Al2O3, W-HfC nano ceramic composite systems have been processed as a bulk free form nanocomposite with 60-70% retained nanostructures. The importance of selection of substrates, roughness and the substrate temperature for development of free form bulk components has been highlighted. The improvement in mechanical and high temperature properties associated with having such nanostructured coatings or bulk nanocomposites are revealed. These nanostructured coatings are known for their low thermal conductivity, high wear resistance and can be potentially used as steam and gas turbines coatings for improved thermal efficiency. In summary, bulk nanocomposite through plasma spray processing is a viable alternative to conventional processes such as sintering, HIP for high fracture toughness and hardness applications.
Show less - Date Issued
- 2007
- Identifier
- CFE0001680, ucf:47203
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001680
- Title
- DIMESIONALITY ASPECTS OF NANO MICRO INTEGRATED METAL OXIDE BASED EARLY STAGE LEAK DETECTION ROOM TEMPERATURE HYDROGEN SENSOR.
- Creator
-
Deshpande, Sameer, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Detection of explosive gas leaks such as hydrogen (H2) becomes key element in the wake of counter-terrorism threats, introduction of hydrogen powered vehicles and use of hydrogen as a fuel for space explorations. In recent years, a significant interest has developed on metal oxide nanostructured sensors for the detection of hydrogen gas. Gas sensors properties such as sensitivity, selectivity and response time can be enhanced by tailoring the size, the shape, the structure and the surface of...
Show moreDetection of explosive gas leaks such as hydrogen (H2) becomes key element in the wake of counter-terrorism threats, introduction of hydrogen powered vehicles and use of hydrogen as a fuel for space explorations. In recent years, a significant interest has developed on metal oxide nanostructured sensors for the detection of hydrogen gas. Gas sensors properties such as sensitivity, selectivity and response time can be enhanced by tailoring the size, the shape, the structure and the surface of the nanostructures. Sensor properties (sensitivity, selectivity and response time) are largely modulated by operating temperature of the device. Issues like instability of nanostructures at high temperature, risk of hydrogen explosion and high energy consumption are driving the research towards detection of hydrogen at low temperatures. At low temperatures adsorption of O2- species on the sensor surface instead of O- (since O- species reacts easily with hydrogen) result in need of higher activation energy for hydrogen and adsorbed species interaction. This makes hydrogen detection at room temperature a challenging task. Higher surface area to volume ratio (resulting higher reaction sites), enhanced electronic properties by varying size, shape and doping foreign impurities (by modulating space charge region) makes nanocrystalline materials ideal candidate for room temperature gas sensing applications. In the present work various morphologies of nanostructured tin oxide (SnO2) and indium (In) doped SnO2 and titanium oxide (titania, TiO2) were synthesized using sol-gel, hydrothermal, thermal evaporation techniques and successfully integrated with the micro-electromechanical devices H2 at ppm-level (as low as 100ppm) has been successfully detected at room temperature using the SnO2 nanoparticles, SnO2 (nanowires) and TiO2 (nanotubes) based MEMS sensors. While sensor based on indium doped tin oxide showed the highest sensitivity (S =Ra/Rg= 80000) and minimal response time (10sec.). Highly porous SnO2 nanoparticles thin film (synthesized using template assisted) showed response time of about 25 seconds and sensitivity 4. The one dimensional tin oxide nanostructures (nanowires) based sensor showed a sensitivity of 4 and response time of 20 sec. Effect of aspect ratio of the nanowires on diffusion of hydrogen molecules in the tin oxide nanowires, effect of catalyst adsorption on nanowire surface and corresponding effect on sensor properties has been studied in detail. Nanotubes of TiO2 prepared using hydrothermal synthesis showed a sensitivity 30 with response time as low as 20 seconds where as, TiO2 nanotubes synthesized using anodization showed poor sensitivity. The difference is mainly attributed to the issues related to integration of the anodized nanotubes with the MEMS devices. The effect of MEMS device architecture modulation, such as, finger spacing, number and length of fingers and electrode materials were studied. It has been found that faster sensor response (~ 10 sec) was observed for smaller finger spacing. A diffusion model is proposed for elucidating the effect of inter-electrode distance variation on conductance change of a nano-micro integrated hydrogen sensor for room temperature operation. Both theoretical and experimental results showed a faster response upon exposure to hydrogen when sensor electrode gap was smaller. Also, a linear increase in the sensor sensitivity from 500 to 80000 was observed on increasing the electrode spacing from 2 to 20 μm. The improvement in sensitivity is attributed to the higher reactive sites available for the gaseous species to react on the sensor surface. This phenomenon also correlated to surface adsorbed oxygen vacancies (O-) and the rate of change of surface adsorbed oxygen vacancies. This dissertation studied in detail dimensionality aspects of materials as well as device in detecting hydrogen at room temperature.
