Current Search: Self, William (x)
View All Items
Pages
- Title
- THE EFFECTS OF SITE-DIRECTED MUTAGENESIS ON HEMERYTHRIN-LIKE PROTEIN RV2633C.
- Creator
-
Rosch, Kelly M, Self, William, University of Central Florida
- Abstract / Description
-
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the top ten causes of death worldwide. One of the genes upregulated in Mtb during macrophage infection is rv2633c, but the structure and function of its gene product remain unknown. Preliminary research has indicated that Rv2633c is a hemerythrin-like protein that exhibits catalase activity and binds two iron atoms using an HHE domain. Additionally, Rv2633c appears to exist as a dimer. The purpose of this project...
Show moreMycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the top ten causes of death worldwide. One of the genes upregulated in Mtb during macrophage infection is rv2633c, but the structure and function of its gene product remain unknown. Preliminary research has indicated that Rv2633c is a hemerythrin-like protein that exhibits catalase activity and binds two iron atoms using an HHE domain. Additionally, Rv2633c appears to exist as a dimer. The purpose of this project is to identify specific residues outside of the HHE domain that contribute to the protein's iron-binding ability and/or catalase activity, and to determine whether residues on the C terminus are required for dimerization. Conserved residues D37, E42, and E95 were selected due to their proximity in the amino acid sequence to the HHE domain. Each residue was mutated to alanine using site-directed mutagenesis and the mutations were confirmed using Sanger sequencing. The E95A mutant and the C-terminal truncation mutant were expressed in Escherichia coli using the T7 expression system and purified using affinity chromatography. While wild-type Rv2633c eluted as a soluble protein, the C-terminal truncation mutant was not soluble, indicating that the C terminus may be required for Rv2633c folding. The E95A mutant eluted as a soluble protein, but may have lower iron content than wild-type Rv2633c, indicating that this glutamic acid residue could contribute to iron-binding, despite being outside the HHE domain.
Show less - Date Issued
- 2018
- Identifier
- CFH2000438, ucf:45794
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000438
- Title
- THE EFFECTS OF ARSENITE ON SELENOPROTEINS BIOSYTHESIS.
- Creator
-
Konate, Fanta, Self, William, University of Central Florida
- Abstract / Description
-
Arsenic contamination of drinking water is a real public health problem in certain areas of South-East Asia where chronic exposure has been correlated to higher rates of lung, skin, bladder, kidney, and liver cancer. Although arsenic carcinogenicity is well established, the mechanism by which it induces cancer is poorly understood. Recent evidence suggests that oxidative stress could be a possible mechanism for the carcinogenic effects of arsenic. Selenium, in the form of selenocysteine, is...
Show moreArsenic contamination of drinking water is a real public health problem in certain areas of South-East Asia where chronic exposure has been correlated to higher rates of lung, skin, bladder, kidney, and liver cancer. Although arsenic carcinogenicity is well established, the mechanism by which it induces cancer is poorly understood. Recent evidence suggests that oxidative stress could be a possible mechanism for the carcinogenic effects of arsenic. Selenium, in the form of selenocysteine, is necessary for the activity of several enzymes with a role in the defense against reactive oxygen species (ROS), primarily thioredoxin reductases (TrxR) and glutathione peroxidases (Gpx). One of the key enzymes in the incorporation of Se into selenoproteins is selenophosphate synthetase (SPS). SPS catalyzes the activation of Se to selenophosphate, and is the first step in the pathway of selenoprotein biosynthesis. SPS contains a conserved vicinal dithiol motif (CXC) within a region of amino acids that have been predicted to be a selenium binding site. Our hypothesis is that arsenite inhibits new selenoprotein synthesis, thus indirectly increasing the level of ROS. In this study we have developed a spectrophotometric assay for SPS. Using this assay, we have determined that arsenite inhibits SPS activity. Kinetic analysis of this inhibition showed that arsenite, a trivalent form of arsenic, acts as a competitive inhibitor with the substrate, sodium selenide. This inhibition of SPS could represent a potential molecular mechanism for oxidative stress induced upon arsenite treatment of human cell lines in culture. To further study the effects of trivalent arsenicals at a cellular level we decided to use a human keratinocyte cell line, HaCaT as a cell culture model. Our study showed that although arsenite does not alter cell proliferation or protein synthesis, it specifically inhibits new selenoprotein synthesis. However, short term or long term exposure of HaCaT cells to arsenite failed to result in changes to Gpx and TrxR levels. Since the radioisotope selenium used in labeling studies is selenite, these results indicate that an alternate source of selenium may bypass the inhibitory effects of arsenite. Future studies will focus on studying the effects of arsenicals on keratinocytes cultured in a defined medium allowing a better control of the selenium source.
Show less - Date Issued
- 2005
- Identifier
- CFE0000453, ucf:46406
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000453
- Title
- THE EFFECTS OF TRIVALENT ARSENICALS AND THIOREDOXIN REDUCTASE INHIBITORS ON SELENIUM METABOLISM IN LUNG CELL CULTURE MODELS.
- Creator
-
Talbot, Sarah, Self, William, University of Central Florida
- Abstract / Description
-
Arsenic exposure, through various routes, is associated with the development of cancer of the skin, lung, liver, kidney, and bladder. Treatment of cells in culture with trivalent arsenicals has been shown to increase reactive oxygen species (ROS). In particular, monomethylarsonous acid (MMAIII), a trivalent metabolite of arsenite, is highly cytotoxic and possibly carcinogenic. Three trivalent arsenicals; arsenite, arsenic trioxide (ATO), and MMAIII, are also known inhibitors of the...
