Current Search: Vanstryland, Eric (x)
View All Items
Pages
- Title
- Generation and Characterization of Isolated Attosecond Pulse in the Soft X-ray Regime.
- Creator
-
Li, Jie, Chang, Zenghu, Delfyett, Peter, Vanstryland, Eric, Chen, Bo, University of Central Florida
- Abstract / Description
-
The observation of any atomic and molecular dynamics requires a probe that has a timescale comparable to the dynamics itself. Ever since the invention of laser, the temporal duration of the laser pulse has been incrementally reduced from several nanoseconds to just attoseconds. Picosecond and femtosecond laser pulses have been widely used to study molecular rotation and vibration. In 2001, the first single isolated attosecond pulse (1 attosecond = 10^-18 seconds.) was demonstrated. Since this...
Show moreThe observation of any atomic and molecular dynamics requires a probe that has a timescale comparable to the dynamics itself. Ever since the invention of laser, the temporal duration of the laser pulse has been incrementally reduced from several nanoseconds to just attoseconds. Picosecond and femtosecond laser pulses have been widely used to study molecular rotation and vibration. In 2001, the first single isolated attosecond pulse (1 attosecond = 10^-18 seconds.) was demonstrated. Since this breakthrough, (")attoscience(") has become a hot topic in ultrafast physics. Attosecond pulses typically have span between EUV to X-ray photon energies and sub-femtosecond pulse duration. It becomes an ideal tool for experimentalists to study ultrafast electron dynamics in atoms, molecules and condensed matter. The conventional scheme for generating attosecond pulses is focusing an intense femtosecond laser pulse into inert gases. The bound electrons are ionized into continuum through tunneling ionization under the strong electrical field. After ionization, the free electron will be accelerated by the laser field away from the parent ion and then recombined with its parent ion and releases its kinetic energy as a photon burst that lasts for a few hundred attoseconds. According to the classical (")three-step model("), high order harmonic will have a higher cutoff photon energy when driven by a longer wavelength laser field. Compared to Ti:sapphire lasers center at a wavelength of 800 nm, an optical parametric amplifier could offer a broad bandwidth at infrared range, which could support few cycle pulses for driving high harmonic generation in the X-ray spectrum range. In this work, an optical parametric chirped-pulse amplification system was developed to deliver CEP-stable 3-mJ, 12-fs pulses centered at 1.7 micron. We implement a chirped-pump technique to phase match the board parametric amplification bandwidth with high conversion efficiency. Using such a laser source, isolated attosecond pulses with photon exceeding 300 eV are achieved by applying the polarization gating technique at 1.7 micron. The intrinsic positive chirp of the attosecond pulses is measured by the attosecond streak camera and retrieved with our PROOF technique. Sn metal filters with negative dispersion were chosen to compensate the intrinsic attochirp. As a result, isolated 53-attosecond soft x-ray pulses are achieved. Such water window attosecond source will be a powerful tool for studying charge distribution/migration in bio-molecules and will bring opportunities to study high field physics or attochemistry.
Show less - Date Issued
- 2018
- Identifier
- CFE0007040, ucf:52007
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007040
- Title
- Non-Reciprocal Wave Transmission in Integrated Waveguide Array Isolators.
- Creator
-
Ho, Yat, Likamwa, Patrick, Christodoulides, Demetrios, Vanstryland, Eric, Kaup, David, University of Central Florida
- Abstract / Description
-
Non-reciprocal wave transmission is a phenomenon witnessed in certain photonic devices when the wave propagation dynamics through the device along one direction differs greatly from the dynamics along the counter-propagating direction. Specifically, it refers to significant power transfer occurring in one direction, and greatly reduced power transfer in the opposite direction. The resulting effect is to isolate the directionality of wave propagation, allowing transmission to occur along one...
Show moreNon-reciprocal wave transmission is a phenomenon witnessed in certain photonic devices when the wave propagation dynamics through the device along one direction differs greatly from the dynamics along the counter-propagating direction. Specifically, it refers to significant power transfer occurring in one direction, and greatly reduced power transfer in the opposite direction. The resulting effect is to isolate the directionality of wave propagation, allowing transmission to occur along one direction only.Given the popularity of photonic integrated circuits (PIC), in which all the optical components are fabricated on the same chip so that the entire optical system can be made more compact, it is desirable to have an easily integrated optical isolator. Common free-space optical isolator designs, which rely on the Faraday effect, are limited by the availability of suitable magnetic materials. This research proposes a novel integrated optical isolator based on an array of closely spaced, identical waveguides. Because of the nonlinear optical properties of the material, this device exploits the differing behaviors of such an array when illuminated with either a high power or a low power beam to achieve non-reciprocal wave transmission in the forwards and backwards directions, respectively. The switching can be controlled electro-optically via an integrated gain section which provides optical amplification before the input to the array. The design, fabrication, characterization and testing of this optical isolator are covered in this dissertation. We study the switching dynamics of this device and present its optimum operating conditions. ?
Show less - Date Issued
- 2012
- Identifier
- CFE0004305, ucf:49495
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004305
- Title
- Techniques for characterization of third order optical nonlinearities.
