Current Search: Siddiqui, Muazzam (x)
View All Items
- Title
- HIGH PERFORMANCE DATA MINING TECHNIQUES FOR INTRUSION DETECTION.
- Creator
-
Siddiqui, Muazzam Ahmed, Lee, Joohan, University of Central Florida
- Abstract / Description
-
The rapid growth of computers transformed the way in which information and data was stored. With this new paradigm of data access, comes the threat of this information being exposed to unauthorized and unintended users. Many systems have been developed which scrutinize the data for a deviation from the normal behavior of a user or system, or search for a known signature within the data. These systems are termed as Intrusion Detection Systems (IDS). These systems employ different techniques...
Show moreThe rapid growth of computers transformed the way in which information and data was stored. With this new paradigm of data access, comes the threat of this information being exposed to unauthorized and unintended users. Many systems have been developed which scrutinize the data for a deviation from the normal behavior of a user or system, or search for a known signature within the data. These systems are termed as Intrusion Detection Systems (IDS). These systems employ different techniques varying from statistical methods to machine learning algorithms.Intrusion detection systems use audit data generated by operating systems, application softwares or network devices. These sources produce huge amount of datasets with tens of millions of records in them. To analyze this data, data mining is used which is a process to dig useful patterns from a large bulk of information. A major obstacle in the process is that the traditional data mining and learning algorithms are overwhelmed by the bulk volume and complexity of available data. This makes these algorithms impractical for time critical tasks like intrusion detection because of the large execution time.Our approach towards this issue makes use of high performance data mining techniques to expedite the process by exploiting the parallelism in the existing data mining algorithms and the underlying hardware. We will show that how high performance and parallel computing can be used to scale the data mining algorithms to handle large datasets, allowing the data mining component to search a much larger set of patterns and models than traditional computational platforms and algorithms would allow.We develop parallel data mining algorithms by parallelizing existing machine learning techniques using cluster computing. These algorithms include parallel backpropagation and parallel fuzzy ARTMAP neural networks. We evaluate the performances of the developed models in terms of speedup over traditional algorithms, prediction rate and false alarm rate. Our results showed that the traditional backpropagation and fuzzy ARTMAP algorithms can benefit from high performance computing techniques which make them well suited for time critical tasks like intrusion detection.
Show less - Date Issued
- 2004
- Identifier
- CFE0000056, ucf:46142
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000056
- Title
- DATA MINING METHODS FOR MALWARE DETECTION.
- Creator
-
Siddiqui, Muazzam, Wang, Morgan, University of Central Florida
- Abstract / Description
-
This research investigates the use of data mining methods for malware (malicious programs) detection and proposed a framework as an alternative to the traditional signature detection methods. The traditional approaches using signatures to detect malicious programs fails for the new and unknown malwares case, where signatures are not available. We present a data mining framework to detect malicious programs. We collected, analyzed and processed several thousand malicious and clean programs to...
Show moreThis research investigates the use of data mining methods for malware (malicious programs) detection and proposed a framework as an alternative to the traditional signature detection methods. The traditional approaches using signatures to detect malicious programs fails for the new and unknown malwares case, where signatures are not available. We present a data mining framework to detect malicious programs. We collected, analyzed and processed several thousand malicious and clean programs to find out the best features and build models that can classify a given program into a malware or a clean class. Our research is closely related to information retrieval and classification techniques and borrows a number of ideas from the field. We used a vector space model to represent the programs in our collection. Our data mining framework includes two separate and distinct classes of experiments. The first are the supervised learning experiments that used a dataset, consisting of several thousand malicious and clean program samples to train, validate and test, an array of classifiers. In the second class of experiments, we proposed using sequential association analysis for feature selection and automatic signature extraction. With our experiments, we were able to achieve as high as 98.4% detection rate and as low as 1.9% false positive rate on novel malwares.
Show less - Date Issued
- 2008
- Identifier
- CFE0002303, ucf:47870
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002303