Show less - Date Issued
- 2007
- Identifier
- CFE0001985, ucf:47420
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001985
- Title
- SURFACE CHEMISTRY OF APPLICATION SPECIFIC PADS AND COPPER CHEMICAL MECHANICAL PLANARIZATION.
- Creator
-
Deshpande, Sameer Arun, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Advances in the interconnection technology have played a key role in the continued improvement of the integrated circuit (IC) density, performance and cost. Copper (Cu) metallization, dual damascenes processing and integration of copper with low dielectric constant material are key issues in the IC industries. Chemical mechanical planarization of copper (Cu-CMP) has emerged as an important process for the manufacturing of ICs. Usually, Cu-CMP process consists of several steps such as the...
Show moreAdvances in the interconnection technology have played a key role in the continued improvement of the integrated circuit (IC) density, performance and cost. Copper (Cu) metallization, dual damascenes processing and integration of copper with low dielectric constant material are key issues in the IC industries. Chemical mechanical planarization of copper (Cu-CMP) has emerged as an important process for the manufacturing of ICs. Usually, Cu-CMP process consists of several steps such as the removal of surface layer by mechanical action of the pad and the abrasive particles, the dissolution of the abraded particles in the CMP solution, and the protection of the recess areas. The CMP process occurs at the atomic level at the pad/slurry/wafer interface, and hence, slurries and polishing pads play critical role in its successful implementation. The slurry for the Cu-CMP contains chemical components to facilitate the oxidation and removal of excess Cu as well as passivation of the polished surface. During the process, these slurry chemicals also react with the pad. In the present study, investigations were carried out to understand the effect of hydrogen peroxide (H2O2) as an oxidant and benzotriazole (BTA) as an inhibitor on the CMP of Cu. Interaction of these slurry components on copper has been investigated using electrochemical studies, x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). In the presence of 0.1M glycine, Cu removal rate was found to be high in the solution containing 5% H2O2 at pH 2 because of the Cu-glycine complexation reaction. The dissolution rate of the Cu was found to increase due to the formation of highly soluble Cu-glycine complex in the presence of H2O2. Addition of 0.01M BTA in the solution containing 0.1M glycine and 5% H2O2 at pH 2 exhibited a reduction in the Cu removal rate due to the formation of Cu-BTA complex on the surface of the Cu further inhibiting the dissolution. XPS and SIMS investigations revealed the formation of such Cu-glycine complex, which help understand the mechanism of the Cu-oxidant-inhibitor interaction during polishing. Along with the slurry, pads used in the Cu-CMP process have direct influence an overall process. To overcome problems associated with the current pads, new application specific pad (ASP) have been developed in collaboration with PsiloQuest Inc. Using plasma enhanced chemical vapor deposition (PECVD) process; surface of such ASP pads were modified. Plasma treatment of a polymer surface results in the formation of various functional groups and radicals. Post plasma treatment such as chemical reduction or oxidation imparts a more uniform distribution of such functional groups on the surface of the polymer resulting in unique surface properties. The mechanical properties of such coated pad have been investigated using nano-indentation technique in collaboration with Dr. Vaidyanathan's research group. The surface morphology and the chemistry of the ASP are studied using scanning electron microcopy (SEM), x-ray photoelectron spectroscopy (XPS), and fourier transform infrared spectroscopy (FTIR) to understand the formation of different chemical species on the surface. It is observed that the mechanical and the chemical properties of the pad top surface are a function of the PECVD coating time. Such PECVD treated pads are found to be hydrophilic and do not require being stored in aqueous medium during the not-in-use period. The metal removal rate using such surface modified polishing pad is found to increase linearly with the PECVD coating time. Overall, this thesis is an attempt to optimize the two most important parameters of the Cu-CMP process viz. slurry and pads for enhanced performance and ultimately reduce the cost of ownership (CoO).
Show less - Date Issued
- 2004
- Identifier
- CFE0000125, ucf:46191
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000125
- Title
- DEVELOPMENT OF THERMALLY PROCESSED NANOCOMPOSITES WITH CONTROLLED SURFACES.
- Creator
-
Georgieva, Petya, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
The ever increasing need for technology development requires the integration of inexpensive, light weight and high strength materials which are able to meet the high standards and specifications for various engineering applications. The intention of this work is to show that the suitable material selection and the utilization of plasma spray processing can be of potential interest to a large number of industrial, biomedical and everyday life applications. This research demonstrates also that...