Show moreArsenic exposure, through various routes, is associated with the development of cancer of the skin, lung, liver, kidney, and bladder. Treatment of cells in culture with trivalent arsenicals has been shown to increase reactive oxygen species (ROS). In particular, monomethylarsonous acid (MMAIII), a trivalent metabolite of arsenite, is highly cytotoxic and possibly carcinogenic. Three trivalent arsenicals; arsenite, arsenic trioxide (ATO), and MMAIII, are also known inhibitors of the selenoprotein thioredoxin reductase (TrxR). Selenium, an essential micronutrient in mammals, is needed in the form of selenocysteine for activity of this enzyme and other selenoproteins. TrxR is part of a key component of the cell's ability to defend against ROS. It has been speculated that TrxR is also involved directly in selenium metabolism, but this has yet to be demonstrated in vivo. The promoter region of the gene encoding the cytosolic TrxR (TrxR1) also contains an antioxidant responsive element (ARE). The ARE is activated by the transcription factor, Nrf2, which is governed by the Nrf2/Keap1 response, and can be triggered by certain oxidants. ATO and arsenite both inhibited incorporation of selenium into selenoproteins. Auranofin, a gold chemotherapeutic inhibitor of TrxR1, also inhibited selenoprotein synthesis. These results seem to support the hypothesis that TrxR1 is needed for selenoprotein synthesis. However, siRNA mediated reduction of TrxR1 did not block incorporation of selenium into selenoproteins. It is likely that ATO and auranofin are forming As-Se and Au-Se complexes, respectively. We also found that exposure of primary lung fibroblasts (WI-38) to MMAIII led to increased synthesis of TrxR1. This increase was dependent on the activation of transcription of the TrxR1 gene, specifically mediated through the ARE element. These results indicate exposure to MMAIII induces the Nrf2 response. The results obtained in these studies aid in both our understanding of the carcinogenic potential of arsenic as well as give new insight into the mechanism of action of emerging cancer drugs.
Show less - Date Issued
- 2007
- Identifier
- CFE0001943, ucf:47467
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001943
- Title
- THE GENERATION AND SCAVENGING OF RADICALS VIA CERIUM AND NANOCERIA.
- Creator
-
Heckert, Eric, self, william, University of Central Florida
- Abstract / Description
-
Cerium is the most abundant of the rare earth metals, found on average at a level of 66 parts per million in the earth's crust. The unique redox properties of cerium and cerium oxide nanoparticles have led to its use in a wide variety of industrial and commercial uses such as oxygen sensors, fertilizers and as a catalyst to remove toxic gases in automobile exhaust. The use of cerium has also garnered interest in the nanotechnology field. Nanoceria has been generated in its oxide form as...
Show moreCerium is the most abundant of the rare earth metals, found on average at a level of 66 parts per million in the earth's crust. The unique redox properties of cerium and cerium oxide nanoparticles have led to its use in a wide variety of industrial and commercial uses such as oxygen sensors, fertilizers and as a catalyst to remove toxic gases in automobile exhaust. The use of cerium has also garnered interest in the nanotechnology field. Nanoceria has been generated in its oxide form as nanoparticles and nanorods. Recently, nanoceria has been shown to protect against oxidative stress in both animal and cell culture models. Although not fully understood, this observed protective effect of nanoceria is believed to be the result of recently identified SOD mimetic activity. Currently there is little understanding as to how nanoceria is capable of scavenging radicals or what properties makes nanoceria an effective SOD mimetic. Our data shows strong evidence that the oxidation state of nanoceria is directly related to its reported SOD mimetic activity. As such, future studies of nanoceria should be mindful of the oxidation state of nanoceria preparations as only nanoceria with a high concentration of cerium (III) have shown effective SOD mimetic activity. In addition to the characterization of nanoceria and its SOD mimetic activity, we have evidence that free cerium is capable of generating radicals and damaging DNA in vitro in the presence of hydrogen peroxide. These data strongly suggests that the rare earth inner-transition metal cerium is capable of generating hydroxyl radicals via a Fenton-like reaction. Based on these results the use of free cerium salts should be monitored to limit environmental exposure to cerium. Altogether our data would suggest that cerium by virtue of its unique redox chemistry is quite capable of accepting and donating electrons from its surroundings. In its free form cerium is able to redox cycle easily and can generate radicals. However, paradoxically nanoceria may not easily redox cycle due to the bound lattice structure of the particle. The unique nature of nanoceria and cerium leads to a unique circumstance where nanoceria is a radical scavenger while free cerium generates radicals. As such, further investigation is needed to insure that leeching or cerium from nanoceria does not abrogate any potential benefit nanoceria may provide.
Show less - Date Issued
- 2007
- Identifier
- CFE0001892, ucf:47417
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001892
- Title
- SELENOTRISULFIDE DERIVATIVE OF ALPHA-LIPOIC ACID: EVALUATION IN A CELL CULTURE MODEL FOR POTENTIAL USE AS A TOPICAL ANTIOXIDANT.
- Creator
-
Alonis, Melenie, Self, William, University of Central Florida
- Abstract / Description
-
Selenium is a required micronutrient in mammalian cells. It is incorporated in the form of selenocysteine into selenoenzymes such as glutathione peroxidase and thioredoxin reductase, and is absolutely required for activity. Thioredoxin reductase is necessary for reduction of oxidized thioredoxin and therefore plays a major role in maintaining the redox status of the cell. Glutathione peroxidase is responsible for reducing peroxides into their corresponding alcohols and water. Together, these...
Show moreSelenium is a required micronutrient in mammalian cells. It is incorporated in the form of selenocysteine into selenoenzymes such as glutathione peroxidase and thioredoxin reductase, and is absolutely required for activity. Thioredoxin reductase is necessary for reduction of oxidized thioredoxin and therefore plays a major role in maintaining the redox status of the cell. Glutathione peroxidase is responsible for reducing peroxides into their corresponding alcohols and water. Together, these selenoenzymes constitute a significant part of the cell's arsenal to defend itself against oxidative stress. Exogenous sources of oxidative stress, such as UV radiation, are capable of generating reactive oxygen species (ROS). Elevated levels of ROS can lead to covalent modifications of lipids, nucleic acids, and proteins within a cell. This damage has been implicated in the development of cancer and degenerative diseases. As the skin is the first level of defense for UV radiation, skin cancer is an obvious concern. Previous studies have demonstrated a protective effect against UV-induced cytotoxicity when selenium compounds were administered to skin cells in cell culture models. Topical selenium application to mice has also been shown to reduce UV damage to skin. Although a variety of chemical forms of selenium are available in nutritional supplements, the efficiency by which they are used for selenoprotein synthesis varies greatly. It is debated within the selenium research community which form is best for use as a supplement. In this study, we have focused on a selenotrisulfide derivative of alpha-lipoic acid (LASe). We have examined its utilization for selenoprotein synthesis through radiolabeling studies (75Se) in a human keratinocyte cell line (HaCaT). We have determined that is incorporated into selenoproteins with nearly the same efficiency as selenite and L-selenocysteine. We have also determined that LASe is far more efficient as a supplement in cell culture than selenate or L-selenomethionine, two forms of selenium commonly used as supplements. LASe was also found to protect HaCaT keratinocytes from UV- induced cytotoxicity. Cells pretreated with LASe and exposed to 500J/m2 and 750J/m2 of broadband (UVA/UVB) UV radiation showed greater survival than untreated controls in a dose dependent manner. Cells pre-treated either with lipoic acid or selenium in the form of selenite alone also observed protection. Nonetheless, these finding are significant given that LASe was previously shown to penetrate the skin better than other forms of selenium. These results indicate that LASe has the potential for use as a topical antioxidant upon further testing in animal studies.
