Current Search: Simaan, Marwan (x)
View All Items
- Title
- AN OPTIMAL CONTROL APPROACH FOR DETERMINATION OF THE HEAT LOSS COEFFICIENT IN AN ICS SOLAR DOMESTIC WATER HEATING SYSTEM.
- Creator
-
Gil, Camilo, Simaan, Marwan, University of Central Florida
- Abstract / Description
-
Water heating in a typical home in the U.S. accounts for a significant portion (between 14% and 25%) of the total homeÃÂÃÂÃÂÃÂ's annual energy consumption. The objective of considerably reducing the homeÃÂÃÂÃÂÃÂ's energy consumption from the utilities calls for the use of onsite renewable energy...
Show moreWater heating in a typical home in the U.S. accounts for a significant portion (between 14% and 25%) of the total homeÃÂÃÂÃÂÃÂ's annual energy consumption. The objective of considerably reducing the homeÃÂÃÂÃÂÃÂ's energy consumption from the utilities calls for the use of onsite renewable energy systems. Integral Collector Storage (ICS) solar domestic water heating systems are an alternative to help meet the hot water energy demands in a household. In order to evaluate the potential benefits and contributions from the ICS system, it is important that the parameter values included in the model used to estimate the systemÃÂÃÂÃÂÃÂ's performance are as accurate as possible. The overall heat loss coefficient (Uloss) in the model plays an important role in the performance prediction methodology of the ICS. This work presents a new and improved methodology to determine Uloss as a function of time in an ICS system using a systematic optimal control theoretic approach. This methodology is based on the derivation of a new nonlinear state space model of the system, and the formulation of a quadratic performance function whose minimization yields estimates of Uloss values that can be used in computer simulations to improve the performance prediction of the ICS system, depending on the desired time of the year and hot water draw profile. Simulation results show that predictions of the systemÃÂÃÂÃÂÃÂ's performance based on these estimates of Uloss are considerably more accurate than the predictions based on current existing methods for estimating Uloss.
Show less - Date Issued
- 2010
- Identifier
- CFE0003266, ucf:48525
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003266
- Title
- A NEW DEVELOPMENT OF FEEDBACK CONTROLLER FOR LEFT VENTRICULAR ASSIST DEVICE.
- Creator
-
Wang, Yu, Simaan, Marwan, University of Central Florida
- Abstract / Description
-
The rotary Left Ventricular Assist Device (LVAD) is a mechanical pump surgically implanted in patients with end-stage congestive heart failure to help maintain the flow of blood from the sick heart. The rotary type pumps are controlled by varying the impeller speed to control the amount of blood flowing through the LVAD. One important challenge in using these devices is to prevent the occurrence of excessive pumping of blood from the left ventricle (known as suction) that may cause it to...
Show moreThe rotary Left Ventricular Assist Device (LVAD) is a mechanical pump surgically implanted in patients with end-stage congestive heart failure to help maintain the flow of blood from the sick heart. The rotary type pumps are controlled by varying the impeller speed to control the amount of blood flowing through the LVAD. One important challenge in using these devices is to prevent the occurrence of excessive pumping of blood from the left ventricle (known as suction) that may cause it to collapse due to the high pump speed. The development of a proper feedback controller for the pump speed is therefore crucial to meet this challenge. In this thesis, some theoretical and practical issues related to the development of such a controller are discussed. First, a basic nonlinear, time-varying cardiovascular-LVAD circuit model that will be used to develop the controller is reviewed. Using this model, a suction index is tested to detect suction. Finally we propose a feedback controller that uses the pump flow signal to regulate the pump speed based on the suction index and an associated threshold. The objective of this controller is to continuously update the pump speed to adapt to the physiological changes of the patient while at the same time avoiding suction. Simulation results are presented under different conditions of the patient activities. Robustness of the controller to measurement noise is also discussed.
Show less - Date Issued
- 2010
- Identifier
- CFE0003296, ucf:48497
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003296
- Title
- AN ALL-AGAINST-ONE GAME APPROACH FOR THE MULTI-PLAYER PURSUIT-EVASION PROBLEM.
