Current Search: Stegeman, George (x)
View All Items
- Title
- DISCRETE WAVE PROPAGATION IN QUADRATICALLY NONLINEAR MEDIA.
- Creator
-
Iwanow, Robert, Stegeman, George, University of Central Florida
- Abstract / Description
-
Discrete models are used in describing various microscopic phenomena in many branches of science, ranging from biology through chemistry to physics. Arrays of evanescently coupled, equally spaced, identical waveguides are prime examples of optical structures in which discrete dynamics can be easily observed and investigated. As a result of discretization, these structures exhibit unique diffraction properties with no analogy in continuous systems. Recently nonlinear discrete optics has...
Show moreDiscrete models are used in describing various microscopic phenomena in many branches of science, ranging from biology through chemistry to physics. Arrays of evanescently coupled, equally spaced, identical waveguides are prime examples of optical structures in which discrete dynamics can be easily observed and investigated. As a result of discretization, these structures exhibit unique diffraction properties with no analogy in continuous systems. Recently nonlinear discrete optics has attracted a growing interest, triggered by the observation of discrete solitons in AlGaAs waveguide arrays reported by Eisenberg et al. in 1998. So far, the following experiments involved systems with third order nonlinearities. In this work, an experimental investigation of discrete nonlinear wave propagation in a second order nonlinear medium is presented. This system deserves particular attention because the nonlinear process involves two or three components at different frequencies mutually locked by a quadratic nonlinearity, and new degrees of freedom enter the dynamical process. In the first part of dissertation, observation of the discrete Talbot effect is reported. In contrast to continuous systems, where Talbot self-imaging effect occurs irrespective of the pattern period, in discrete configurations this process is only possible for a specific set of periodicities. The major part of the dissertation is devoted to the investigation of soliton formation in lithium niobate waveguide arrays with a tunable cascaded quadratic nonlinearity. Soliton species with different topology (unstaggered all channels in-phase, and staggered neighboring channels with a pi relative phase difference) are identified in the same array. The stability of the discrete solitons and plane waves (modulational instability) are experimentally investigated. In the last part of the dissertation, a phase-insensitive, ultrafast, all-optical spatial switching and frequency conversion device based on quadratic waveguide array is demonstrated. Spatial routing and wavelength conversion of milliwatt signals is achieved without pulse distortions.
Show less - Date Issued
- 2005
- Identifier
- CFE0000420, ucf:46382
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000420
- Title
- DISCRETE SURFACE SOLITONS.
- Creator
-
Suntsov, Sergiy, Stegeman, George, University of Central Florida
- Abstract / Description
-
Surface waves exist along the interfaces between two different media and are known to display properties that have no analogue in continuous systems. In years past, they have been the subject of many studies in a diverse collection of scientific disciplines. In optics, one of the mechanisms through which optical surface waves can exist is material nonlinearity. Until recently, most of the activity in this area was focused on interfaces between continuous media but no successful experiments...
Show moreSurface waves exist along the interfaces between two different media and are known to display properties that have no analogue in continuous systems. In years past, they have been the subject of many studies in a diverse collection of scientific disciplines. In optics, one of the mechanisms through which optical surface waves can exist is material nonlinearity. Until recently, most of the activity in this area was focused on interfaces between continuous media but no successful experiments have been reported. However, the growing interest that nonlinear discrete optics has attracted in the last two decades has raised the question of whether nonlinear surface waves can exist in discrete optical systems. In this work, a detailed experimental study of linear and nonlinear optical wave propagation at the interface between a discrete one-dimensional Kerr-nonlinear system and a continuous medium (slab waveguide) as well as at the interface between two dissimilar waveguide lattices is presented. The major part of this dissertation is devoted to the first experimental observation of discrete surface solitons in AlGaAs Kerr-nonlinear arrays of weakly coupled waveguides. These nonlinear surface waves are found to localize in the channels at and near the boundary of the waveguide array. The key unique property of discrete surface solitons, namely the existence of a power threshold, is investigated in detail. The second part of this work deals with the linear light propagation properties at the interface between two dissimilar waveguide arrays (so-called waveguide array hetero-junction). The possibility of three different types of linear interface modes is theoretically predicted and the existence of one of them, namely the staggered/staggered mode, is confirmed experimentally. The last part of the dissertation is dedicated to the investigation of the nonlinear properties of AlGaAs waveguide array hetero-junctions. The predicted three different types of discrete hybrid surface solitons are analyzed theoretically. The experimental results on observation of in-phase/in-phase hybrid surface solitons localized at channels on either side of the interface are presented and different nature of their formation is discussed.