Show less - Date Issued
- 2005
- Identifier
- CFE0000663, ucf:46531
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000663
- Title
- ANALYSIS OF THE PREVENTION OF BIOCORROSION CAUSED BY DESULFOVIBRIO ALASKENSIS G20.
- Creator
-
Boring, Michael, Self, William, University of Central Florida
- Abstract / Description
-
Desulfovibrio alaskensis G20 and other sulfate-reducing bacteria cause significant damage to metal pipelines and other infrastructure through a metabolic pathway that releases toxic hydrogen sulfide into their surroundings. The biocorrosion that results from the release of hydrogen sulfide creates significant economic burden, and can pose health risks for those exposed to this chemical. They are commonly present in the form of biofilms, an extracellular matrix composed of bacterial cells,...
Show moreDesulfovibrio alaskensis G20 and other sulfate-reducing bacteria cause significant damage to metal pipelines and other infrastructure through a metabolic pathway that releases toxic hydrogen sulfide into their surroundings. The biocorrosion that results from the release of hydrogen sulfide creates significant economic burden, and can pose health risks for those exposed to this chemical. They are commonly present in the form of biofilms, an extracellular matrix composed of bacterial cells, polysaccharides, proteins, nucleic acids, and other materials. These biofilms are difficult to remove, and they provide protection to the bacteria within from anti-bacterial treatments. Desulfovibrio alaskensis G20 is a strain derived from a wild-type bacterium collected from an oil well corrosion site and is a model organism for understanding biofilm formation of sulfate-reducing bacteria and how these biofilms can be prevented or inhibited by techniques such as cerium oxide nanoparticle coating. To this end, samples of Desulfovibrio alaskensis G20 were grown anaerobically in 24-well and 96-well plates, and the resultant biofilm growth was measured through spectrophotometry. Several different environmental parameters were tested, including temperature, electron donor molecules, basal and enriched growth media, and oxidative stress, revealing several affinities for production of biofilm growth.
Show less - Date Issued
- 2017
- Identifier
- CFH2000263, ucf:45942
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000263
- Title
- INVESTIGATION OF AMINOGLYCOSIDE INDUCED NANOPARTICLE SELF-ASSEMBLIES.
- Creator
-
Leong, Michael, Self, William, University of Central Florida
- Abstract / Description
-
Aminoglycosides are a group of broad-spectrum antibiotics that, under neutral pH conditions, carry a positive charge. The net cationic charge arises from the high number of amino groups in the core structure of aminoglycosides. Previous studies performed have shown that negatively charged citrate ligand-capped gold nanoparticles (AuNPs) can interact with various biomolecules such as aminoglycosides. AuNPs bound to biomolecules have been used in conjugation with various assaying techniques to...
Show moreAminoglycosides are a group of broad-spectrum antibiotics that, under neutral pH conditions, carry a positive charge. The net cationic charge arises from the high number of amino groups in the core structure of aminoglycosides. Previous studies performed have shown that negatively charged citrate ligand-capped gold nanoparticles (AuNPs) can interact with various biomolecules such as aminoglycosides. AuNPs bound to biomolecules have been used in conjugation with various assaying techniques to detect and study compounds in vitro and in vivo. AuNPs also have strong light scattering properties that can be used with a wide variety of imaging and assaying techniques. Our laboratory has previously performed experiments on the aminoglycoside antibiotic ribostamycin sulfate. During this experiment, the concentration dependent rod-like assembly of ribostamycin sulfate was characterized. This experiment used three analytical techniques in conjunction with AuNPs: (1) dynamic light scattering (DLS), (2) UV-Vis absorption spectroscopy, and (3) dark field optical microscope imaging (DFM). This suite of techniques was used to analyze mixtures of ribostamycin sulfate at different concentration with different sized AuNPs. The primary objective of this research was to determine if the techniques used to characterize the self-assembly of ribostamycin sulfate could be generalized and applied to other aminoglycoside antibiotics. The secondary objective of this research was to determine if other aminoglycoside antibiotics formed rod-like assemblies. This study demonstrated that AuNPs can be used to detect self-assembled oligomers for different aminoglycoside antibiotics. In addition, this study also revealed that not all aminoglycoside antibiotics will self assemble into rod-like oligomers similar to ribostamycin. It was observed that the aminoglycoside antibiotic amikacin self assembled into rod-like aggregates similar to ribostamycin sulfate but the aminoglycoside antibiotics neomycin sulfate and streptomycin sulfate did not.
Show less - Date Issued
- 2018
- Identifier
- CFH2000339, ucf:45911
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000339
- Title
- CHARACTERIZATION OF HEMERYTHRIN-LIKE PROTEIN RV2633C.
- Creator
-
Cherne, Michelle D, Self, William, University of Central Florida
- Abstract / Description
-
Hemerythrin-like protein Rv2633c is a small 18 kDa protein that is expressed in Mycobacterium tuberculosis (Mtb). Sequence analysis of Rv2633c predicts the presence of a hemerythrin-like domain, which binds dioxygen using a �-oxo-bridge (Fe-O-Fe), rather than a heme group. Though it is noticeably upregulated during macrophage infection and during in vitro acidification, the role of Rv2633c in Mtb survival has yet to be elucidated. This project aims to characterize the function of Rv2633c by...