- Creator
-
Talebi, Shahriar, Simaan, Marwan, Qu, Zhihua, Vosoughi, Azadeh, University of Central Florida
- Abstract / Description
-
The traditional pursuit-evasion game considers a situation where one pursuer tries to capture an evader, while the evader is trying to escape. A more general formulation of this problem is to consider multiple pursuers trying to capture one evader. This general multi-pursuer one-evader problem can also be used to model a system of systems in which one of the subsystems decides to dissent (evade) from the others while the others (the pursuer subsystems) try to pursue a strategy to prevent it...
Show moreThe traditional pursuit-evasion game considers a situation where one pursuer tries to capture an evader, while the evader is trying to escape. A more general formulation of this problem is to consider multiple pursuers trying to capture one evader. This general multi-pursuer one-evader problem can also be used to model a system of systems in which one of the subsystems decides to dissent (evade) from the others while the others (the pursuer subsystems) try to pursue a strategy to prevent it from doing so. An important challenge in analyzing these types of problems is to develop strategies for the pursuers along with the advantages and disadvantages of each. In this thesis, we investigate three possible and conceptually different strategies for pursuers: (1) act non-cooperatively as independent pursuers, (2) act cooperatively as a unified team of pursuers, and (3) act individually as greedy pursuers. The evader, on the other hand, will consider strategies against all possible strategies by the pursuers. We assume complete uncertainty in the game i.e. no player knows which strategies the other players are implementing and none of them has information about any of the parameters in the objective functions of the other players. To treat the three pursuers strategies under one general framework, an all-against-one linear quadratic dynamic game is considered and the corresponding closed-loop Nash solution is discussed. Additionally, different necessary and sufficient conditions regarding the stability of the system, and existence and definiteness of the closed-loop Nash strategies under different strategy assumptions are derived. We deal with the uncertainties in the strategies by first developing the Nash strategies for each of the resulting games for all possible options available to both sides. Then we deal with the parameter uncertainties by performing a Monte Carlo analysis to determine probabilities of capture for the pursuers (or escape for the evader) for each resulting game. Results of the Monte Carlo simulation show that in general, pursuers do not always benefit from cooperating as a team and that acting as non-cooperating players may yield a higher probability of capturing of the evader.
Show less - Date Issued
- 2017
- Identifier
- CFE0007135, ucf:52314
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007135
- Title
- Forecasting Volcanic Activity Using An Event Tree Analysis System and Logistic Regression.
- Creator
-
Junek, William, Jones, W, Simaan, Marwan, Foroosh, Hassan, Woods, Mark, University of Central Florida
- Abstract / Description
-
Forecasts of short term volcanic activity are generated using an event tree process that is driven by a set of empirical statistical models derived through logistic regression. Each of the logistic models are constructed from a sparse and geographically diverse dataset that was assembled from a collection of historic volcanic unrest episodes. The dataset consists of monitoring measurements (e.g. seismic), source modeling results, and historic eruption information. Incorporating this data into...
Show moreForecasts of short term volcanic activity are generated using an event tree process that is driven by a set of empirical statistical models derived through logistic regression. Each of the logistic models are constructed from a sparse and geographically diverse dataset that was assembled from a collection of historic volcanic unrest episodes. The dataset consists of monitoring measurements (e.g. seismic), source modeling results, and historic eruption information. Incorporating this data into a single set of models provides a simple mechanism for simultaneously accounting for the geophysical changes occurring within the volcano and the historic behavior of analog volcanoes. A bootstrapping analysis of the training dataset allowed for the estimation of robust logistic model coefficients. Probabilities generated from the logistic models increase with positive modeling results, escalating seismicity, and high eruption frequency. The cross validation process produced a series of receiver operating characteristic (ROC) curves with areas ranging between 0.78 - 0.81, which indicate the algorithm has good predictive capabilities. In addition, ROC curves also allowed for the determination of a false positive rate and optimum detection threshold for each stage of the algorithm. The results demonstrate the logistic models are highly transportable and can compete with, and in some cases outperform, non-transportable empirical models trained with site specific information. The incorporation of source modeling results into the event tree's decision making process has begun the transition of volcano monitoring applications from simple mechanized pattern recognition algorithms to a physical model based forecasting system.