Show moreThe ever increasing need for technology development requires the integration of inexpensive, light weight and high strength materials which are able to meet the high standards and specifications for various engineering applications. The intention of this work is to show that the suitable material selection and the utilization of plasma spray processing can be of potential interest to a large number of industrial, biomedical and everyday life applications. This research demonstrates also that plasma processing is a promising engineering tool for multifunctional coatings and near-net-shape manufacturing. Further, the theoretical and experimental results are combined in order to explain the mechanisms behind nanostructure retention and enhanced properties. Proper design of experiments, an appropriate material selection and experimental methodology are discussed herein. The experimental conditions were optimized in order to achieve the best materials properties according to their explicit properties and functions. Specific materials were consolidated according to their prospective performance and applications: 1) Plasma spraying of nano-Ceria-stabilized Zirconia free form part for stem cells scaffolds, 2) Plasma spraying of FeCrAlY on Ti-alloy plate, additionally coated with nano-size Hydroxyapatite for bone tissue engineering, 3) Wire-arc spraying of nano-based steel wires for aerospace and automotive applications. The performance and characteristics of all of the developed coatings and free-form-parts are evaluated using state-of-the art characterization techniques.
Show less - Date Issued
- 2006
- Identifier
- CFE0001153, ucf:46871
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001153
- Title
- PROBING THE NANOSCALE INTERACTION FORCES AND ELASTIC PROPERTIES OF ORGANIC AND INORGANIC MATERIALS USING FORCE-DISTANCE (F-D) SPECTROSCOPY.
- Creator
-
Vincent, Abhilash, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface...
Show moreDue to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 õN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.
Show less - Date Issued
- 2010
- Identifier
- CFE0003079, ucf:48305
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003079
- Title
- TUNING THE PROPERTIES OF NANOMATERIALS AS FUNCTION OF SURFACE AND ENVIRONMENT.
- Creator
-
Karakoti, Ajay, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Nanotechnology has shaped the research and development in various disciplines of science and technology by redefining the interdisciplinary research. It has put the materials science at the forefront of technology by allowing the researchers to engineer materials with properties ranging from electronics to biomedical by using materials as diverse as ceramics to just plain carbon. These exceptional properties are achieved by minimizing the dimension of particles in such smaller domains that...
Show moreNanotechnology has shaped the research and development in various disciplines of science and technology by redefining the interdisciplinary research. It has put the materials science at the forefront of technology by allowing the researchers to engineer materials with properties ranging from electronics to biomedical by using materials as diverse as ceramics to just plain carbon. These exceptional properties are achieved by minimizing the dimension of particles in such smaller domains that the boundary between the individual atoms, ions or cluster of particles is very small. This results in a change in conventional properties of particles from continuum physics to quantum physics and hence the properties of nanoparticles can be tuned based upon their size, shape and dimensionality. One of the most apparent changes upon decreasing the particle size is the increase in surface area to volume ratio. Thus nanoparticles possess greater tendency to interact with the environment in which they are present and similarly the environment can affect the properties of nanomaterials. The environment here is described as the immediate solid, liquid or gaseous material in immediate contact with the external surface of the nanoparticles. In order to control the physico-chemical properties of nanoparticles it is important to control the surface characteristics of nanoparticles and its immediate environment. The current thesis emphasizes the role of tuning the surface of nanoparticles and/or the environment around the nanoparticles to control their properties. The current approach in literature uses nanoparticles as a platform that can be used for a myriad of applications by just changing the surface species which can tune the properties of nanoparticles. Such surface modification can provide nanomaterials with hydrophilic, hydrophobic, biocompatible, sensing, fluorescence and/or electron transfer properties. The current thesis demonstrates the interaction between nanoparticles and the environment by changing the surface characteristics of nanomaterials through the use of oxide nanoparticles as examples. The first part of the thesis discusses the synthesis, modification and properties of cerium oxide nanoparticles (CNPs), a versatile material used in wide range of applications from catalysis to glass polishing, for their potential use in biomedical applications as a function of medium. The thesis starts by projecting the effect of environment on the properties of nanomaterials wherein it is shown that simple medium, such as, water can influence the optical properties of nanoparticles. It was shown that the strong polarizing effect of water on the non-bonding f electrons can cause a blue shift in the optical properties of CNPs as a function of increase in trivalent oxidation state of cerium in CNPs. This phenomenon, contradictory to existing literature in solid state where a red shift is observed upon increasing the trivalent oxidation state of cerium in CNPs, is purely attributed to the medium-inflicted change in properties of nanoparticles. This concept is built upon in the first half of thesis by increasing the colloidal stability of nanoparticles by surface and/or medium modification. It is shown that the narrow range of pH in which the colloidal CNPs are stable can be extended by changing the medium from water to polyhydroxy compounds such as glucose and dextran. The synthesis was designed specially to avoid the traditional precipitation and re-dispersion strategy of synthesis of nanoparticles to preserve the surface activity. The