- Creator
-
Ferdinandus, Manuel, Hagan, David, Vanstryland, Eric, Christodoulides, Demetrios, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
This dissertation describes the development of novel techniques for characterization of nonlinear properties of materials. The dissertation is divided into two parts, a background and theory section and a technique development section.In the background and theory section we explain the origins of the nonlinear optical response of materials across many different spatial and temporal scales. The mechanisms that we are most interested in are the electronic nuclear and reorientational responses,...
Show moreThis dissertation describes the development of novel techniques for characterization of nonlinear properties of materials. The dissertation is divided into two parts, a background and theory section and a technique development section.In the background and theory section we explain the origins of the nonlinear optical response of materials across many different spatial and temporal scales. The mechanisms that we are most interested in are the electronic nuclear and reorientational responses, which occur on the range of sub-femtosecond to several picoseconds. The electronic mechanism is due to the electrons of a material experiencing a non-parabolic potential well due a strong electric field and occurs on the sub-femtosecond timescale. The nuclear or vibrational effect results from the motion of the nuclei of the atoms and typically occurs on the order of a few hundred femtoseconds. Finally the reorientational nonlinearity is due to the alignment of the molecule to the electric field, which alters the polarizability of the molecule and typically occurs on the scale of a few picoseconds. There are other mechanisms can induce nonlinear optical effects such as thermal effects and electrostriction, but these effects typically occur on much larger timescales than we are interested in, and hence will not be a major focus of this dissertation.In the nonlinear characterization techniques section, we describe previous research into the field of nonlinear optical characterization techniques, describing the techniques used to characterize the nonlinear properties of materials, their applications and limitations. We will trace the development of two recently developed techniques for nonlinear spectroscopy ? the Dual Arm Z-Scan and the Beam Deflection techniques. The Dual Arm Z-Scan technique is an enhancement of the standard Z-Scan technique that allows for the measurement of small nonlinear signals in the presence of large background signals. This technique allows for the measurement of materials under certain conditions not previously measureable using the standard Z-Scan technique, such materials with low damage thresholds, poor solubility and thin films.In addition to the Dual Arm Z-Scan, we have developed a new method for characterizing nonlinear refraction, the Beam Deflection technique, which is a variation of the photothermal beam deflection technique previously used to measure very weak absorption signals. This technique offers relative ease of use, the ability to measure the absolute magnitude and sign of both the real and imaginary parts of ?^((3)) simultaneously with high sensitivity. We fully develop the theory for materials with instantaneous and non-instantaneous nonlinearities, with nonlinear absorption and group velocity mismatch. We also demonstrate the power of this technique to separate the isotropic and reorientational contributions of liquids by examining the temporal response and polarization dependences.Lastly, we summarize our conclusions and describe two promising future research directions that would benefit from the Dual Arm Z-Scan and Beam Deflection techniques.
Show less - Date Issued
- 2013
- Identifier
- CFE0005164, ucf:50709
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005164
- Title
- LASER FILAMENT INTERACTION WITH AEROSOLS AND CLOUDS.
- Creator
-
Jeon, Cheonha, Richardson, Martin, Vanstryland, Eric, Baudelet, Matthieu, Sigman, Michael, University of Central Florida
- Abstract / Description
-
A high powered ultrashort laser pulse can propagate as a diffraction-free self-channeled structure called a filament, created by a combination of nonlinear processes. With its ability to convey extremely high intensity beams to distant targets, many applications such as remote sensing, cloud seeding, and discharge guiding are potentially possible. However, one of the main challenges of outdoor field applications is the laser propagation through the atmosphere where pressure fluctuations and...
Show moreA high powered ultrashort laser pulse can propagate as a diffraction-free self-channeled structure called a filament, created by a combination of nonlinear processes. With its ability to convey extremely high intensity beams to distant targets, many applications such as remote sensing, cloud seeding, and discharge guiding are potentially possible. However, one of the main challenges of outdoor field applications is the laser propagation through the atmosphere where pressure fluctuations and concentrations of aerosols may be present. The rationale behind the work presented in this dissertation is to evaluate the robustness of the filamentation, measure the interaction losses as well as understanding the modifications to (i) filament length (ii) supercontinuum generation, and (iii) the beam profile along propagation through perturbed media.Detailed studies of the interaction of a single filament with a single water droplet are presented. In addition, preliminary results on filament propagation through a cloud of aerosols are discussed. The effect of pressure on the beam profile along propagation and on the supercontinuum generated by the filament is studied. This document provides valuable insight into the complex nonlinear processes affecting the formation, propagation and post propagation of filaments under adverse atmospheric conditions.
Show less - Date Issued
- 2016
- Identifier
- CFE0006530, ucf:51368
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006530
- Title
- Attosecond Transient Absorption Spectroscopy of Atoms and Molecules.