Show less - Date Issued
- 2012
- Identifier
- CFE0004253, ucf:49517
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004253
- Title
- Smart Grid Demonstration: Distributed Active and Reactive Power Control.
- Creator
-
Vellakovil Rajamani, Siddarth, Qu, Zhihua, Simaan, Marwan, Sun, Wei, University of Central Florida
- Abstract / Description
-
The present infrastructure of energy delivery was designed over 60 years ago with the goal to be centralized. However, it is aging and is under-utilized, which will potentially limit the world's ability to achieve its energy objective. The lack of vibrant control on the grid makes it difficult to stop cascading power failure, and to achieve high penetration of renewable energy resources, such as wind and solar thus resulting in grid instability. A decentralized and distributed control...
Show moreThe present infrastructure of energy delivery was designed over 60 years ago with the goal to be centralized. However, it is aging and is under-utilized, which will potentially limit the world's ability to achieve its energy objective. The lack of vibrant control on the grid makes it difficult to stop cascading power failure, and to achieve high penetration of renewable energy resources, such as wind and solar thus resulting in grid instability. A decentralized and distributed control mechanism implemented with a definite communication protocol solves the issues mentioned above. The electric power grid going into the future is expected to consists of distributed generators and loads. The implementation of a distributed control will benefit utility services and will create financial advantages. One of the best solutions is to organize these distributed generators (DG) in a micro-grid structure which will then connect to the main grid through the point of common coupling (PCC). A proper organization and control of the Microgrid is always a big challenge. To overcome this, using cooperative control makes it possible to bring together different agents in the networked systems as a group and realize the desired objective. The micro grid power objective is set by a virtual leader and is transferred to the other agents in the system through a local communication channel. A distributed cooperative control is formulated to effectively organize all the DGs in the Microgrid to produce the necessary active and reactive power to satisfy multiple objectives. It not only satisfies the active power flow from the main grid to a constant but also reduces the reactive power flow to the main grid. Moreover, the algorithm can be used to implement the demand response continuously using a combination of DGs and their local controllable loads. The approach is to use distributed inverters with the aid of multiple local communication channels for active power compensation of the micro-grid in real-time in a distributed and cooperative manner.
Show less - Date Issued
- 2016
- Identifier
- CFE0006513, ucf:51362
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006513
- Title
- Decentralized Power Management in Microgrids.
- Creator
-
Bhattacharjee, Amit, Das, Tuhin, Simaan, Marwan, Kassab, Alain, University of Central Florida
- Abstract / Description
-
A large number of power sources, operational in a microgrid, optimum power sharing andaccordingly controlling the power sources along with scheduling loads are the biggest challenges in modern power system. In the era of smart grid, the solution is certainly not simple paralleling. Hence it is required to develop a control scheme that delivers the overall power requirements while also adhering to the power limitations of each source. As the penetration of distributed generators increase and...
Show moreA large number of power sources, operational in a microgrid, optimum power sharing andaccordingly controlling the power sources along with scheduling loads are the biggest challenges in modern power system. In the era of smart grid, the solution is certainly not simple paralleling. Hence it is required to develop a control scheme that delivers the overall power requirements while also adhering to the power limitations of each source. As the penetration of distributed generators increase and are diversified, the choice of decentralized control becomes preferable. In this work, a decentralized control framework is conceived. The primary approach is taken where a small hybrid system is investigated and decentralized control schemes were developed and subsequently tested in a hardware in the loop in conjunction with the hybrid power system setup developed at the laboratory. The control design approach is based on the energy conservation principle. However, considering the vastness ofthe real power network and its complexity of operation along with the growing demand ofsmarter grid operations, called for a revamp in the control framework design. Hence, in thelater phase of this work, a novel framework is developed based on the coupled dynamicalsystem theory, where each control node corresponds to one distributed generator connectedto the microgrid. The coupling topology and coupling strengths of individual nodes aredesigned to be adjustable. The layer is modeled as a set of coupled differential equationsof pre-assigned order. The control scheme adjusts the coupling weights so that steady stateconstraints are met at the system level, while allowing flexibility to explore the solutionspace. Additionally, the approach guarantees stable equilibria during power redistribution.The theoretical development is verified using simulations in matlab simulink environment.