Show moreHemerythrin-like protein Rv2633c is a small 18 kDa protein that is expressed in Mycobacterium tuberculosis (Mtb). Sequence analysis of Rv2633c predicts the presence of a hemerythrin-like domain, which binds dioxygen using a �-oxo-bridge (Fe-O-Fe), rather than a heme group. Though it is noticeably upregulated during macrophage infection and during in vitro acidification, the role of Rv2633c in Mtb survival has yet to be elucidated. This project aims to characterize the function of Rv2633c by studying the in vitro response of the recombinant protein to conditions present in the macrophage lysosome, such as reduced oxygen levels or the presence of reactive oxygen species. UV-visible spectroscopy is used to observe these changes, as the spectrum shows a characteristic peak at 330 nm that likely corresponds to the diiron cofactor in its native state. Our results show this spectrum shifts in response to hydrogen peroxide addition, showing the proposed environmental conditions can affect the active site. Bioinformatics techniques, such as the 3D modeling program SWISS-MODEL, have been used to hypothesize possible structure and function. Determining the function of Rv2633c may help explain how Mtb so readily evades the human immune system to reside in the macrophage.
Show less - Date Issued
- 2016
- Identifier
- CFH2000011, ucf:45581
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000011
- Title
- THE GLYCINE AND PROLINE REDUCTASE SYSTEMS: AN EVOLUTIONARY PERSPECTIVE AND PRESCENCE IN ENTEROBACTERIACEAE.
- Creator
-
Witt, Joshua, Self, William, University of Central Florida
- Abstract / Description
-
The Glycine and Proline Reduction systems are two of the best characterized selenoenzymes in bacteria and have been found to occur in a wide variety of clostridia . These enzymes are utilized to reduce glycine or D-proline to obtain energy via substrate level phosporylation or membrane gradients, respectively [6, 7]. This includes the pathogens C. difficile and C. botulinum [5, 8]. Strains of C. difficile are activate toxigenic pathways whenever either of these pathways is active within the...
Show moreThe Glycine and Proline Reduction systems are two of the best characterized selenoenzymes in bacteria and have been found to occur in a wide variety of clostridia . These enzymes are utilized to reduce glycine or D-proline to obtain energy via substrate level phosporylation or membrane gradients, respectively [6, 7]. This includes the pathogens C. difficile and C. botulinum [5, 8]. Strains of C. difficile are activate toxigenic pathways whenever either of these pathways is active within the cell [5, 8]. Though evolutionary studies have been conducted on ammonia producing bacteria none has been done to directly characterize these two system by themselves. This includes an understanding of whether or not this system is transferred between organisms, as many of the clostridia that are to be studied are known to have an "open genome." [8, 10] With this information we were able to generate a phylogenic model of the proline and glycine reduction systems. Through this analysis, we were able to account for many clostridial organisms that contain the system, but also many other organisms as well. These included enterobacteriaceae including a strain of the model organism, Escherichia coli. It was further concluded that Glycine Reductase was a much less centralized system and included a wide range of taxa while Proline Reductase was much more centralized to being within the phyla of firmicutes. It was also concluded that the strain of E. coli has a fully functional operon for Glycine Reductase.
Show less - Date Issued
- 2013
- Identifier
- CFH0004506, ucf:45149
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004506
- Title
- BACTERIAL SELENOPROTEINS: A ROLE IN PATHOGENESIS AND TARGETS FOR ANTIMICROBIAL DEVELOPMENT.
- Creator
-
Rosario, Sarah, Self, William, University of Central Florida
- Abstract / Description
-
Selenoproteins are unique proteins in which selenocysteine is inserted into the polypeptide chain by highly specialized translational machinery. They exist within all three kingdoms of life. The functions of these proteins in biology are still being defined. In particular, the importance of selenoproteins in pathogenic microorganisms has received little attention. We first established that a nosocomial pathogen, Clostridium difficile, utilizes a selenoenzyme dependent pathway for energy...
Show moreSelenoproteins are unique proteins in which selenocysteine is inserted into the polypeptide chain by highly specialized translational machinery. They exist within all three kingdoms of life. The functions of these proteins in biology are still being defined. In particular, the importance of selenoproteins in pathogenic microorganisms has received little attention. We first established that a nosocomial pathogen, Clostridium difficile, utilizes a selenoenzyme dependent pathway for energy metabolism. Following this initial characterization, we demonstrate that this pathway is linked to production of toxins by this organism. Finally, we show that interruption of selenium metabolism is a viable pathway for development of antimicrobials against this, and other selenoprotein dependent pathogens. We investigated whether Stickland reactions (paired amino acid fermentation) might be at the heart of C. difficile's bioenergetic pathways. Growth of C. difficile on Stickland pairs yielded large increases in cell density in a limiting basal medium, demonstrating these reactions are tied to ATP production. Selenium supplementation was required for this increase in cell yield. Analysis of genome sequence data reveals genes encoding the protein components of two key selenoenzyme reductases; glycine and D-proline reductase. These selenoenzymes were expressed upon addition of the corresponding Stickland acceptor (glycine, proline or hydroxyproline). Purification of the selenoenzyme D-proline reductase revealed a mixed complex of PrdA and PrdB (SeCys containing) proteins. D-proline reductase utilized only D-proline but not L-hydroxyproline, even in the presence of an expressed and purified proline racemase. The enzyme was found to be independent of divalent cations, and zinc was a potent inhibitor. These results show that Stickland reactions are key to the growth of C. difficile and that the mechanism of D-proline reductase may differ significantly from similar enzymes from non-pathogenic species. C. difficile pathogenesis is due to the production of toxins, A and B, members of the large clostridial cytotoxin family. Previous studies have shown that toxin production by this organism is influenced by the composition of the growth medium. We examined the impact of Stickland acceptor amino acids (Stickland acceptors; glycine, proline and hydroxyproline) on growth kinetics and yield, protein synthesis, toxin production and gene expression. Although addition of Stickland acceptors moderately increases growth yield and total protein synthesis, there does not appear to be a clear impact on entry into stationary phase. Glycine dramatically increases the amount of toxin released into the growth medium. Conversely, the addition of hydroxyproline suppresses toxin production. We examine possible mechanisms of regulation and demonstrate that CodY, a regulator of toxin gene transcription does not appear to mediate this effect. Given the importance of selenium dependent Stickland reactions to C. difficile growth and toxin production we aimed to examine the efficacy of blocking such pathways as a means of antimicrobial development. Selenide is the only known substrate for selenophosphate synthetase, the first enzyme involved in the specific incorporation of selenium into selenoproteins. We have identified a stable complex formed upon reaction of auranofin (a gold containing drug) with selenide in vitro. Auranofin potently inhibits the growth of C. difficile but does not similarly affect other clostridia that do not utilize selenoproteins to obtain energy. Moreover, auranofin inhibits the incorporation of radioisotope selenium (75Se) in selenoproteins in both E. coli, the prokaryotic model for selenoprotein synthesis, and C. difficile without impacting total protein synthesis. Auranofin blocks the uptake of selenium and results in the accumulation of the auranofin-selenide adduct in the culture medium. Addition of selenium in the form of selenite or L-selenocysteine to the growth media significantly reduces the inhibitory action of auranofin on the growth of C. difficile. Based on these results, we propose that formation of this complex and the subsequent deficiency in available selenium for selenoprotein synthesis is the mechanism by which auranofin inhibits C. difficile growth. The antimicrobial potential of blocking selenium metabolism is further demonstrated in the dental pathogen Treponema denticola. We show that auranofin blocks the growth this organism which also participates in Stickland fermentation. In addition, we provide evidence that the antimicrobial action of stannous salts against T. denticola is also mediated through inhibition of the metabolism of selenium. These studies clearly show that, at least in a subset of microbes that use selenium for the synthesis of selenoproteins, the need for this metalloid can be a useful target for future antimicrobial development.