complex forming ability of cerium with polysaccharides was employed to synthesize the CNPs in a one step process and the pH stability of the NPs was extended between 2.0 to 9.5. The difference in the complexing ability of the monomer - glucose and its anhydro glucose polymer - dextran is reflected in the ability of cerium to form super-agglomerates with the monomer while anhydro gluco polymer forms extremely disperse 3-5 nm nanoparticles through steric modification. It is shown that the antioxidant activity of nanoparticles remain unchanged by surface modification by demonstrating the cycling of the oxidation state of cerium in CNPs, with time, through hydrogen peroxide mediated transition of oxidation states of cerium. It is demonstrated that the polymeric coatings, generally considered as passive surface coatings, can also play an active role in tuning the properties of nanomaterials and increasing their biocompatibility as well as bio-catalytic activity. It is demonstrated that the antioxidant activity of CNPs can be increased as a function of polyethylene glycol (PEG) while the biocompatibility is unaltered due to the biocompatible nature of PEG. The antioxidant activity of CNPs involves an electron transfer (ET) from the CNPs to the reactive oxygen species or vice versa. This heterogeneous ET system is further complicated by the presence of surface adsorbed species. Interfacial charge/electron transfer (ET) between a particle and adsorbed (or covalently bonded) molecule presents significant complexity as it involves a solid state electron transfer over long distance. Unlike a free ion, in solid state, the conducting electrons can be temporarily trapped by the coupling lattice sites. Adsorption/attachment of surface species to nanoparticle can disturb the electronic levels by further polarizing the electron cloud thereby localizing the electron and facilitating the charge transfer. Such an interfacial electron transfer between NPs and adsorbed organic species can be compared to the single electron transfer carried by organometallic systems with a metal ion core modified with electron delocalizing porphyrin ligands. It is demonstrated that in this PEGyltaed CNPs system, the PEG essentially forms a complex with CNPs in the presence of hydrogen peroxide to facilitate this electron transfer process. The superoxide dismutase (SOD) and catalase mimetic ability of CNPs is described and special emphasis is given to its biocompatibility. The second half of the thesis emphasizes the role of synthesis and surface modification in influencing the catalytic performance of cerium oxide modified titanium dioxide catalysts for decomposition of methanol. Noble metals supported on oxide nanoparticles have been an area of active research in catalysis. It is demonstrated that the modification of surface of the oxide nanoparticles by noble metals is a function of the synthesis process. By keeping the size of the nanoparticles constant, it was demonstrated that the differences in the oxidation state of noble metals can lead to change in the activity of noble metals. This contribution adds to the already existing controversy in the open literature about the role of the oxidation state of platinum in catalysis. The core level shifts in the binding energy of the 4f electrons of platinum was used as a guide to the gauge the oxidation state. Results from an in-house built catalytic reactor coupled to mass spectrometer and in-situ diffuse reflectance infra-red spectroscopy are used to quantify the catalytic performance and identify the mechanism of reaction as well as products of methanol decomposition.
Show less - Date Issued
- 2010
- Identifier
- CFE0003189, ucf:48590
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003189
- Title
- Novel Nanostructures and Processes for Enhanced Catalysis of Composite Solid Propellants.
- Creator
-
Draper, Robert, Seal, Sudipta, Heinrich, Helge, Zhai, Lei, University of Central Florida
- Abstract / Description
-
The purpose of this study is to examine the burning behaviour of composite solid propellants (CSP)in the presence of nanoscale, heterogenous catalysts. The study targets the decomposition of am-monium perchlorate (AP) as a key component in the burning profile of these propellants, and seeksto identify parameters of AP decomposition reaction that can be affected by catalytic additives.The decomposition behavior of AP was studied in the presence of titanium dioxide nanoparticlesin varying...
Show moreThe purpose of this study is to examine the burning behaviour of composite solid propellants (CSP)in the presence of nanoscale, heterogenous catalysts. The study targets the decomposition of am-monium perchlorate (AP) as a key component in the burning profile of these propellants, and seeksto identify parameters of AP decomposition reaction that can be affected by catalytic additives.The decomposition behavior of AP was studied in the presence of titanium dioxide nanoparticlesin varying configurations, surface conditions, dopants, morphology, and synthesis parameters withthe AP crystals. The catalytic nanoparticles were found to enhance the decomposition rate of theammonium perchlorate, and promote an accelerated burning rate of CSP propellants containingthe additives. Furthermore, different configurations were shown to have varying degrees of effec-tiveness in promoting the decomposition behaviour.To study the effect of the catalyst's configuration in the bulk propellant, controlled dispersion con-ditions of the nanoparticle catalysts were created and studied using differential scanning calorime-try, as well as model propellant strand burning. The catalysts were shown to promote the greatestenthalpy of reaction, as well as the highest burn rate, when the AP crystals were recrystalizedaround the nanoparticle additives. This is in contrast to the lowest enthalpy condition, which cor-responded to catalysts being dispersed upon the AP crystal surface using bio-molecule templates.Additionally, a method of facile, visible light nanoparticle tracking was developed to study theeffect of mixing and settling parameters on the nano-catalysts. To accomplish this, the titaniananoparticles were doped with fluorescent europium molecules to track the dispersion of the cat-alysts in the propellant binder. This method was shown to succesfully allow for dispersion andagglomeration monitoring without affecting the catalytic effect of the TiO2 nanoparticles.