Show less - Date Issued
- 2014
- Identifier
- CFE0005465, ucf:50386
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005465
- Title
- A Lab-Scale Experimental Framework for Studying the Phenomenon of Autorotation.
- Creator
-
Rimkus, Sigitas, Das, Tuhin, Xu, Yunjun, Simaan, Marwan, University of Central Florida
- Abstract / Description
-
While wind energy has emerged as a popular source of renewable energy, the traditional wind turbine has an inherent limitation, namely that it only generates power in the presence of sufficiently high and consistent wind speeds. As a result, wind farms are typically built in areas with a high probability of the required wind speeds, which are geographically sparse. One way of overcoming this drawback is to tap into the energy available in winds at high altitudes which are not only consistent...
Show moreWhile wind energy has emerged as a popular source of renewable energy, the traditional wind turbine has an inherent limitation, namely that it only generates power in the presence of sufficiently high and consistent wind speeds. As a result, wind farms are typically built in areas with a high probability of the required wind speeds, which are geographically sparse. One way of overcoming this drawback is to tap into the energy available in winds at high altitudes which are not only consistent and of high magnitude, but also globally pervasive. An airborne wind energy device based upon the phenomenon of autorotation could potentially be used to exploit the abundance of wind of energy present at high altitudes.The work in this thesis first presents our study of a tethered-airfoil system as a candidate airborne wind energy (AWE) system. A mathematical model was used to show the feasibility of energy capture and the stability of the device in a wind field. Subsequently, the research identified the principle of autorotation to be better suited for high altitude energy harvesting. To this end, the thesis first presents a theoretical basis of the principle of autorotation, which is developed from existing models in literature. The model was adapted to predict aerodynamic conditions when used for harvesting energy. Encouraging simulation results prompted the main emphasis of this thesis, namely design of an experimental framework to corroborate the theory. Several experiments were devised to determine basic performance characteristics of an autogyro rotor and the data from each experiment is presented. A lab-scale experimental setup was developed as part of this thesis. The setup, consisting of a flapping-blade autogyro rotor and sensors, was used to acquire preliminary aerodynamic performance data. It is envisioned that refinements to this setup will ultimately provide a means of directly comparing analytical and experimental data. In this regard, we provide conclusions and make comments on improvements for future experiments.
Show less - Date Issued
- 2014
- Identifier
- CFE0005239, ucf:50593
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005239
- Title
- Game-Theoretic Frameworks and Strategies for Defense Against Network Jamming and Collocation Attacks.
- Creator
-
Hemida, Ahmed, Atia, George, Simaan, Marwan, Vosoughi, Azadeh, Sukthankar, Gita, Guirguis, Mina, University of Central Florida
- Abstract / Description
-
Modern networks are becoming increasingly more complex, heterogeneous, and densely connected. While more diverse services are enabled to an ever-increasing number of users through ubiquitous networking and pervasive computing, several important challenges have emerged. For example, densely connected networks are prone to higher levels of interference, which makes them more vulnerable to jamming attacks. Also, the utilization of software-based protocols to perform routing, load balancing and...