Show less - Date Issued
- 2009
- Identifier
- CFE0002790, ucf:48139
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002790
- Title
- IN-FRAME MUTAGENESIS OF GENES ENCODING A SELENIUM-DEPENDENT MOLYBDENUM HYDROXYLASE AND PUTATIVE ACCESSORY PROTEINS IN ENTEROCOCCUS FAECALIS.
- Creator
-
Mallard, Christopher, Self, William, University of Central Florida
- Abstract / Description
-
Enterococcus faecalis is a well known nosocomial drug resistant pathogen that is responsible for urinary tract infections, bacteremia, wound infections and endocarditis through the formation of biofilms. It has been shown that 68 genes present within the core genome of E. faecalis are upregulated in biofilm formation. One of those 68 genes is a putative selenium-dependent molybdenum hydroxylase (SDMH). Adjacent to this gene are a series of open reading frames that have been postulated to play...
Show moreEnterococcus faecalis is a well known nosocomial drug resistant pathogen that is responsible for urinary tract infections, bacteremia, wound infections and endocarditis through the formation of biofilms. It has been shown that 68 genes present within the core genome of E. faecalis are upregulated in biofilm formation. One of those 68 genes is a putative selenium-dependent molybdenum hydroxylase (SDMH). Adjacent to this gene are a series of open reading frames that have been postulated to play a role in the maturation of a labile selenium cofactor. The biosynthesis of this labile cofactor has yet to be studied at either the genetic or biochemical level. The addition of selenium to growth medium caused a significant increase in biofilm density and extracellular hydrogen peroxide by wild type E. faecalis. By site-directed mutagenesis gene products encoded in the SDMH operon were shown to be necessary for the selenium-dependent biofilm formation as well as extracellular hydrogen peroxide production. This biofilm and peroxide phenotype is inhibited both by tungsten or auranofin in wild type E. faecalis suggesting the SDMH is a necessary enzyme for selenium-dependent biofilm and peroxide formation. These results show that the gene products encoded within the SDMH operon are necessary for a selenium-dependent biofilm formation as well as extracellular hydrogen peroxide production. These mutants will provide the basis for defining the synthesis of the labile selenium cofactor and allow for an expanded understanding of the biological use of selenium.
Show less - Date Issued
- 2010
- Identifier
- CFE0003420, ucf:53152
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003420
- Title
- FMF assay for assessing vaccine generated antibodies in a biomimetic manner.
- Creator
-
Dhir, Vipra, Khaled, Annette, Self, William, Warren, William, University of Central Florida
- Abstract / Description
-
Traditional functional assays such as hemagglutination inhibition (HAI) and micro-neutralization (MN) assays have been routinely used for assessing the vaccine response, since influenza vaccine has been administered in people (1940). Such assays are not always predictive regarding the protection conferred by the influenza vaccine and are not able to monitor neutralization related to stem region of influenza hemagglutinin responsible for virus membrane fusion in the endosomes. In order to...
Show moreTraditional functional assays such as hemagglutination inhibition (HAI) and micro-neutralization (MN) assays have been routinely used for assessing the vaccine response, since influenza vaccine has been administered in people (1940). Such assays are not always predictive regarding the protection conferred by the influenza vaccine and are not able to monitor neutralization related to stem region of influenza hemagglutinin responsible for virus membrane fusion in the endosomes. In order to study Influenza vaccine response in a more biomimetic manner and overcome the deficiencies of the traditional functional assays, we developed a fluorescent membrane fusion assay (fMF). The assay uses viruses labeled with Octadecyl Rhodmaine B Chloride (R18) to monitor two major neutralization pathways: blocking the attachment of virus to the target cells and blocking of virus membrane fusion in the endosomes. The latter was tested using endosomal acidification inhibitor Bafilomycin a1 which blocked membrane fusion by 85%. Specificity of the assay was tested using two different subtypes of viruses H1N1 (A/Puerto Rico/8/1934 and A/Brisbane/59/2007), and H3N2 virus (A/Aichi/68) with their respective subtype specific stem specific monoclonal antibodies: M145, Aca-1, Aca-2 (H1N1 specific) and Aca-3 (H3N2 specific). Subtype specific mAbs blocked membrane fusion, while a mismatch in virus subtype and the mAb resulted in lack of blocking. We also studied the effect of H1N1 head specific mAb Aca-4, which not only blocked attachment of the virus, but also demonstrated blocking of membrane fusion. Results were validated by testing pre- and post- sera from 2009 seasonal Influenza vaccination and to show that at higher Ab concentration the majority of virus (85%) was blocked from attaching cells, but at lower Ab concentration, where attachment could not be prevented, blocking of membrane fusion was still in effect - up to 50%. Sera screening experiments showed that sera antibodies work beyond just blocking attachment. They also may neutralize the already attached virus by blocking fusion of the viral membrane in the endosomes. The assay has the capacity to monitor blocking of attachment and fusion in a single run. Therefore, it is more representative regarding the natural process of infection and the corresponding neutralization pathways. The assay is unique in terms of assessing stem specific antibodies; stem specific response and its measurement are relevant for the advancement of a universal influenza vaccine.