Show less - Date Issued
- 2007
- Identifier
- CFE0001989, ucf:47426
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001989
- Title
- HIGH GAIN / BROADBAND OXIDE GLASSES FOR NEXT GENERATION RAMAN AMPLIFIERS.
- Creator
-
Rivero, Clara, Stegeman, George, University of Central Florida
- Abstract / Description
-
Interest in Raman amplification has undergone a revival due to the rapidly increasing bandwidth requirements for communications transmission, both for long haul and local area networks, and recent developments in the telecom fiber industry and diode laser technology. In contrast to rare earth doped fiber amplifiers, for which the range of wavelengths is fixed and limited, Raman gain bandwidths are larger and the operating wavelength is fixed only by the pump wavelength and the bandwidth of...
Show moreInterest in Raman amplification has undergone a revival due to the rapidly increasing bandwidth requirements for communications transmission, both for long haul and local area networks, and recent developments in the telecom fiber industry and diode laser technology. In contrast to rare earth doped fiber amplifiers, for which the range of wavelengths is fixed and limited, Raman gain bandwidths are larger and the operating wavelength is fixed only by the pump wavelength and the bandwidth of the Raman active medium. In this context, glasses are the material of choice for this application due to their relatively broad spectral response, and ability of making them into optical fiber. This dissertation summarizes findings on different oxide-based glasses that have been synthesized and characterized for their potential application as Raman gain media. Two main glass families were investigated: phosphate-based glass matrices for broadband Raman gain application and TeO2-based glasses for high Raman gain amplification. A phosphate network was preferred for the broadband application since the phosphate Raman active modes can provide amplification above 1000 cm-1, whilst TeO2-based glasses were selected for the high gain application due to their enhanced nonlinearities and polarizabilities among the other oxide-based network formers. The results summarized in this dissertation show that phosphate-based glasses can provide Raman amplification bandwidths of up to 40 THz, an improvement of almost 5 times the bandwidth of SiO2. On the other hand, tellurite-based glasses appear to be promising candidates for high gain discrete Raman applications, providing peak Raman gain coefficients of up to 50 times higher than SiO2, at 1064 nm. Although, visible spontaneous Raman scattering cross-section measurement is the most frequently used tool for estimating the strength and spectral distribution of Raman gain in materials, especially glasses, there are some issues that one needs to be aware when conducting these measurements near the absorption band edge of the material. This led to the detection of an inherent frequency-dispersion in the Raman susceptibility and a resonant enhancement phenomenon when measurements were conducted near the absorption edge of the material.
Show less - Date Issued
- 2005
- Identifier
- CFE0000752, ucf:46554
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000752
- Title
- DISCRETE NONLINEAR WAVE PROPAGATION IN KERR NONLINEAR MEDIA.
- Creator
-
Meier, Joachim, Stegeman, George, University of Central Florida
- Abstract / Description
-
Discrete optical systems are a subgroup of periodic structures in which the evolution of a continuous electromagnetic field can be described by a discrete model. In this model, the total field is the sum of localized, discrete modes. Weakly coupled arrays of single mode channel waveguides have been known to fall into this class of systems since the late 1960's. Nonlinear discrete optics has received a considerable amount of interest in the last few years, triggered by the experimental...