Show moreModern networks are becoming increasingly more complex, heterogeneous, and densely connected. While more diverse services are enabled to an ever-increasing number of users through ubiquitous networking and pervasive computing, several important challenges have emerged. For example, densely connected networks are prone to higher levels of interference, which makes them more vulnerable to jamming attacks. Also, the utilization of software-based protocols to perform routing, load balancing and power management functions in Software-Defined Networks gives rise to more vulnerabilities that could be exploited by malicious users and adversaries. Moreover, the increased reliance on cloud computing services due to a growing demand for communication and computation resources poses formidable security challenges due to the shared nature and virtualization of cloud computing. In this thesis, we study two types of attacks: jamming attacks on wireless networks and side-channel attacks on cloud computing servers. The former attacks disrupt the natural network operation by exploiting the static topology and dynamic channel assignment in wireless networks, while the latter attacks seek to gain access to unauthorized data by co-residing with target virtual machines (VMs) on the same physical node in a cloud server. In both attacks, the adversary faces a static attack surface and achieves her illegitimate goal by exploiting a stationary aspect of the network functionality. Hence, this dissertation proposes and develops counter approaches to both attacks using moving target defense strategies. We study the strategic interactions between the adversary and the network administrator within a game-theoretic framework.First, in the context of jamming attacks, we present and analyze a game-theoretic formulation between the adversary and the network defender. In this problem, the attack surface is the network connectivity (the static topology) as the adversary jams a subset of nodes to increase the level of interference in the network. On the other side, the defender makes judicious adjustments of the transmission footprint of the various nodes, thereby continuously adapting the underlying network topology to reduce the impact of the attack. The defender's strategy is based on playing Nash equilibrium strategies securing a worst-case network utility. Moreover, scalable decomposition-based approaches are developed yielding a scalable defense strategy whose performance closely approaches that of the non-decomposed game for large-scale and dense networks. We study a class of games considering discrete as well as continuous power levels.In the second problem, we consider multi-tenant clouds, where a number of VMs are typically collocated on the same physical machine to optimize performance and power consumption and maximize profit. This increases the risk of a malicious virtual machine performing side-channel attacks and leaking sensitive information from neighboring VMs. The attack surface, in this case, is the static residency of VMs on a set of physical nodes, hence we develop a timed migration defense approach. Specifically, we analyze a timing game in which the cloud provider decides when to migrate a VM to a different physical machine to mitigate the risk of being compromised by a collocated malicious VM. The adversary decides the rate at which she launches new VMs to collocate with the victim VMs. Our formulation captures a data leakage model in which the cost incurred by the cloud provider depends on the duration of collocation with malicious VMs. It also captures costs incurred by the adversary in launching new VMs and by the defender in migrating VMs. We establish sufficient conditions for the existence of Nash equilibria for general cost functions, as well as for specific instantiations, and characterize the best response for both players. Furthermore, we extend our model to characterize its impact on the attacker's payoff when the cloud utilizes intrusion detection systems that detect side-channel attacks. Our theoretical findings are corroborated with extensive numerical results in various settings as well as a proof-of-concept implementation in a realistic cloud setting.
Show less - Date Issued
- 2019
- Identifier
- CFE0007468, ucf:52677
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007468
- Title
- Planning and Control of Swarm Motion as Continua.
- Creator
-
Rastgoftar, Hossein, Jayasuriya, Suhada, Das, Tuhin, Xu, Chengying, Qu, Zhihua, Simaan, Marwan, University of Central Florida
- Abstract / Description
-
In this thesis, new algorithms for formation control of multi agent systems (MAS) based on continuum mechanics principles will be investigated. For this purpose agents of the MAS are treated as particles in a continuum, evolving in an n-D space, whose desired configuration is required to satisfy an admissible deformation function. Considered is a specific class of mappings that is called homogenous where the Jacobian of the mapping is only a function of time and is not spatially varying. The...
