Current Search: Tran, Lucky (x)
View All Items
- Title
- EFFECT OF RIB ASPECT RATIO ON HEAT TRANSFER AND FRICTION IN RECTANGULAR CHANNELS.
- Creator
-
Tran, Lucky, kapat, Jay, University of Central Florida
- Abstract / Description
-
The heat transfer and friction augmentation in the fully developed portion of a 2:1 aspect ratio rectangular channel with orthogonal ribs at channel Reynolds numbers of 20,000, 30,000, and 40,000 is studied both experimentally and computationally. Ribs are applied to the two opposite wide walls. The rib aspect ratio is varied systematically at 1, 3, and 5, with a constant rib height and constant rib pitch (rib-pitch-to-rib-height ratio of 10). The purpose of the study is to extend the...
Show moreThe heat transfer and friction augmentation in the fully developed portion of a 2:1 aspect ratio rectangular channel with orthogonal ribs at channel Reynolds numbers of 20,000, 30,000, and 40,000 is studied both experimentally and computationally. Ribs are applied to the two opposite wide walls. The rib aspect ratio is varied systematically at 1, 3, and 5, with a constant rib height and constant rib pitch (rib-pitch-to-rib-height ratio of 10). The purpose of the study is to extend the knowledge of the performance of rectangular channels with ribs to include high aspect ratio ribs. The experimental investigation is performed using transient Thermochromic Liquid Crystals technique to measure the distribution of the local Nusselt numbers on the ribbed walls. Overall channel pressure drop and friction factor augmentation is also obtained with the experimental setup. A numerical simulation is also performed by solving the 3-D Reynolds-averaged Navier-Stokes equations using the realizable-k-[episilon] turbulence model for closure. Flow visualization is obtained from the computational results as well as numerical predictions of local distributions of Nusselt numbers and overal channel pressure drop. Results indicate that with increasing rib width, the heat transfer augmentation of the ribbed walls decreases with a corresponding reduction in channel pressure drop.
Show less - Date Issued
- 2011
- Identifier
- CFH0004103, ucf:44890
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004103
- Title
- Dynamics of a Perfectly Premixed Jet Flame Exhibiting Self-Excited High-Frequency, Transverse Thermoacoustic Instabilities.
- Creator
-
Tran, Lucky, Kapat, Jayanta, Kassab, Alain, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
This work is an investigation of the behavior of a premixed turbulent jet flame in a cylindrical dump combustor. The degeneracy of the simple configuration in this study lends itself for a detailed study of inherent mechanisms of a self-excited thermoacoustic instability in isolation from system coupling effects, enabling detailed numerical simulations to be carried out to supplement experimental findings. Tests were done at a nominal pressure of 8 bar and inlet temperature around 450 ?C....
Show moreThis work is an investigation of the behavior of a premixed turbulent jet flame in a cylindrical dump combustor. The degeneracy of the simple configuration in this study lends itself for a detailed study of inherent mechanisms of a self-excited thermoacoustic instability in isolation from system coupling effects, enabling detailed numerical simulations to be carried out to supplement experimental findings. Tests were done at a nominal pressure of 8 bar and inlet temperature around 450 ?C. Self-excited large eddy simulations were also carried out in OpenFOAM, using a b-? flame-wrinkling model to model the combustion process. Eigenfrequency analysis in COMSOL was also done to support and explain the findings from both the numerical simulations and trends observed in the experiments. Measurements from high frequency pressure transducers were analyzed to determine the frequencies of the excited modes in the rig test and compared to the spectra from the LES simulation. The time-resolved fields from the LES simulation were phase-averaged to deduce the acoustic-flame interactions. Despite the (axis)symmetry in this configuration, the non-axisymmetric 1T and 1T1L modes were (simultaneously) excited. Two distinct behaviors are noted for the dynamic flame behavior. In the downstream region, the flame motion is well described by a bulk kinematic displacement as a result of the interaction of the flame front with the local acoustic perturbation. In the upstream region, near the combustor dump plane, large-scale wrinkles are observed in the flame front that have characteristics of a convective wave. The current findings provide additional evidence supporting and further establishing the theory of inherent acoustic-flame interactions as an excitation mechanism (distinct from acoustically-induced hydrodynamic oscillations) for high-frequency, transverse thermoacoustic instabilities.
Show less - Date Issued
- 2019
- Identifier
- CFE0007542, ucf:52616
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007542
- Title
- Development of Full Surface Transient Thermochromic Liquid Crystal Technique for Internal Cooling Channels.
- Creator
-
Tran, Lucky, Kapat, Jayanta, Kassab, Alain, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
Proper design of high performance industrial heat transfer equipment relies on accurate knowledge and prediction of the thermal boundary conditions. In order to enhance the overall gas turbine efficiency, advancements in cooling technology for gas turbines and related applications are continuously investigated to increase the turbine inlet temperature without compromising the durability of the materials used. For detailed design, local distributions are needed in addition to bulk quantities....
Show moreProper design of high performance industrial heat transfer equipment relies on accurate knowledge and prediction of the thermal boundary conditions. In order to enhance the overall gas turbine efficiency, advancements in cooling technology for gas turbines and related applications are continuously investigated to increase the turbine inlet temperature without compromising the durability of the materials used. For detailed design, local distributions are needed in addition to bulk quantities. Detailed local distributions require advanced experimental techniques whereas they are readily available using numerical tools. Numerical predictions using a computational fluid dynamics approach with popular turbulence models are benchmarked against a semi-empirical correlation for the friction in a circular channel with repeated-rib roughness to demonstrate some shortcomings of the models used. Numerical predictions varied widely depending on the turbulence modelling approach used. The need for a compatible experimental dataset to accompany numerical simulations was discussed.An exact, closed-form analytical solution to the enhanced lumped capacitance model is derived. The temperature evolution in a representative 2D turbulated surface is simulated using Fluent to validate the model and its exact solution. A case including an interface contact resistance was included as well as various rib sizes to test the validity of the model over a range of conditions. The analysis was extended to the inter-rib region to investigate the extent and magnitude of the influence of the metallic rib features on the apparent heat transfer coefficients in the inter-rib region. It was found that the thermal contamination is limited only to the regions closest to the base of the rib feature.An experimental setup was developed, capable of measuring the local heat transfer distributions on all four channel walls of a rectangular channel (with aspect ratios between 1 and 5) at Reynolds numbers up to 150,000. The setup utilizes a transient thermochromic liquid crystals technique using narrow band crystals and a four camera setup. The setup is used to test a square channel with ribs applied to one wall. Using the transient thermochromic liquid crystals technique and applying it underneath high conductivity, metallic surface features, it is possible to calculate the heat transfer coefficient using a lumped heat capacitance approach. The enhanced lumped capacitance model is used to account for heat conduction into the substrate material. Rohacell and aluminum ribs adhered to the surface were used to tandem to validate the hybrid technique against the standard technique. Local data was also used to investigate the effect of thermal contamination. Thermal contamination observed empirically was more optimistic than numerical predictions.Traditional transient thermochromic liquid crystals technique utilizes the time-to-arrival of the peak intensity of the green color signal. The technique has been extended to utilize both the red and green color signals, increasing the throughput by recovering unused data while also allowing for a reduction in the experimental uncertainty of the calculated heat transfer coefficient. The over-determined system was solved using an un-weighted least squares approach. Uncertainty analysis of the multi-color technique demonstrated its superior performance over the single-color technique. The multi-color technique has the advantage of improved experimental uncertainty while being easy to implement.
Show less - Date Issued
- 2014
- Identifier
- CFE0005430, ucf:50436
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005430