Show less - Date Issued
- 2013
- Identifier
- CFE0004991, ucf:49559
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004991
- Title
- Graphene Oxide Reinforcement in Plasma Sprayed Nickel-5%Aluminum Coatings.
- Creator
-
Ward, David, Seal, Sudipta, Vaidyanathan, Raj, Heinrich, Helge, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Metallic plasma sprayed coatings are widely used in the aerospace industry for repair on worn engine components. However, the inherent defects in these coatings limit the variety of repairs and reduce the service life of the repaired parts. A potential solution to overcome this problem is to mix small amounts of inexpensive graphene oxide in the powder feedstock. The incredible strength to weight ratio of graphene oxide makes it a viable additive to improve mechanical properties of metallic...
Show moreMetallic plasma sprayed coatings are widely used in the aerospace industry for repair on worn engine components. However, the inherent defects in these coatings limit the variety of repairs and reduce the service life of the repaired parts. A potential solution to overcome this problem is to mix small amounts of inexpensive graphene oxide in the powder feedstock. The incredible strength to weight ratio of graphene oxide makes it a viable additive to improve mechanical properties of metallic plasma sprayed coatings. The powder system chosen for this research is Nickel-5Aluminum since it is a common coating for such repairs. The greatest challenge was retaining graphene oxide, which combusts at 400(&)deg;C, while melting the Nickel above 1450(&)deg;C using a high temperature plasma plume. Graphene oxide was successfully retained in the coatings using either of two configurations: (1) Injecting the graphene oxide powder via solution suspension separately from the metal powder, or (2) Installing a shroud on the front of the plasma gun and backfilling with Argon to inhibit combustion. The uniquely designed solution suspension configuration resulted in a higher deposition efficiency of graphene oxide while the inert shroud configuration had a more homogeneous distribution and retention of graphene oxide in the coatings. The best overall coating was achieved using the inert shroud configuration using a powder mixture containing 2% weight Edge Functionalized Graphene Oxide. Vickers microhardness increased 46% and tensile adhesion strength increased 26% over control samples. This is possible due to the mechanisms of dislocation strengthening and stress transfer previously reported in graphene oxide reinforced Aluminum composites formed by flake powder metallurgy. It was also observed that the energy released by the combustion of graphene oxide helps to uniformly melt the Nickel particles and improve the coating microstructure, allowing for more forgiving spray parameters. The methods developed and results attained in this research open opportunities for graphene oxide to be added as inexpensive reinforcements to other metallic compositions for widespread use in metal matrix composite manufacturing.
Show less - Date Issued
- 2014
- Identifier
- CFE0005901, ucf:50857
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005901
- Title
- ADSORPTION BEHAVIOUR OF POLYACRYLIC ACID ON CERIUM OXIDE NANOSTRUCTURES: EXPERIMENTAL AND PREDICTIVE MODEL.
- Creator
-
Haghighat Mesbahi, Ali, Seal, Sudipta, Fang, Jiyu, Bai, Yuanli, University of Central Florida
- Abstract / Description
-
Cerium oxide-based slurries are crucial for chemical mechanical polishing (CMP) in electronic industry. For these slurry systems, poly(acrylic acid) (PAA) is heavily utilized to provide colloidal stability. Some of the important parameters in the colloid stability are molecular weight (MW) and concentration of stabilizer, size of the nanoparticle in the slurry and the pH of system. By determining the colloidal stability of a discrete number of slurry formulations and relating these to certain...
Show moreCerium oxide-based slurries are crucial for chemical mechanical polishing (CMP) in electronic industry. For these slurry systems, poly(acrylic acid) (PAA) is heavily utilized to provide colloidal stability. Some of the important parameters in the colloid stability are molecular weight (MW) and concentration of stabilizer, size of the nanoparticle in the slurry and the pH of system. By determining the colloidal stability of a discrete number of slurry formulations and relating these to certain slurry component parameters, a possible model can be produced to predict the influence of these parameters on the particle stability. Direct quantification of colloidal stability is difficult, however, polymer adsorption has been well established to correlate with the stability and therefore it can be used to quantify the colloidal stability.For the current thesis, surface area of cerium oxide, molecular weight of PAA, and the relative weight fraction of PAA were varied in two different nanomaterial systems, such as nanocubes and nanorods. To obtain the best fit of these variables, as they relate to polymer adsorption, fittings were performed using two advanced modeling techniques; namely, artificial neural network and adaptive neuro-fuzzy inference system. The precision of these techniques were compared each other and with the more simple, though largely imprecise, multi-variable linear regression. It was determined that the GENFIS-3 model shows the best performance for describing polymer adsorption on the nanocube and nanorod systems with an average relative deviation of only 6.5%. Additionally, these models suggest that the relative fraction of PAA has the most significant effect on the stability of cerium oxide-based CMP slurries. The greater precision of these advanced modeling methods can explain the better slurry performance with greater colloidal stability.