- Creator
-
Cheng, Yan, Chang, Zenghu, Saha, Haripada, Chow, Lee, Vanstryland, Eric, University of Central Florida
- Abstract / Description
-
One of the most fundamental goals of attosecond science is to observe and to control the dynamic evolutions of electrons in matter. The attosecond transient absorption spectroscopy is a powerful tool to utilize attosecond pulse to measure electron dynamics in quantum systems directly. In this work, isolated single attosecond pulses are used to probe electron dynamics in atoms and to study dynamics in hydrogen molecules using the attosecond transient absorption spectroscopy technique. The...
Show moreOne of the most fundamental goals of attosecond science is to observe and to control the dynamic evolutions of electrons in matter. The attosecond transient absorption spectroscopy is a powerful tool to utilize attosecond pulse to measure electron dynamics in quantum systems directly. In this work, isolated single attosecond pulses are used to probe electron dynamics in atoms and to study dynamics in hydrogen molecules using the attosecond transient absorption spectroscopy technique. The target atom/molecule is first pumped to excited states and then probed by a subsequent attosecond extreme ultraviolet (XUV) pulse or by a near infrared (NIR) laser pulse. By measuring the absorbed attosecond XUV pulse spectrum, the ultrafast electron correlation dynamics can be studied in real time. The quantum processes that can be studied using the attosecond transient absorption spectroscopy include the AC stark shift, multi-photon absorption, intermediate states of atoms, autoionizing states, and transitions of vibrational states in molecules. In all experiments, the absorption changes as a function of the time delay between the attosecond XUV probe pulse and the dressing NIR laser pulse, on a time scale of sub-cycle laser period, which reveals attosecond electron dynamics. These experiments demonstrate that the attosecond transient absorption spectroscopy can be performed to study and control electronic and nuclear dynamics in quantum systems with high temporal and spectral resolution, and it opens door for the study of electron dynamics in large molecules and other more complex systems.
Show less - Date Issued
- 2015
- Identifier
- CFE0006284, ucf:51595
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006284
- Title
- Non-Degenerate Two Photon Gain in Bulk Gallium Arsenide.
- Creator
-
Turnbull, Brendan, Hagan, David, Vanstryland, Eric, Christodoulides, Demetrios, University of Central Florida
- Abstract / Description
-
The purpose of this thesis is to investigate the nonlinear phenomena known as doubly-stimulated, non-degenerate two-photon emission (ND-2PE) in Gallium Arsenide (GaAs). 2PE refers to the simultaneous emission of two-photons as electrons move from the conduction band in a direct gap semiconductor to the valence band. Following the same path for describing one-photon emission (1PE) we describe 2PE as a product of the irradiance, I, and the negative of the loss which in this case is two-photon...
Show moreThe purpose of this thesis is to investigate the nonlinear phenomena known as doubly-stimulated, non-degenerate two-photon emission (ND-2PE) in Gallium Arsenide (GaAs). 2PE refers to the simultaneous emission of two-photons as electrons move from the conduction band in a direct gap semiconductor to the valence band. Following the same path for describing one-photon emission (1PE) we describe 2PE as a product of the irradiance, I, and the negative of the loss which in this case is two-photon absorption, ?_2, the negative coming from the population inversion. We attempt to observe 2PE by using a frequency non-degenerate pump-probe experiment in which a third beam optically excites a 4 (&)#181;m thick GaAs sample. We use non-degenerate beams in hopes of utilizing the 3-orders of magnitude enhancement seen in two-photon absorption (2PA) by going to extreme nondegeneracy (END) to enhance 2PE. GaAs is chosen due to the availability of the appropriate wavelengths, the maturity of the GaAs technology, its use in optoelectronic devices and its ability to be electrically pumped. During the experimental development we learn how to effectively etch and manipulate thin GaAs samples and model the transmission spectrum of these samples using thin film transmission matrices. We are able to match the measured transmission spectrum with the theoretical transmission spectrum. Here we etch the bulk GaAs left on the sample leaving only the 4 (&)#181;m thickness of molecular beam epitaxial grown GaAs plus additional layers of aluminum gallium arsenide (AlGaAs). These samples were grown for us by Professor Gregory Salamo of the University of Arkansas.Using the pump-probe experiment on the 4 (&)#181;m GaAs sample, we measure the change of the 2PA due to the presence of optically excited carriers. The goal is to reduce the 2PA signal to zero and then invert the 2PA signal indicating an increase in transmission indicative of 2PE when the population is inverted. Our results show that we achieve a 45% reduction in the 2PA signal in a 4 ?m thick GaAs sample due to the excited carriers. Unfortunately, we currently cannot experimentally determine whether the reduction is strictly due to free-carrier absorption (FCA) of our pump or possibly due to a change in the two-photon absorption coefficient. We measure the transmission of various wavelengths around the bang gap of GaAs as a function of excitation wavelength and achieve a transmittance of ~80% which we attribute to possibly be one photon gain (1PG) at 880 nm. We also go to cryogenic temperatures to concentrate the carriers near the bottom of the conduction band and improve the theoretical gain coefficient for 2PE. Unfortunately, we do not observe a measurable change in 2PA with the addition of optically excited carriers. Along with FCA of our infrared pump we suspect that the difficulties in this first set of experiments are also a result or radiative recombination due to amplified spontaneous emission reducing our free carrier density along with the fact that 4 ?m is too thick for uniform excitation. We now have 1 ?m samples from Professor Gregory Salamo which we hope will give better and more definitive results.