Show moreIn this thesis, new algorithms for formation control of multi agent systems (MAS) based on continuum mechanics principles will be investigated. For this purpose agents of the MAS are treated as particles in a continuum, evolving in an n-D space, whose desired configuration is required to satisfy an admissible deformation function. Considered is a specific class of mappings that is called homogenous where the Jacobian of the mapping is only a function of time and is not spatially varying. The primary objectives of this thesis are to develop the necessary theory and its validation via simulation on a mobile-agent based swarm test bed that includes two primary tasks: 1) homogenous transformation of MAS and 2) deployment of a random distribution of agents on to a desired configuration. Developed will be a framework based on homogenous transformations for the evolution of a MAS in an n-D space (n=1, 2, and 3), under two scenarios: 1) no inter-agent communication (predefined motion plan); and 2) local inter-agent communication. Additionally, homogenous transformations based on communication protocols will be used to deploy an arbitrary distribution of a MAS on to a desired curve. Homogenous transformation with no communication: A homogenous transformation of a MAS, evolving in an R^n space, under zero inter agent communication is first considered. Here the homogenous mapping, is characterized by an n x n Jacobian matrix Q(t) and an n x 1 rigid body displacement vector D(t), that are based on positions of n+1 agents of the MAS, called leader agents. The designed Jacobian Q(t) and rigid body displacement vector D(t) are passed onto rest of the agents of the MAS, called followers, who will then use that information to update their positions under a pre-defined motion plan. Consequently, the motion of MAS will evolve as a homogenous transformation of the initial configuration without explicit communication among agents. Homogenous Transformation under Local Communication: We develop a framework for homogenous transformation of MAS, evolving in R^n, under a local inter agent communication topology. Here we assume that some agents are the leaders, that are transformed homogenously in an n-D space. In addition, every follower agent of the MAS communicates with some local agents to update its position, in order to grasp the homogenous mapping that is prescribed by the leader agents. We show that some distance ratios that are assigned based on initial formation, if preserved, lead to asymptotic convergence of the initial formation to a final formation under a homogenous mapping.Deployment of a Random Distribution on a Desired Manifold: Deployment of agents of a MAS, moving in a plane, on to a desired curve, is a task that is considered as an application of the proposed approach. In particular, a 2-D MAS evolution problem is considered as two 1-D MAS evolution problems, where x or y coordinates of the position of all agents are modeled as points confined to move on a straight line. Then, for every coordinate of MAS evolution, bulk motion is controlled by two agents considered leaders that move independently, with rest of the follower agents motions evolving through each follower agent communicating with two adjacent agents.
Show less - Date Issued
- 2013
- Identifier
- CFE0004915, ucf:49640
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004915
- Title
- Treatment-Specific Approaches for Analysis and Control of Left Ventricular Assist Devices.
- Creator
-
Farag Allah, George, Simaan, Marwan, Qu, Zhihua, Haralambous, Michael, Kassab, Alain, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
A Left Ventricular Assist Device (LVAD) is a mechanical pump that helps patients with heart failure conditions. This rotary pump works in parallel to the ailing heart and provides an alternative path for blood flow from the weak left ventricle to the aorta. The LVAD is controlled by the power supplied to the pump motor. An increase in the pump motor power increases the pump speed and the pump flow. The LVAD is typically controlled at a fixed setting of pump power. This basically means that...
Show moreA Left Ventricular Assist Device (LVAD) is a mechanical pump that helps patients with heart failure conditions. This rotary pump works in parallel to the ailing heart and provides an alternative path for blood flow from the weak left ventricle to the aorta. The LVAD is controlled by the power supplied to the pump motor. An increase in the pump motor power increases the pump speed and the pump flow. The LVAD is typically controlled at a fixed setting of pump power. This basically means that the controller does not react to any change in the activity level of the patient. An important engineering challenge is to develop an LVAD feedback controller that can automatically adjusts its pump motor power so that the resulting pump flow matches the physiological demand of the patient. To this end, the development of a mathematical model that can be used to accurately simulate the interaction between the cardiovascular system of the patient and the LVAD is essential for the controller design. The use of such a dynamic model helps engineers and physicians in testing their theories, assessing the effectiveness of prescribed treatments, and understanding in depth the characteristics of this coupled bio-mechanical system.The first contribution of this dissertation is the development of a pump power-based model for the cardiovascular-LVAD system. Previously, the mathematical models in the literature assume availability of the pump speed as an independent control variable. In reality, however, the device is controlled by pump motor power which, in turn, produces the rotational pump speed. The nonlinear relationship between the supplied power and the speed is derived, and interesting observations about the pump speed signal are documented.The second contribution is the development of a feedback controller for patients using an LVAD as either a destination therapy or a bridge to transplant device. The main objective of designing this controller is to provide a physiological demand of the patient equivalent of that of a healthy individual. Since the device is implanted for a long period of time, this objective is chosen to allow the patient to live a life as close to normal as possible.The third contribution is an analysis of the aortic valve dynamics under the support of an LVAD. The aortic valve may experiences a permanent closure when the LVAD pump power is increased too much. The permanent closure of the aortic valve can be very harmful to the patients using the device as a bridge to recovery treatments. The analysis illustrates the various changes in the hemodynamic variables of the patient as a result of aortic valve closing. The results establish the relationship between the activity level and the heart failure severity with respect to the duration of the aortic valve opening.