Show less - Date Issued
- 2015
- Identifier
- CFE0005604, ucf:50255
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005604
- Title
- The microbial ecosystem of beer spoilage and souring: Competition and cooperation in the age of bioinformatics.
- Creator
-
Kettring, Andrew, Moore, Sean, Cole, Alexander, Self, William, University of Central Florida
- Abstract / Description
-
The brewing industry generates $350 billion in revenue in the US annually, representing 1.9% of the gross domestic product. Spoilage is a persistent problem throughout production and distribution that causes economic loss, and is therefore meticulously avoided. Contrarily, artisanal sour beers are necessarily produced by a diverse variety of these spoilage organisms metabolically interacting in symbiosis as a microbial ecosystem. We sought to gain insight into factors driving assembly of...
Show moreThe brewing industry generates $350 billion in revenue in the US annually, representing 1.9% of the gross domestic product. Spoilage is a persistent problem throughout production and distribution that causes economic loss, and is therefore meticulously avoided. Contrarily, artisanal sour beers are necessarily produced by a diverse variety of these spoilage organisms metabolically interacting in symbiosis as a microbial ecosystem. We sought to gain insight into factors driving assembly of microbial communities by testing a long-debated Darwinian hypothesis. A collection of community members were screened in co-culture and novel bioinformatics tools were developed to predict observed interactions. A fundamental understanding of these relationships is paramount to beer production and sets a precedent for the study of similar microbial communities that impact human health.
Show less - Date Issued
- 2017
- Identifier
- CFE0007288, ucf:52147
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007288
- Title
- Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase.
- Creator
-
Johnstone, Michael, Self, William, Roy, Herve, Moore, Sean, University of Central Florida
- Abstract / Description
-
Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological (")double-edged sword("). Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation...
Show moreSelenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological (")double-edged sword("). Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood. In this work, we add knowledge to the mechanism for selenium-over-sulfur specificity in hopes of further understanding the controlled regulation of selenium trafficking and the prevention of its toxicity. We have identified SclA, a selenocysteine lyase in the nosocomial pathogen, Enterococcus faecalis, and characterized its enzymatic activity and specificity for L-selenocysteine over L-cysteine. Human selenocysteine lyase contains a residue, D146, which plays a significant role in determining its specificity. A D146K mutation eliminated this trait, allowing non-specific L-cysteine degradation. Using computational biology, we identified an orthologous residue in SclA, H100, and generated mutant enzymes with site-directed mutagenesis. The proteins were overexpressed, purified, and characterized for their biochemical properties. All mutants exhibited varying levels of activity towards L-selenocysteine, hinting at a catalytic role for H100. Additionally, L-cysteine acted as a competitive inhibitor towards all enzymes with higher affinity than L-selenocysteine. Finally, our experiments revealed that SclA possessed extremely poor cysteine desulfurase activity with each mutation exhibiting subtle changes in turnover. Our findings offer key insight into the molecular mechanisms behind selenium-over-sulfur specificity and may further elucidate the role of selenocysteine lyases in vivo.
Show less - Date Issued
- 2019
- Identifier
- CFE0007659, ucf:52481
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007659
- Title
- Biochemical Characterization of Rv2633c from Mycobacterium tuberculosis and the Effects of Mutagenesis on Iron Binding.
- Creator
-
Strickland, Kyle, Self, William, Rohde, Kyle, Davidson, Victor, University of Central Florida
- Abstract / Description
-
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium that is the causative agent of the disease Tuberculosis (TB). TB kills an estimated 1.8 million people annually and roughly one third of the world's population carries Mtb in a dormant state. Drug resistant Mtb strains are on the rise, thus a new method of combating this disease is paramount. Mtb survival inside of macrophages requires overcoming various stressors such as; iron restriction, reactive oxygen species, and hypoxic...
Show moreMycobacterium tuberculosis (Mtb) is a pathogenic bacterium that is the causative agent of the disease Tuberculosis (TB). TB kills an estimated 1.8 million people annually and roughly one third of the world's population carries Mtb in a dormant state. Drug resistant Mtb strains are on the rise, thus a new method of combating this disease is paramount. Mtb survival inside of macrophages requires overcoming various stressors such as; iron restriction, reactive oxygen species, and hypoxic conditions. Mtb employs the use of catalases, nitric oxide reductase, superoxide dismutase, and siderophores to aid in survival. These functions have also been found in a novel group of non-heme diiron binding proteins called hemerythrin-like proteins.The gene Rv2633c encodes a protein with the hemerythrin-like domain and has been shown to be upregulated under acidic or nutrient deficient conditions which coincides with Mtb infection of a macrophage. It has also been shown to be regulated by PhoP, Whib3, and DosR. In this work we expressed the wild type protein and several mutants heterologously in E. coli. The purified proteins were studied via UV-visible spectroscopic analysis, native polyacrylamide gel electrophoresis (native-PAGE) and analyzed for iron content.Our refined expression and purification protocol led to a significant increase in soluble protein with a di-iron cofactor. We found that mutagenesis of 11th amino acid, a histidine, led to the absence of the diiron co-factor. Reduction and autoxidation of protein was also achieved and characterized through UV-visible absorption. Native-PAGE gel analysis indicated only the dimeric form contained iron. This research is the first to produce large quantities of soluble iron laden protein, demonstrate that Rv2663c is capable of both reduction and autoxidation, and show it does not bind oxygen in a functional capacity. This information will enable future studies in protein crystallization, ligand interaction and in vivo studies.