Show less - Date Issued
- 2013
- Identifier
- CFE0004762, ucf:49776
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004762
- Title
- Beam Deflection.
- Creator
-
Münnich, Matthias, Hagan, David, Vanstryland, Eric, Dogariu, Aristide, University of Central Florida
- Abstract / Description
-
In order to fully understand the third order nonlinear optical response of materials under high irradianceexcitation it is necessary to study the temporal and polarization dependence of nonlinearrefraction and absorption. There are several existing approaches such as Z-scan and pump-probetechniques to determine those responses. As part of this work, these approaches will be briefly outlinedbefore presenting beam deflection, applied from photothermal beam deflection, as an...
Show moreIn order to fully understand the third order nonlinear optical response of materials under high irradianceexcitation it is necessary to study the temporal and polarization dependence of nonlinearrefraction and absorption. There are several existing approaches such as Z-scan and pump-probetechniques to determine those responses. As part of this work, these approaches will be briefly outlinedbefore presenting beam deflection, applied from photothermal beam deflection, as an alternativeexperimental technique to determine the nonlinear refraction with its temporal and polarizationdynamics. This technique measures the angle of the probe beam deflected via the index gradientof the material induced by strong excitation beam, to determine both the sign and magnitude of thenonlinear refraction. The temporal and tensor properties of the nonlinear refractive index can bedetermined by introducing a delay line, and by varying the polarization of the excitation and probebeam, respectively.To demonstrate the practicality of the beam deflection technique, we performed measurements onFused Silica, Carbon Disulfide and Zinc Oxide. Each of these samples shows quite different nonlinearresponses. Amorphous fused silica exhibits nonlinear refraction purely from instantaneouselectronic contribution; while Carbon Disulfide shows a much slower response, originating notonly from the electronic contribution but also from non-instantaneous nuclear movements (e.g.molecular orientation). These two contributions can be separated by varying the polarization directionof the excitation and probe beam. By introducing lock-in detection technique, a sensitivityof λ/5500 can be achieved. In Zinc Oxide, a wide-bandgap semiconductor, we measure bothnonlinear refraction and two-photon absorption simultaneously. Therefore the beam deflection isa sensitive technique, which can be used to measure the time and polarization dynamics of thenonlinear response of the material.
Show less - Date Issued
- 2013
- Identifier
- CFE0004896, ucf:49653
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004896
- Title
- Semiconductor Laser Based on Thermoelectrophotonics.
- Creator
-
Liu, Xiaohang, Deppe, Dennis, Vanstryland, Eric, Dogariu, Aristide, Bass, Michael, University of Central Florida
- Abstract / Description
-
This dissertation presents to our knowledge the first demonstration of a quantum well (QW) laser monolithically integrated with internal optical pump based on a light emitting diode (LED). The LED with high efficiency is operated in a thermoelectrophotonic (TEP) regime for which it can absorb both its own emitted light and heat. The LED optical pump can reduce internal optical loss in the QW laser, and enables monolithically integrated TEP heat pumps to the semiconductor laser. The design,...
Show moreThis dissertation presents to our knowledge the first demonstration of a quantum well (QW) laser monolithically integrated with internal optical pump based on a light emitting diode (LED). The LED with high efficiency is operated in a thermoelectrophotonic (TEP) regime for which it can absorb both its own emitted light and heat. The LED optical pump can reduce internal optical loss in the QW laser, and enables monolithically integrated TEP heat pumps to the semiconductor laser. The design, growth and fabrication processes of the laser chip are discussed, and its experimental data is presented. In order to further increase the TEP laser efficiency the development of QDs as the active region for TEP edge emitting laser (EEL) is studied. The usage of QD as TEP laser's active region is significant in terms of its low threshold current density, low internal optical loss and high reliability, which are mainly due to low transparency in QD laser. The crystal growth of self-organized QDs in molecular beam epitaxial (MBE) system and characterization of QDs are mentioned. The design, growth, processing and fabrication of a QD laser structure are detailed. The characteristics of laser devices with different cavity length are reported. QD active regions with different amount of material are grown to improve the active region performance. Theoretical calculations based on material parameters and semiconductor physics indicate that with proper design, the combination of high efficiency LED in TEP regime with a QD laser can result in the integrated laser chip power conversion efficiency exceeding unity.
Show less - Date Issued
- 2014
- Identifier
- CFE0005369, ucf:50477
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005369
- Title
- Low Voltage Blue Phase Liquid Crystal Displays.
- Creator
-
Rao, Linghui, Wu, Shintson, Vanstryland, Eric, Zeldovich, Boris, Wu, Xinzhang, University of Central Florida
- Abstract / Description
-
From cell phones, laptops, desktops, TVs, to projectors, high reliability LCDs have become indispensable in our daily life. Tremendous progress in liquid crystal displays (LCDs) has been made after decades of extensive research and development in materials, device configurations and manufacturing technology. Nowadays, the most critical issue on viewing angle has been solved using multidomain structures and optical film compensation. Slow response time has been improved to 2-5 ms with low...