Show less - Date Issued
- 2014
- Identifier
- CFE0005491, ucf:50354
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005491
- Title
- Differential Games for Multi-Agent Systems under Distributed Information.
- Creator
-
Lin, Wei, Qu, Zhihua, Simaan, Marwan, Haralambous, Michael, Das, Tuhin, Yong, Jiongmin, University of Central Florida
- Abstract / Description
-
In this dissertation, we consider differential games for multi-agent systems under distributed information where every agent is only able to acquire information about the others according to a directed information graph of local communication/sensor networks. Such games arise naturally from many applications including mobile robot coordination, power system optimization, multi-player pursuit-evasion games, etc. Since the admissible strategy of each agent has to conform to the information...
Show moreIn this dissertation, we consider differential games for multi-agent systems under distributed information where every agent is only able to acquire information about the others according to a directed information graph of local communication/sensor networks. Such games arise naturally from many applications including mobile robot coordination, power system optimization, multi-player pursuit-evasion games, etc. Since the admissible strategy of each agent has to conform to the information graph constraint, the conventional game strategy design approaches based upon Riccati equation(s) are not applicable because all the agents are required to have the information of the entire system. Accordingly, the game strategy design under distributed information is commonly known to be challenging. Toward this end, we propose novel open-loop and feedback game strategy design approaches for Nash equilibrium and noninferior solutions with a focus on linear quadratic differential games. For the open-loop design, approximate Nash/noninferior game strategies are proposed by integrating distributed state estimation into the open-loop global-information Nash/noninferior strategies such that, without global information, the distributed game strategies can be made arbitrarily close to and asymptotically converge over time to the global-information strategies. For the feedback design, we propose the best achievable performance indices based approach under which the distributed strategies form a Nash equilibrium or noninferior solution with respect to a set of performance indices that are the closest to the original indices. This approach overcomes two issues in the classical optimal output feedback approach: the simultaneous optimization and initial state dependence. The proposed open-loop and feedback design approaches are applied to an unmanned aerial vehicle formation control problem and a multi-pursuer single-evader differential game problem, respectively. Simulation results of several scenarios are presented for illustration.
Show less - Date Issued
- 2013
- Identifier
- CFE0005025, ucf:49991
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005025
- Title
- Suction Detection and Feedback Control for the Rotary Left Ventricular Assist Device.
- Creator
-
Wang, Yu, Simaan, Marwan, Qu, Zhihua, Haralambous, Michael, Kassab, Alain, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
The Left Ventricular Assist Device (LVAD) is a rotary mechanical pump that is implanted in patients with congestive heart failure to help the left ventricle in pumping blood in the circulatory system. The rotary type pumps are controlled by varying the pump motor current to adjust the amount of blood flowing through the LVAD. One important challenge in using such a device is the desire to provide the patient with as close to a normal lifestyle as possible until a donor heart becomes available...