Show less - Date Issued
- 2019
- Identifier
- CFE0007729, ucf:52456
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007729
- Title
- Unraveling PDI and its Interaction with AB Toxins.
- Creator
-
Guyette, Jessica, Teter, Kenneth, Self, William, Jewett, Travis, Tatulian, Suren, University of Central Florida
- Abstract / Description
-
Protein disulfide isomerase (PDI) is an essential endoplasmic reticulum (ER) protein that acts as both an oxidoreductase and chaperone. It exhibits substantial flexibility and undergoes cycles of unfolding and refolding in its interaction with cholera toxin (Ctx), which is a unique property of PDI. This unfolding allows PDI to disassemble the Ctx holotoxin, which is required for Ctx activity. Here, we investigated the unfolding and refolding property of PDI and how this affects its...
Show moreProtein disulfide isomerase (PDI) is an essential endoplasmic reticulum (ER) protein that acts as both an oxidoreductase and chaperone. It exhibits substantial flexibility and undergoes cycles of unfolding and refolding in its interaction with cholera toxin (Ctx), which is a unique property of PDI. This unfolding allows PDI to disassemble the Ctx holotoxin, which is required for Ctx activity. Here, we investigated the unfolding and refolding property of PDI and how this affects its interaction with bacterial toxins. PDI showed remarkable redox-linked conformational resilience that allows it to refold after being thermally stressed. Deletion constructs of PDI showed that both active domains play opposing roles in stability, and can both refold from an unfolded state, indicating that either domain could unfold during its interaction with Ctx. Its ability to refold suggests that the cycle of unfolding and refolding with Ctx is a normal mechanism that prevents protein aggregation. Disruption of this cycle with the polyphenol, quercetin-3-rutinoside, prevented the disassembly of Ctx, which blocked Ctx intoxication of cultured cells. Loss of PDI function was also found to inhibit intoxication with Escherichia coli heat-labile toxin but not with ricin and Shiga toxins. Toxin structure also contributes to efficiency of PDI binding and disassembly, which may explain the differential potencies between toxins. While Ctx and Ltx share similar structures, Ctx is more potent and efficiently disassembled compared to Ltx. We believe that PDI-mediated disassembly is the rate-limiting step in intoxication, thus dictating toxin potency. Overall, PDI can be targeted for a potential therapeutic for many bacterial toxins because of its unique unfolding properties and its key role in cell intoxication.
Show less - Date Issued
- 2019
- Identifier
- CFE0007646, ucf:52511
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007646
- Title
- Expression of Trichoderma reesei (&)#223;-Mannanase in Tobacco Chloroplasts and its Utilization in Lignocellulosic Woody Biomass Hydrolysis.
- Creator
-
Agrawal, Pankaj, Daniell, Henry, Kolattukudy, Pappachan, Self, William, University of Central Florida
- Abstract / Description
-
Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. ?...
Show moreLignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. ?-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, man1 gene encoding ?-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed the site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds showed inheritance of transgenes into the progeny without Mendelian segregation. Expression of the endo-?-mannanase gene for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-?-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-?-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight). Chloroplast-derived mannanase had higher temperature stability (40 (&)deg;C to 70 (&)deg;C) and wider pH optima (pH 3.0 to 7.0) than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different enzymes yielded 20% more glucose equivalents from pinewood than the cocktail without mannanase. Our results demonstrate that chloroplast-derived mannanase is an important component of enzymatic cocktail for woody biomass hydrolysis and should provide a cost-effective solution for its diverse applications in the paper, oil, pharmaceutical, coffee and detergent industries.
Show less - Date Issued
- 2011
- Identifier
- CFE0004467, ucf:49309
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004467
- Title
- Mechanisms of Alpha-Synuclein-Induced Neurodegenertaion in Parkinson's Disease and Stroke.
- Creator
-
Belal, Cherine, Chan, Sic, Ebert, Steven, Self, William, Teter, Kenneth, University of Central Florida
- Abstract / Description
-
Parkinson's disease (PD) is a debilitating neurodegenerative disorder affecting one million Americans. Despite its social and economic impact, the pathological cascades that lead to neuron dysfunction and degeneration in PD are poorly understood. Endoplasmic reticulum (ER) stress has been implicated as an initiator or contributing factor in neurodegenerative diseases including PD. The ER is an organelle central to protein folding and intracellular Ca2+ homeostasis. Perturbations of these...
Show moreParkinson's disease (PD) is a debilitating neurodegenerative disorder affecting one million Americans. Despite its social and economic impact, the pathological cascades that lead to neuron dysfunction and degeneration in PD are poorly understood. Endoplasmic reticulum (ER) stress has been implicated as an initiator or contributing factor in neurodegenerative diseases including PD. The ER is an organelle central to protein folding and intracellular Ca2+ homeostasis. Perturbations of these functions result in ER stress and upregulation of ER stress proteins, of which some have been implicated in counteracting ER stress-induced cell death. The mechanisms that lead to ER stress and how ER stress proteins contribute to the degenerative cascades remain unclear but their understanding is critical to devising effective therapies for PD. Both the accumulation of mutant a-synuclein (aSyn), which causes an inherited form of PD, and the inhibition of mitochondrial complex I function by PD-inducing neurotoxin lead to ER stress. The critical involvement of ER stress in experimental models of PD supports its potential relevance to PD pathogenesis and led us to test the hypothesis whether the homocysteine-inducible ER protein (Herp), an ubiquitin-like domain (UBD) containing ER-resident protein, can counteract mutant Alpha Syn- and neurotoxin- induced pathological cascades.
Show less - Date Issued
- 2011
- Identifier
- CFE0004470, ucf:49310
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004470
- Title
- Synthesis, Characterization And Antibacterial Activity Of Silver Embedded Silica Nanoparticle/Nanogel Formulation.