Show moreDiscrete optical systems are a subgroup of periodic structures in which the evolution of a continuous electromagnetic field can be described by a discrete model. In this model, the total field is the sum of localized, discrete modes. Weakly coupled arrays of single mode channel waveguides have been known to fall into this class of systems since the late 1960's. Nonlinear discrete optics has received a considerable amount of interest in the last few years, triggered by the experimental realization of discrete solitons in a Kerr nonlinear AlGaAs waveguide array by H. Eisenberg and coworkers in 1998. In this work a detailed experimental investigation of discrete nonlinear wave propagation and the interactions between beams, including discrete solitons, in discrete systems is reported for the case of a strong Kerr nonlinearity. The possibility to completely overcome "discrete" diffraction and create highly localized solitons, in a scalar or vector geometry, as well as the limiting factors in the formation of such nonlinear waves is discussed. The reversal of the sign of diffraction over a range of propagation angles leads to the stability of plane waves in a material with positive nonlinearity. This behavior can not be found in continuous self-focusing materials where plane waves are unstable against perturbations. The stability of plane waves in the anomalous diffraction region, even at highest powers, has been experimentally verified. The interaction of high power beams and discrete solitons in arrays has been studied in detail. Of particular interest is the experimental verification of a theoretically predicted unique, all optical switching scheme, based on the interaction of a so called "blocker" soliton with a second beam. This switching method has been experimentally realized for both the coherent and incoherent case. Limitations of such schemes due to nonlinear losses at the required high powers are shown.
Show less - Date Issued
- 2004
- Identifier
- CFE0000186, ucf:46176
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000186
- Title
- QUADRATIC SPATIAL SOLITON INTERACTIONS.
- Creator
-
Jankovic, Ladislav, Stegeman, George I., University of Central Florida
- Abstract / Description
-
Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO3) and periodically poled potassium titanyl phosphate (KTP) crystals....
Show moreQuadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30 degrees rotation, was measured in the experiments performed. The parameters relevant for characterizing soliton collision processes were also studied in detail. Measurements were performed for various collision angles (from 0.2 to 4 degrees), phase mismatch, relative phase between the solitons and the distance to the collision point within the sample (which affects soliton formation). Both the individual and combined effects of these collision variables were investigated. Based on the research conducted, several all-optical switching scenarios were proposed.
Show less - Date Issued
- 2004
- Identifier
- CFE0000090, ucf:46135
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000090
- Title
- STABLE SPATIAL SOLITONS IN SEMICONDUCTOROPTICAL AMPLIFIERS.
- Creator
-
ultanir, erdem ahmet, Stegeman, George I., University of Central Florida
- Abstract / Description
-
A spatial soliton is a shape invariant self guided beam of light or a self induced waveguide.Spatial solitons appear as a result of the balance of diffraction and nonlinear focusing in asystem. They have been observed in many different conservative media in the last couple ofyears. Solitons are ubiquitous, because of the probability of using their interactions in opticaldata processing, communications etc. Up to now due to the power required to generate thesolitons, and the response times of...
Show moreA spatial soliton is a shape invariant self guided beam of light or a self induced waveguide.Spatial solitons appear as a result of the balance of diffraction and nonlinear focusing in asystem. They have been observed in many different conservative media in the last couple ofyears. Solitons are ubiquitous, because of the probability of using their interactions in opticaldata processing, communications etc. Up to now due to the power required to generate thesolitons, and the response times of the soliton supporting media, these special waves of naturecould not penetrate the applications arena. Semiconductors, with their resonant nonlinearities, arethought to be ideal candidates for fast switching, low power spatial solitons.In this dissertation it is shown theoretically and experimentally that it is possible toobserve stable spatial solitons in a periodically patterned semiconductor optical amplifier(PPSOA). The solitons have unique beam profiles that change only with system parameters, likepumping current, etc. Their coherent and incoherent interactions which could lead to all opticaldevices have been investigated experimentally and theoretically. The formation of filaments ormodulational instability has been studied theoretically and yielded analytical formulae forevaluating the filament gain and the maximum spatial frequencies in PPSOA devices.Furthermore, discrete array amplifiers have been analyzed numerically for discrete solitons, andthe prospect of using multi peak discrete solitons as laser amplifiers is discussed.
Show less - Date Issued
- 2004
- Identifier
- CFE0000142, ucf:46153
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000142