Show moreFrom cell phones, laptops, desktops, TVs, to projectors, high reliability LCDs have become indispensable in our daily life. Tremendous progress in liquid crystal displays (LCDs) has been made after decades of extensive research and development in materials, device configurations and manufacturing technology. Nowadays, the most critical issue on viewing angle has been solved using multidomain structures and optical film compensation. Slow response time has been improved to 2-5 ms with low viscosity LC material, overdrive and undershoot voltage, and thin cell gap approach. Moving image blur has been significantly reduced by impulse driving and frame insertion. Contrast ratio in excess of one million-to-1 has been achieved through local dimming of the segmented LED backlight. The color gamut would exceed 100% of the NTSC (National Television System Committee), if RGB LEDs are used. Besides these technological advances, the cost has been reduced dramatically by investing in advanced manufacturing technologies. Polymer-stabilized blue phase liquid crystal displays (BPLCDs) based on Kerr effect is emerging as a potential next-generation display technology. In comparison to conventional nematic devices, the polymer-stabilized BPLCDs exhibit following attractive features: (1) submillisecond response time, (2) no need for molecular alignment layers, (3) optically isotropic dark state when sandwiched between crossed polarizers, and (4) transmittance is insensitive to cell gap when the in-plane electrodes are employed. However, aside from these great potentials, there are still some tough technical issues remain to be addressed. The major challenges are: 1) the operating voltage is still too high (~50 Volts vs. 5 Volts for conventional nematic LCDs), and the transmittance is relatively low (~65% vs. 85% for nematic LCDs), 2) the hysteresis effect and residual birefringence effect are still noticeable, 3) the mesogenic temperature range is still not wide enough for practical applications (?40 oC to 80 oC), and 4) the ionic impurities in these polymer-stabilized nano-structured LC composites could degrade the voltage holding ratio, which causes image sticking.In this dissertation, the BPLC materials are studied and the new BPLC device structures are designed to optimize display performances. From material aspect, the electro-optical properties of blue phase liquid crystals are studied based on Kerr effect. Temperature effects on polymer-stabilized blue phase or optically isotropic liquid crystal displays are investigated through the measurement of voltage dependent transmittance under different temperatures. The physical models for the temperature dependency of Kerr constant, induced birefringence and response time in BPLCs are first proposed and experimentally validated. In addition, we have demonstrated a polymer-stabilized BPLC mixture with a large Kerr constant K~13.7 nm/V2 at 20 oC at 633 nm. These models would set useful guidelines for optimizing material performances. From devices side, the basic operation principle of blue phase LCD is introduced. A numerical model is developed to simulate the electro-optic properties of blue phase LCDs based on in-plane-switching (IPS) structure. Detailed electrode dimension effect, distribution of induced birefringence, cell gap effect, correlation between operation voltage and Kerr constant, and wavelength dispersion are investigated. Viewing angle is another important parameter. We have optimized the device configurations according to the device physics studied. With proper new device designs, the operating voltage is decreased dramatically from around 50 Volts to below 10 Volts with a reasonably high transmittance (~70%) which enables the BPLCDs to be addressed by amorphous silicon thin-film transistors (TFTs). Moreover, weak wavelength dispersion, samll color shift, and low hysteresis BPLCDs are achieved after their root causes being unveiled. Optimization of device configurations plays a critical role to the widespread applications of BPLCDs.In addition to displays, blue phase liquid crystals can also be used for photonic applications, such as light modulator, phase grating, adaptive lens and photonic crystals. We will introduce the application of blue phase liquid crystal as a modulator to realize a viewing angle controllable display. The viewing angle can be tuned continuously and precisely with a fast response time. The detailed design and performance are also presented in this dissertation.
Show less - Date Issued
- 2012
- Identifier
- CFE0004625, ucf:49930
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004625
- Title
- Absorptive and Refractive Optical Nonlinearities in Organic Molecules and Semiconductors.
- Creator
-
Peceli, Davorin, Hagan, David, Vanstryland, Eric, Christodoulides, Demetrios, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
The main purpose of this dissertation to investigate photophysical properties, third order nonlinearity and free carrier absorption and refraction in organic materials and semiconductors. Special emphasis of this dissertation is on characterization techniques of molecules with enhanced intersystem crossing rate and study of different approaches of increasing triplet quantum yield in organic molecules. Both linear and nonlinear characterization methods are described. Linear spectroscopic...