- Creator
-
Menezes, Roseline, Santra, Swadeshmukul, Naser, Saleh, Self, William, University of Central Florida
- Abstract / Description
-
The antibacterial property of silver (Ag) has been known since ancient time. It is reported in the literature that silver nanoparticles (AgNPs) exhibit improved antibacterial properties in comparison to silver ions of equivalent metallic Ag concentration. Such improvement in antibacterial activities is due to the high surface area to volume ratio of AgNPs (which facilitates interaction with the bacterial cells), increased release of silver ions and direct intra-cellular uptake of AgNPs...
Show moreThe antibacterial property of silver (Ag) has been known since ancient time. It is reported in the literature that silver nanoparticles (AgNPs) exhibit improved antibacterial properties in comparison to silver ions of equivalent metallic Ag concentration. Such improvement in antibacterial activities is due to the high surface area to volume ratio of AgNPs (which facilitates interaction with the bacterial cells), increased release of silver ions and direct intra-cellular uptake of AgNPs leading to localized release of Ag ions. To date, over 300 consumer products containing AgNPs are available in the market and the inventory is rapidly expanding. The antibacterial efficacy is related to the loading of AgNPs (which controls availability of active Ag ions). It is perhaps challenging to increase AgNPs loading in consumer products without compromising its aesthetic appearance. AgNPs exhibit yellow-brown color due to strong Surface Plasmon Resonance (SPR) absorption; and therefore, it is expected that an increase in loading would change the color of AgNP-containing materials. For applications, such as creating a fast-acting touch-safe surface, higher loading of AgNPs is desirable. It is also desirable to obtain a non-color forming surface. To meet the demands of desirable higher loading of AgNPs and non-color forming surface, the objective of this study is to minimize SPR by engineering Ag containing nanomaterials for potential fast-acting spray-based applications. Within this thesis several reports have been made including synthesis, characterization and antibacterial properties of Ag-loaded silica nanoparticle/nanogel (AgSiNP/NG) material containing nanoformulations. The effects of nanoformulation pH and metallic Ag content on the SPR absorption and antibacterial properties have been studied. The AgSiNP/NG materials were synthesized using silica sol-gel technique at room temperature in water. The color formation of the AgSiNP/NG material was found to be dependent on silver ion loading (15.4 wt% and 42.3 wt %) as well as on the pH (pH 4.0 and pH 7.0). A number of material characterization techniques such as HRTEM, SEM and AFM were used to characterize particle size, crystalline and surface morphology in dry state. Dynamic light scattering (DLS) technique was used to characterize particle size and size distribution in solution. UV-VIS spectroscopy technique was applied to characterize Ag ions and AgNPs in the AgSiNP/NG material. Antibacterial studies were conducted against gram negative E.coli and gram positive B.subtilis and S.aureus. A number of qualitative (well diffusion, BacLightTM live-dead(&)#174; viability) and quantitative (turbidity, resazurin viability) assays were used for antibacterial studies. It was observed that lower pH and low Ag loading minimized SPR absorption, resulting in no yellow-brown color formation. The HRTEM confirmed the formation of ~5-25 nm size highly crystalline AgNPs which were coated with dielectric silica layer (silica gel). AFM, SEM and DLS studies confirmed formation of AgSiNPs in the range between 100 nm (-) 200 nm. The AgSiNP/NG material was effective against both gram-negative and gram-positive bacteria. Based on this research it is suggested that by coating AgNPs with a dielectric material (such as silica); it is possible to suppress SPR absorption.
Show less - Date Issued
- 2011
- Identifier
- CFE0004483, ucf:49308
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004483
- Title
- Expression of Lipase from Mycobacterium tuberculosis in Nicotiana tobacum and Lactuca sativa Chloroplasts.
- Creator
-
Lloyd, Bethany, Daniell, Henry, Kolattukudy, Pappachan, Self, William, University of Central Florida
- Abstract / Description
-
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M. tuberculosis), is a global threat and the leading cause of death among individuals infected with HIV. TB treatment requires multi-drug cocktails, due to the increasing rates of drug resistance of the bacterium. With multi-drug cocktails, strains have been documented to be resistant to all major drugs in the fight against TB. Since the strains are drug resistant, it calls for an increasing need for vaccine and treatment...
Show moreTuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M. tuberculosis), is a global threat and the leading cause of death among individuals infected with HIV. TB treatment requires multi-drug cocktails, due to the increasing rates of drug resistance of the bacterium. With multi-drug cocktails, strains have been documented to be resistant to all major drugs in the fight against TB. Since the strains are drug resistant, it calls for an increasing need for vaccine and treatment development for the purpose of preventing and managing the disease. The most widely distributed vaccine against TB is Bacillus Calmette-Gue(&)#180;rin (BCG). Apart from being ineffective in certain individuals, BCG offers only a limited timeframe of protection, is unable to serve as a booster for extending this timeframe and due to the intradermal route of administration requires costly refrigeration and syringes.LipY protein, a M. tuberculosis cell wall lipase, may play a potential role as not only a drug target but a potential vaccine antigen. LipY is known to be up-regulated during both active infection and dormancy. In a previous study, sera from TB patients had shown an IgG and IgM response against it. In this study transplastomic Lactuca sativa and Nicotiana tabacum plants were generated by transforming the chloroplasts through the particle delivery system with pLsDv-LipY and pLD-LipY vectors respectively. The vectors were flanked by the native trnI and trnA gene sequence to facilitate homologous recombination into the chloroplast genome. The vector also contained the 16S rRNA promoter, the selectable marker gene, aadA for specitinomycin resistance, the rbcL untranslated region, the LsPpsbA (PpsbA in N. tabacum) promoter, and LsTpsbA (tpsbA in N. tabacum) untranslated region. Site specific integration of the LipY gene into the chloroplast genome was confirmed by PCR. Homoplasmy of transplastomic plants was confirmed by Southern blot analysis. These plants showed normal growth and were fertile, producing seeds. Once germinated, these seeds did not show Mendelian segregation of the transgene. Immunoblot analysis was performed to analyze the expression of the LipY protein. A 40kDa protein was produced in E.coli, and a 25kDa protein was produced in chloroplasts; a cleaved product in chloroplasts is still valuable as an antigen for vaccine production. Future studies will include testing this chloroplast derived antigen in animal models for vaccine development. ?
Show less - Date Issued
- 2012
- Identifier
- CFE0004502, ucf:49289
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004502