Show less - Date Issued
- 2015
- Identifier
- CFE0006315, ucf:51542
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006315
- Title
- Fabrication and Investigation of an enzyme-free, Nanoparticle-based Biosensor for Hydrogen Peroxide determination.
- Creator
-
Neal, Craig, Seal, Sudipta, Cho, Hyoung Jin, Florczyk, Stephen, University of Central Florida
- Abstract / Description
-
Electrochemical biosensors often employ enzymes as detection elements. These sensors are highly selective towards target analytes, however the scope of their application is limited by the poor stability of the enzyme. In this study, multi-valent inorganic cerium oxide nanoparticles were used as detection elements for the analysis of hydrogen peroxide. The electrochemical response of the cerium oxide towards hydrogen peroxide analyte is defined through cyclic voltammetry and chronoamperometry....
Show moreElectrochemical biosensors often employ enzymes as detection elements. These sensors are highly selective towards target analytes, however the scope of their application is limited by the poor stability of the enzyme. In this study, multi-valent inorganic cerium oxide nanoparticles were used as detection elements for the analysis of hydrogen peroxide. The electrochemical response of the cerium oxide towards hydrogen peroxide analyte is defined through cyclic voltammetry and chronoamperometry. This response was found to be dependent on nanoparticle Ce3+:Ce4+ redox state ratio and this property is exploited to fabricate a biosensor. As produced, the biosensor demonstrated sensitivity at picomolar analyte concentrations. Further, the sensitivity of the electrode is stable across a range of temperatures and pH's which inhibit the function of standard enzyme-based sensors. Additionally, the produced sensor retained function in sheep serum demonstrating the high selectivity and robustness of the sensor.
Show less - Date Issued
- 2016
- Identifier
- CFE0006362, ucf:51540
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006362
- Title
- The Study of Physiochemical Properties of Cerium Oxide Nanoparticles and its Application in Biosensors.
- Creator
-
Barkam, Swetha, Seal, Sudipta, Heinrich, Helge, Gaume, Romain, University of Central Florida
- Abstract / Description
-
Biosensors continue to get smaller and faster with the advancement in nanotechnology through the use of nanomaterials to achieve high sensitivity and selectivity. However, the continued reliance on biomolecules or enzymes in the biosensor assembly poses the problem of reproducibility, storage and complexity. This dissertation research address some of the challenges by investigating the physiochemical properties of nanoparticles to understand its interaction with biological systems and develop...
Show moreBiosensors continue to get smaller and faster with the advancement in nanotechnology through the use of nanomaterials to achieve high sensitivity and selectivity. However, the continued reliance on biomolecules or enzymes in the biosensor assembly poses the problem of reproducibility, storage and complexity. This dissertation research address some of the challenges by investigating the physiochemical properties of nanoparticles to understand its interaction with biological systems and develop enzyme free biosensors. In this study, we have demonstrated a novel strategy to integrate cerium oxide nanoparticles (CNPs) as an efficient transducer through rigorous screening for developing enzyme/label free biosensors for detecting analytes such as dopamine associated with neurodegenerative diseases and limonin for fruit quality management. CNPs have been proven to exhibit antioxidant properties attributed to its dynamic change in surface oxidation states (Ce4+ to Ce3+ and vice versa) mediated at the oxygen vacancies on the surface of the CNPs. It is also well-established that nanoparticles are resourceful novel materials with a plethora of applications in the field of nanomedicine.It is of significant importance to study the changes in physiochemical properties of different synthesized CNPs for effective use in biomedical applications. In one of the studies, the effects of different anions in the precursor of the cerium salts used for synthesizing CNPs using the same synthesis method, were extensively studied. It has been demonstrated that the physicochemical properties such as dispersion stability, hydrodynamic size, and the signature surface chemistry, antioxidant catalytic activity, oxidation potentials of different CNPs have been significantly altered with the change of anions in the precursor salts. . The increased antioxidant property of CNPs prepared using the precursor salts containing NO3(&)#175; and Cl(&)#175; ions have been extensively studied using in-situ UV-Visible spectroscopy which reveal that the change in oxidation potentials of CNPs with the change in concentration of anions. Thus, this work demonstrated that the physicochemical and antioxidant properties of CNPs can be tuned by anions of the precursor during the synthesis process.After standardizing the synthesis process, CNPs have been immobilized on highly ordered polymer nanopillars to develop an optical sensor for dopamine detection. Dopamine, is one of the main neurotransmitters which plays a significant role in central nervous system and its deficiency leads to neurological disorders such as Parkinson's disease, schizophrenia etc. Current biosensors in the literature use invasive detection techniques and lacks sensitivity to detect physiological clinically relevant concentrations of dopamine. The interaction between CNPs and dopamine have been extensively studied using UV-visible spectro-electrochemical studies to achieve the