Show moreThe main purpose of this dissertation to investigate photophysical properties, third order nonlinearity and free carrier absorption and refraction in organic materials and semiconductors. Special emphasis of this dissertation is on characterization techniques of molecules with enhanced intersystem crossing rate and study of different approaches of increasing triplet quantum yield in organic molecules. Both linear and nonlinear characterization methods are described. Linear spectroscopic characterization includes absorption, fluorescence, quantum yield, anisotropy, and singlet-oxygen generation measurements. Nonlinear characterization, performed by picosecond and femtosecond laser systems (single and double pump-probe and Z-scan measurements), includes measurements of the triplet quantum yields, excited-state absorption, two-photon absorption, nonlinear refraction and singlet and triplet-state lifetimes.The double pump-probe technique is a variant of the standard pump-probe method but uses two pumps instead of one to create two sets of initial conditions for solving the rate equations allowing a unique determination of singlet- and triplet-state absorption parameters and transition rates. The advantages and limitations of the the double pump-probe technique are investigated theoretically and experimentally, and the influences of several experimental parameters on its accuracy are determined. The accuracy with which the double pump-probe technique determines the triplet-state parameters improves when the fraction of the population in the triplet state relative to the ground state is increased. Although increased accuracy is in principle achievable by increasing the pump fluence in the reverse saturable absorption range, it is shown that the DPP is optimized by working in the saturable absorption regime.Two different approaches to increase intersystem crossing rates in polymethine-like molecules are presented: traditional heavy atom substitution and molecular levels engineering. Linear and nonlinear optical properties of a series of polymethine dyes with Br- and Se- atoms substitution, and a series of new squaraine molecules, where one or two oxygen atoms in a squaraine bridge are replaced with sulfur atoms, are investigated. A consequence of the oxygen-to-sulfur substitution in squaraines is the inversion of their lowest lying ??* and n?* states leading to a significant reduction of singlet-triplet energy difference and opening of an additional intersystem channel of relaxation. Experimental studies show that triplet quantum yields for polymethine dyes with heavy-atom substitutions are small (not more than 10%), while for sulfur-containing squaraines these values reach almost unity. Experimental results are in agreement with density functional theory calculations allowing determination of the energy positions, spin-orbital coupling, and electronic configurations of the lowest electronic transitions.For three different semiconductors: GaAs, InP and InAsP two photon absorption, nonlinear refraction and free carrier absorption and refraction spectrums are measured using Z-scan technique. Although two photon absorption spectrum agrees with the shape of theoretical prediction, values measured with picosecond system are off by the factor of two. Nonlinear refraction and free carrier nonlinearities are in relatively good agreement with theory. Theoretical values of the third order nonlinearities in GaAs are additionally confirmed with femtosecond Z-scan measurements. Due to large spectral bandwidth of femtosecond laser, three photon absorption spectrum of GaAs was additionally measured using picosecond Z-scan. Again, spectral shape is in excellent agreement with theory however values of three photon absorption cross sections are larger than theory predicts. ?
Show less - Date Issued
- 2013
- Identifier
- CFE0004735, ucf:49815
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004735
- Title
- Multimaterial Fibers and Tapers A Platform for Nonlinear Photonics and Nanotechnology.
- Creator
-
Shabahang, Soroush, Abouraddy, Ayman, Vanstryland, Eric, Dogariu, Aristide, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
The development of optical sources and components suitable for the mid-infrared is crucial for applications in this spectral range to reach the maturity level of their counterparts in the visible and near-infrared spectral regimes. The recent commercialization of quantum cascade lasers is leading to further interest in this spectral range. Wideband mid-infrared coherent sources, such as supercontinuum generation, have yet to be fully developed. A mid-infrared supercontinuum source would allow...
Show moreThe development of optical sources and components suitable for the mid-infrared is crucial for applications in this spectral range to reach the maturity level of their counterparts in the visible and near-infrared spectral regimes. The recent commercialization of quantum cascade lasers is leading to further interest in this spectral range. Wideband mid-infrared coherent sources, such as supercontinuum generation, have yet to be fully developed. A mid-infrared supercontinuum source would allow for unique applications in spectroscopy and sensing.Over the last decade, it has been shown that high-index confinement in highly nonlinear fibers pumped with high-peak-power pulses is an excellent approach to supercontinuum generation in the visible and near-infrared. Nonlinear waveguides such as fibers offer an obvious advantage in increasing the nonlinear interaction length maintained with a small cross section. In addition, fiber systems do not require optical alignment and are mechanically stable and robust with respect to the environmental changes. These properties have made fiber systems unique in applications where they are implemented in a harsh and unstable environment.In extending this approach into the mid-infrared, I have used chalcogenide glass fibers. Chalcogenide glasses have several attractive features for this application: they have high refractive indices for high optical-confinement, have a wide transparency window in the mid-infrared, and have a few orders-of-magnitude higher nonlinearity than silica glass and other mid-IR glasses. Producing chalcogenide glass fiber tapers offer, furthermore, the possibility of dispersion control and stronger field confinement and hence higher nonlinearity, desired for supercontinuum generation.
Show less - Date Issued
- 2014
- Identifier
- CFE0005252, ucf:50594
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005252
- Title
- Development of laser spectroscopy for elemental and molecular analysis.
- Creator
-
Liu, Yuan, Richardson, Martin, Vanstryland, Eric, Bass, Michael, Sigman, Michael, University of Central Florida
- Abstract / Description
-
Laser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy are still growing analytical and sensing spectroscopic techniques. They significantly reduce the time and labor cost in analysis with simplified instrumentation, and lead to minimal or no sample damage. In this dissertation, fundamental studies to improve LIBS analytical performance were performed and its fusion with Raman into one single sensor was explored.On the fundamental side, Thomson scattering was reported for the...