Show moreThe Left Ventricular Assist Device (LVAD) is a rotary mechanical pump that is implanted in patients with congestive heart failure to help the left ventricle in pumping blood in the circulatory system. The rotary type pumps are controlled by varying the pump motor current to adjust the amount of blood flowing through the LVAD. One important challenge in using such a device is the desire to provide the patient with as close to a normal lifestyle as possible until a donor heart becomes available. The development of an appropriate feedback controller that is capable of automatically adjusting the pump current is therefore a crucial step in meeting this challenge. In addition to being able to adapt to changes in the patient's daily activities, the controller must be able to prevent the occurrence of excessive pumping of blood from the left ventricle (a phenomenon known as ventricular suction) that may cause collapse of the left ventricle and damage to the heart muscle and tissues.In this dissertation, we present a new suction detection system that can precisely classify pump flow patterns, based on a Lagrangian Support Vector Machine (LSVM) model that combines six suction indices extracted from the pump flow signal to make a decision about whether the pump is not in suction, approaching suction, or in suction. The proposed method has been tested using in vivo experimental data based on two different LVAD pumps. The results show that the system can produce superior performance in terms of classification accuracy, stability, learning speed, and good robustness compared to three other existing suction detection methods and the original SVM-based algorithm. The ability of the proposed algorithm to detect suction provides a reliable platform for the development of a feedback control system to control the current of the pump (input variable) while at the same time ensuring that suction is avoided.Based on the proposed suction detector, a new control system for the rotary LVAD was developed to automatically regulate the pump current of the device to avoid ventricular suction. The control system consists of an LSVM suction detector and a feedback controller. The LSVM suction detector is activated first so as to correctly classify the pump status as No Suction (NS) or Suction (S). When the detection is (")No Suction("), the feedback controller is activated so as to automatically adjust the pump current in order that the blood flow requirements of the patient's body at different physiological states are met according to the patient's activity level. When the detection is (")Suction("), the pump current is immediately decreased in order to drive the pump back to a normal No Suction operating condition. The performance of the control system was tested in simulations over a wide range of physiological conditions.
Show less - Date Issued
- 2013
- Identifier
- CFE0005070, ucf:49956
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005070
- Title
- Decentralized Power Management and Transient Control in Hybrid Fuel Cell Ultra-Capacitor System.
- Creator
-
Madani, Seyed Omid, Das, Tuhin, Kassab, Alain, Lin, Kuo-Chi, Simaan, Marwan, University of Central Florida
- Abstract / Description
-
Solid Oxide Fuel Cells (SOFCs) are considered suitable for alternative energy solutions due to advantages such as high efficiency, fuel flexibility, tolerance to impurities, and potential for combined cycle operations. One of the main operating constraints of SOFCs is fuel starvation, which can occur under fluctuating power demands. It leads to voltage loss and detrimental effects on cell integrity and longevity. In addition, reformer based SOFCs require sufficient steam for fuel reforming to...
Show moreSolid Oxide Fuel Cells (SOFCs) are considered suitable for alternative energy solutions due to advantages such as high efficiency, fuel flexibility, tolerance to impurities, and potential for combined cycle operations. One of the main operating constraints of SOFCs is fuel starvation, which can occur under fluctuating power demands. It leads to voltage loss and detrimental effects on cell integrity and longevity. In addition, reformer based SOFCs require sufficient steam for fuel reforming to avoid carbon deposition and catalyst degradation. Steam to carbon ratio (STCR) is an index indicating availability of the steam in the reformer. This work takes a holistic approach to address the aforementioned concerns in SOFCs, in an attempt to enhance applicability and adaptability of such systems. To this end, we revisit prior investigation on the invariant properties of SOFC systems, that led to prediction of fuel utilization U and STCR in the absence of intrusive and expensive sensing. This work provides further insight into the reasons behind certain SOFC variables being invariant with respect to operating conditions. The work extends the idea of invariant properties to different fuel and reformer types.In SOFCs, transient control is essential for U, especially if the fuel cell is to be operated in a dynamic load-following mode at high fuel utilization. In this research, we formulate a generalized abstraction of this transient control problem. We show that a multi-variable systems approach can be adopted to address this issue in both time and frequency domains, which leads to input shaping. Simulations show the effectiveness of the approach through good disturbance rejection. The work further integrates the aforementioned transient control research with system level control design for SOFC systems hybridized with storage elements. As opposed to earlier works where centralized robust controllers were of interest, here, separate controllers for the fuel cell and storage have been the primary emphasis. Thus, the proposed approach acts as a bridge between existing centralized controls for single fuel cells to decentralized control for power networks consisting of multiple elements. As a first attempt, decentralized control is demonstrated in a SOFC ultra-capacitor hybrid system. The challenge of this approach lies in the absence of direct and explicit communication between individual controllers. The controllers are designed based on a simple, yet effective principle of conservation of energy. Simulations as well as experimental results are presented to demonstrate the validity of these designs.
Show less - Date Issued
- 2014
- Identifier
- CFE0005524, ucf:50305
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005524