right surface chemistry (35-70% Ce4+). The sensor exhibits high sensitivity (1fM detection in simulated body fluid), high selectivity (in acetic acid, sheep plasma) and increased robustness with several cycles of usage.Furthermore, we have developed a CNPs based biosensor by integrating it on a transistor platform for improved sensitivity and better adhesion by immobilizing in silk fibroin matrix. In the final study, CNPs integrated in silk fibroin (SF) polymer electrospun nanofibers incorporated on an organic electrochemical transistor platform, is used to develop a limonin sensor. It has been established that the concentration of limonin in citric fruit predicts the quality in terms of bitter taste from the HLB bacteria infected fruits. A unique in-house electrospinning set-up using drum as collector was used to develop SF (extracted from cocoon) nanofibers used as CNP (synthesized in-situ in fibers) transducer carrier, both of which have a specific interaction with limonin. This novel biosensor has exhibited high sensitivity (100nM in PBS) and selectivity (citric acid, sugar etc.) with improved robustness in terms of reuse. The broader impact of the study is to develop holistic diagnostic non-invasive biosensors that can directly be used to detect the analytes using samples from humans and/or on field for fruit quality determination, which is a huge stepping stone in the advancement of nanotechnology based biosensors. This will fuel future generation of enzyme free biosensors which can utilize similar concepts for the detection of other analytes. The biosensor could be printed on a flexible substrate to advance wearable smart biosensor and could eventually enable users to wirelessly monitor the analyte concentrations using smartphones.
Show less - Date Issued
- 2017
- Identifier
- CFE0006931, ucf:51662
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006931
- Title
- Cerium oxide Nanoparticles: Their Phosphatase Activity and its Control.
- Creator
-
Dhall, Atul, Self, William, Seal, Sudipta, Zervos, Antonis, University of Central Florida
- Abstract / Description
-
Cerium oxide nanoparticles are established scavengers of reactive oxygen and nitrogen species. They have many potential biomedical applications that depend on their physicochemical properties and mode of preparation. Recent studies have found these nanoparticles possess phosphatase mimetic activity. Studying such catalytic activities will qualify their biomedical applications and render information on their bioavailability and potential toxicity.Two oxidation states of cerium exist in these...
Show moreCerium oxide nanoparticles are established scavengers of reactive oxygen and nitrogen species. They have many potential biomedical applications that depend on their physicochemical properties and mode of preparation. Recent studies have found these nanoparticles possess phosphatase mimetic activity. Studying such catalytic activities will qualify their biomedical applications and render information on their bioavailability and potential toxicity.Two oxidation states of cerium exist in these nanoparticles (3+ or 4+). It is hypothesized that the oxidation state of cerium in the nanoparticles determines the amount of adsorbed water on the crystal lattices. This in turn governs their activity as phosphatases. Nanoparticles with higher levels of cerium in the 4+ state exhibit phosphatase activity while those with higher levels of cerium in the 3+ state do not. This phosphatase activity may be controlled with the addition of inhibitory anions. It is hypothesized that anions with structures similar to phosphate can inhibit phosphatase activity by leading to the production of complexes on the surface of cerium oxide nanoparticles.Substrates that were used to test this activity include para-nitrophenyl phosphate (pNPP), 4-methylumbelliferyl phosphate (MUP) and adenosine triphosphate (ATP). To highlight the role of adsorbed water, we also performed experiments on pNPP with methanol as a solvent. The activity was measured by absorbance (pNPP and ATP) or fluorescence (MUP) and reported as nmol of phosphate/min. In some cases this rate was calculated through coupled reactions or by measuring the rate of formation of other colored products formed along with the release of phosphate such as pNP (para-nitrophenol).The phosphatase activity increased as the amount of adsorbed water increased implying that the abundance of adsorbed water makes the surface of 4+ ceria nanoparticles more active. Phosphatase activity for all the substrates exhibited Michaelis-Menten kinetics. Although the phosphatase activity of these nanoparticles is slow (turnover rate) as compared to real biological phosphatases, it can be used as a model catalytic activity to follow other catalytic activities that are associated with nanoparticles that have an abundance of cerium in the 4+ state, such as catalase activity. These results also provide information on the nature of the active sites involved in the catalytic activities associated with these nanoparticles.We identified three inhibitors, tungstate, molybdate and arsenate, which decreased the phosphatase activity of these nanoparticles in a dose dependent manner. Vmax, Km and Ki values were determined by varying substrate concentrations in the presence and absence of inhibitors. A partial mixed inhibition model was fit for each of these inhibitors.Summary: Phosphatase activity of cerium oxide nanoparticles with higher levels of cerium in the 4+ oxidation state was used as a model catalytic activity to study the nature of the active sites involved in catalysis. The study of inhibitors can reveal more information as to the surface binding of substrates in catalysis.