Show moreLaser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy are still growing analytical and sensing spectroscopic techniques. They significantly reduce the time and labor cost in analysis with simplified instrumentation, and lead to minimal or no sample damage. In this dissertation, fundamental studies to improve LIBS analytical performance were performed and its fusion with Raman into one single sensor was explored.On the fundamental side, Thomson scattering was reported for the first time to simultaneously measure the electron density and temperature of laser plasmas from a solid aluminum target at atmospheric pressure. Comparison between electron and excitation temperatures brought insights into the verification of local thermodynamic equilibrium condition in laser plasmas.To enhance LIBS emission, Microwave-Assisted LIBS (MA-LIBS) was developed and characterized. In MA-LIBS, a microwave field extends the emission lifetime of the plasma and stronger time integrated signal is obtained. Experimental results showed sensitivity improvement (more than 20-fold) and extension of the analytical range (down to a few tens of ppm) for the detection of copper traces in soil samples. Finally, laser spectroscopy systems that can perform both LIBS and Raman analysis were developed. Such systems provide two types of complimentary information (-) elemental composition from LIBS and structural information from Raman. Two novel approaches were reported for the first time for LIBS-Raman sensor fusion: (i) an Ultra-Violet system which combines Resonant Raman signal enhancement and high ablation efficiency from UV radiation, and (ii) a Ti:Sapphire laser based NIR system which reduces the fluorescence interference in Raman and takes advantage of femtosecond ablation for LIBS.
Show less - Date Issued
- 2013
- Identifier
- CFE0005105, ucf:50729
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005105
- Title
- Third Order Nonlinearity of Organic Molecules.
- Creator
-
Hu, Honghua, Vanstryland, Eric, Hagan, David, Zeldovich, Boris, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
The main goal of this dissertation is to investigate the third-order nonlinearity of organic molecules. This topic contains two aspects: two-photon absorption (2PA) and nonlinear refraction (NLR), which are associated with the imaginary and real part of the third-order nonlinearity (?(3)) of the material, respectively. With the optical properties tailored through meticulous molecular structure engineering, organic molecules are promising candidates to exhibit large third-order nonlinearities....
Show moreThe main goal of this dissertation is to investigate the third-order nonlinearity of organic molecules. This topic contains two aspects: two-photon absorption (2PA) and nonlinear refraction (NLR), which are associated with the imaginary and real part of the third-order nonlinearity (?(3)) of the material, respectively. With the optical properties tailored through meticulous molecular structure engineering, organic molecules are promising candidates to exhibit large third-order nonlinearities. Both linear (absorption, fluorescence, fluorescence excitation anisotropy) and nonlinear (Z-scan, two-photon fluorescence, pump-probe) techniques are described and utilized to fully characterize the spectroscopic properties of organic molecules in solution or solid-state form. These properties are then analyzed by quantum chemical calculations or other specific quantum mechanical model to understand the origins of the nonlinearities as well as the correlations with their unique molecular structural features. These calculations are performed by collaborators. The 2PA study of organic materials is focused on the structure-2PA property relationships of four groups of dyes with specific molecular design approaches as the following: (1) Acceptor-?-Acceptor dyes for large 2PA cross section, (2) Donor-?-Acceptor dyes for strong solvatochromic effects upon the 2PA spectra, (3) Near-infrared polymethine dyes for a symmetry breaking effect, (4) Sulfur-squaraines vs. oxygen-squaraines to study the role of sulfur atom replacement upon their 2PA spectra. Additionally, the 2PA spectrum of a solid-state single crystal made from a Donor-?-Acceptor dye is measured, and the anisotropic nonlinearity is studied with respect to different incident polarizations. These studies further advance our understanding towards an ultimate goal to a predictive capability for the 2PA properties of organic molecules. The NLR study on molecules is focused on the temporal and spectral dispersion of the nonlinear refraction index, n2, of the molecules. Complicated physical mechanisms, originating from either electronic transitions or nuclei movement, are introduced in general. By adopting a prism compressor / stretcher to control the pulsewidth, an evolution of n2 with respect to incident pulsewidth is measured on a simple inorganic molecule (-)carbon disulfide (CS2) in neat liquid at 700 nm and 1064 nm to demonstrate the pulsewidth dependent nonlinear refraction. The n2 spectra of CS2 and certain organic molecules are measured by femtosecond pulses, which are then analyzed by a 3-level model, a simplified (")Sum-over-states(") quantum mechanical model. These studies can serve as a precursor for future NLR investigations.
Show less - Date Issued
- 2012
- Identifier
- CFE0004387, ucf:49400
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004387
- Title
- Nonlinear Optical Response of Simple Molecules and Two-Photon Semiconductor Lasers.
