Current Search: Tovbis, Alexander (x)
View All Items
- Title
- INTEGRABILITY OF A SINGULARLY PERTURBED MODEL DESCRIBING GRAVITY WATER WAVES ON A SURFACE OF FINITE DEPTH.
- Creator
-
Little, Steven, Tovbis, Alexander, University of Central Florida
- Abstract / Description
-
Our work is closely connected with the problem of splitting of separatrices (breaking of homoclinic orbits) in a singularly perturbed model describing gravity water waves on a surface of finite depth. The singularly perturbed model is a family of singularly perturbed fourth-order nonlinear ordinary differential equations, parametrized by an external parameter (in addition to the small parameter of the perturbations). It is known that in general separatrices will not survive a singular...
Show moreOur work is closely connected with the problem of splitting of separatrices (breaking of homoclinic orbits) in a singularly perturbed model describing gravity water waves on a surface of finite depth. The singularly perturbed model is a family of singularly perturbed fourth-order nonlinear ordinary differential equations, parametrized by an external parameter (in addition to the small parameter of the perturbations). It is known that in general separatrices will not survive a singular perturbation. However, it was proven by Tovbis and Pelinovsky that there is a discrete set of exceptional values of the external parameter for which separatrices do survive the perturbation. Since our family of equations can be written in the Hamiltonian form, the question is whether or not survival of separatrices implies integrability of the corresponding equation. The complete integrability of the system is examined from two viewpoints: 1) the existence of a second first integral in involution (Liouville integrability), and 2) the existence of single-valued, meromorphic solutions (complex analytic integrability). In the latter case, a singular point analysis is done using the technique given by Ablowitz, Ramani, and Segur (the ARS algorithm) to determine whether the system is of Painlevé-type (P-type), lacking movable critical points. The system is shown by the algorithm to fail to be of P-type, a strong indication of nonintegrability.
Show less - Date Issued
- 2008
- Identifier
- CFE0002109, ucf:47550
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002109
- Title
- Spectral properties of the finite Hilbert transform on two adjacent intervals via the method of Riemann-Hilbert problem.
- Creator
-
Blackstone, Elliot, Tovbis, Alexander, Katsevich, Alexander, Tamasan, Alexandru, Pang, Sean, University of Central Florida
- Abstract / Description
-
In this dissertation, we study a self-adjoint integral operator $\hat{K}$ which is defined in terms of finite Hilbert transforms on two adjacent intervals. These types of transforms arise when one studies the interior problem of tomography. The operator $\hat{K}$ possesses a so-called ``integrable kernel'' and it is known that the spectral properties of $\hat{K}$ are intimately related to a $2\times2$ matrix function $\Gamma(z;\lambda)$ which is the solution to a particular Riemann-Hilbert...
Show moreIn this dissertation, we study a self-adjoint integral operator $\hat{K}$ which is defined in terms of finite Hilbert transforms on two adjacent intervals. These types of transforms arise when one studies the interior problem of tomography. The operator $\hat{K}$ possesses a so-called ``integrable kernel'' and it is known that the spectral properties of $\hat{K}$ are intimately related to a $2\times2$ matrix function $\Gamma(z;\lambda)$ which is the solution to a particular Riemann-Hilbert problem (in the $z$ plane). We express $\Gamma(z;\lambda)$ explicitly in terms of hypergeometric functions and find the small $\lambda$ asymptotics of $\Gamma(z;\lambda)$. This asymptotic analysis is necessary for the spectral analysis of the finite Hilbert transform on multiple adjacent intervals. We show that $\Gamma(z;\lambda)$ also has a jump in the $\lambda$ plane which allows us to compute the jump of the resolvent of $\hat{K}$. This jump is an important step in showing that the finite Hilbert transforms has simple and purely absolutely continuous spectrum. The well known spectral theory now allows us to construct unitary operators which diagonalize the finite Hilbert transforms. Lastly, we mention some future directions which include the many interval scenario and a bispectral property of $\hat{K}$.
Show less - Date Issued
- 2019
- Identifier
- CFE0007602, ucf:52527
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007602