Show less - Date Issued
- 2014
- Identifier
- CFE0005603, ucf:50261
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005603
- Title
- The Study of Photo-reduction of Cerium Oxide Nanoparticles in Presence of Dextran: An Attempt in Understanding the Functionality of the System.
- Creator
-
Barkam, Swetha, Seal, Sudipta, Heinrich, Helge, Gaume, Romain, University of Central Florida
- Abstract / Description
-
Malignant melanoma cancer is the sixth common cancer diagnosed in the United States. Surgery, chemotherapy and radiation are some of the successful techniques in killing tumor cells. However, in these techniques, it is not easy to distinguish tumor cells from the healthy once which inadvertently get exposed to chemical agent/radiation. Therefore it is required to develop an anti-cancer agent which selectively kills the cancer cells, while still protecting the normal tissues. In our...
Show moreMalignant melanoma cancer is the sixth common cancer diagnosed in the United States. Surgery, chemotherapy and radiation are some of the successful techniques in killing tumor cells. However, in these techniques, it is not easy to distinguish tumor cells from the healthy once which inadvertently get exposed to chemical agent/radiation. Therefore it is required to develop an anti-cancer agent which selectively kills the cancer cells, while still protecting the normal tissues. In our preliminary work, we have shown that Dextran (1000Da) coated Cerium oxide nanoparticles (Dex-CNPs) selectively kills the cancer cells (50% killing at a concentration of 150?M) without inducing toxicity to the normal cells. However, the mechanism involved on how CNPs/Dex-CNPs attain the selectivity and efficiently kill the tumor cells is still unknown. In this study we have synthesized Dextran coated ceria nano particles (Dex- CNPs) with different surface oxidation state ratio (Ce4+/Ce3+). This will provide an in depth understanding of the key chemical and physical properties of the system that can improve its efficacy. The varied surface oxidation of the particles is achieved by exposing Dex-CNPs to light which initiates a color change from dark to pale yellow indicating the reduction of Ce4+ to Ce3+. Interestingly we have found that the Dex-CNPs exposed to light have reduced cytotoxicity towards squamous cell carcinoma cell line (CCL30) compared to the protected once. Characterization of the same revealed that Dex- CNPs exposed to light have decreased Ce4+ /Ce3+ surface oxidation ratio compared to the other. This provides more insight in useful synthesis of Dex-CNPs in terms of storage and handling. In summary, higher Ce4+ /Ce3+ surface oxidation ratio is more efficient in hindering tumor growth by effectively hindering the tumor-stoma interaction.
Show less - Date Issued
- 2013
- Identifier
- CFE0005301, ucf:50508
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005301
- Title
- Multifunctional, Multimaterial Particle Fabrication Via an In-Fiber Fluid Instability.
- Creator
-
Kaufman, Joshua, Abouraddy, Ayman, Schoenfeld, Winston, Christodoulides, Demetrios, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Spherical micro- and nano-particles have found widespread use in many various applications from paint to cosmetics to medicine. Due to the multiplicity of desired particle material(s), structure, size range, and functionality, many approaches exist for generating such particles. Bottom-up methods such as chemical synthesis have a high yield and work with a wide range of materials; however, these processes typically lead to large polydispersity and cannot produce structured particles. Top-down...
Show moreSpherical micro- and nano-particles have found widespread use in many various applications from paint to cosmetics to medicine. Due to the multiplicity of desired particle material(s), structure, size range, and functionality, many approaches exist for generating such particles. Bottom-up methods such as chemical synthesis have a high yield and work with a wide range of materials; however, these processes typically lead to large polydispersity and cannot produce structured particles. Top-down approaches such as microfluidics overcome the polydispersity issue and may produce a few different structures in particles, but at lower rates and only at the micro-scale. A method that can efficiently produce uniformly-sized, structured particles out of a variety of materials and at both the micro- and nano-scales does not yet exist.Over the past few years, I have developed an in-fiber particle fabrication method that relies on a surface tension-driven fluid instability, the Plateau-Rayleigh capillary instability (PRI). Thermal treatment of a multimaterial core/cladding fiber induces the PRI, causing the initially intact core to break up into a periodic array of uniformly-sized spherical particles. During this time, I have demonstrated that this method can produce particles from both polymers and glasses, in a multiplicity of structures, and from diameters of over 1 mm down to 20 nm. Furthermore, by using a stack-and-draw method, a high density of cores may be incorporated into a single fiber, making the in-fiber PRI approach a highly scalable process. Finally, I have shown that it is possible to add dopants to the particles to give them functionality. By structuring the particles, it is thus possible to fabricate multi-functional particles whose functionalities may be allocated arbitrarily throughout the volume of the particles.
Show less - Date Issued
- 2014
- Identifier
- CFE0005357, ucf:50479
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005357