- Creator
-
Reichert, Matthew, Vanstryland, Eric, Hagan, David, Likamwa, Patrick, Peale, Robert, University of Central Florida
- Abstract / Description
-
This dissertation investigates two long standing issues in nonlinear optics: complete characterization of the ultrafast dynamics of simple molecules, and the potential of a two-photon laser using a bulk semiconductor gain medium. Within the Born-Oppenheimer approximation, nonlinear refraction in molecular liquids and gases can arise from both bound-electronic and nuclear origins. Knowledge of the magnitudes, temporal dynamics, polarization and spectral dependences of each of these mechanisms...
Show moreThis dissertation investigates two long standing issues in nonlinear optics: complete characterization of the ultrafast dynamics of simple molecules, and the potential of a two-photon laser using a bulk semiconductor gain medium. Within the Born-Oppenheimer approximation, nonlinear refraction in molecular liquids and gases can arise from both bound-electronic and nuclear origins. Knowledge of the magnitudes, temporal dynamics, polarization and spectral dependences of each of these mechanisms is important for many applications including filamentation, white-light continuum generation, all-optical switching, and nonlinear spectroscopy. In this work the nonlinear dynamics of molecules are investigated in both liquid and gas phase with the recently developed beam deflection technique which measures nonlinear refraction directly in the time domain. Thanks to the utility of the beam deflection technique we are able to completely determine the third-order response function of one of the most important molecular liquids in nonlinear optics, carbon disulfide. This allows the prediction of essentially any nonlinear refraction or two-photon absorption experiment on CS2. Measurements conducted on air (N2 and O2) and gaseous CS2 reveal coherent rotational revivals in the degree of alignment of the ensemble at a period that depends on its moment of inertia. This allows measurement of the rotational and centrifugal distortion constants of the isolated molecules. Additionally, the rotational contribution to the beam deflection measurement can be eliminated thanks to the particular polarization dependence of the mechanism. At a specific polarization, the dominant remaining contribution is due to the bound-electrons. Thus both the bound-electronic nonlinear refractive index of air, and second hyperpolarizability of isolated CS2 molecules, are measured directly. The later agrees well with liquid CS2 measurements, where local field effects are significant. The second major portion of this dissertation addresses the possibility of using bulk semiconductors as a two-photon gain medium. A two-photon laser has been a goal of nonlinear optics since shortly after the original laser's development. In this case, two-photons are emitted from a single electronic transition rather than only one. This processes is known as two-photon gain (2PG). Semiconductors have large two-photon absorption coefficients, which are enhanced by ~2 orders of magnitude when using photons of very different energies, e.g., ??_a?10??_b. This enhancement should translate into large 2PG coefficients as well, given the inverse relationship between absorption and gain. Here, we experimentally demonstrate both degenerate and nondegenerate 2PG in optically excited bulk GaAs via pump-probe experiments. This constitutes, to my knowledge, the first report of nondegenerate two-photon gain. Competition between 2PG and competing processes, namely intervalence band and nondegenerate three-photon absorption (ND-3PA), in both cases are theoretically analyzed. Experimental measurements of ND-3PA agree with this analysis and show that it is enhanced much more than ND-2PG. It is found for both degenerate and nondegenerate photon pairs that the losses dominate the two-photon gain, preventing the possibility of a two-photon semiconductor laser.
Show less - Date Issued
- 2015
- Identifier
- CFE0005874, ucf:50871
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005874
- Title
- Ultrafast Mechanisms of Nonlinear Refraction and Two-photon Photochromism.
- Creator
-
Zhao, Peng, Hagan, David, Vanstryland, Eric, Christodoulides, Demetrios, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
Derived from a material's third-order nonlinearity, nonlinear refraction (NLR) occurs at any wavelength in any material, and may exhibit noninstantaneous dynamics depending on its physical origins. The main subject of this dissertation is to investigate the underlying mechanisms responsible for the NLR response in different phases of matter, e.g. liquids, gases, and semiconductors, by extensively using our recently developed ultrafast Beam Deflection (BD) technique. An additional subject...
Show moreDerived from a material's third-order nonlinearity, nonlinear refraction (NLR) occurs at any wavelength in any material, and may exhibit noninstantaneous dynamics depending on its physical origins. The main subject of this dissertation is to investigate the underlying mechanisms responsible for the NLR response in different phases of matter, e.g. liquids, gases, and semiconductors, by extensively using our recently developed ultrafast Beam Deflection (BD) technique. An additional subject includes the characterization of a novel two-photon photochromic molecule.In molecular liquids, the major nonlinear optical (NLO) response can be decomposed into a nearly instantaneous bound-electronic NLR (Kerr effect), originating from the real part the electronic second hyperpolarizability, ?, and noninstantaneous mechanisms due to nuclear motions. By adopting the methodology previously developed for carbon disulfide (CS2), we have measured the NLO response functions of 23 common organic solvents, providing a database of magnitudes and temporal dynamics of each mechanism, which can be used for predicting the outcomes of any other NLR related experiments such as Z-scan. Also, these results provide insight to relate solvent nonlinearities with their molecular structures as well as linear polarizability tensors. In the measurements of air and gaseous CS2, coherent Raman excitation of many rotational states manifests as revivals in the transient NLR, from which we identify N2, O2 and two isotopologues of CS2, and unambiguously determine the dephasing rate, and rotational and centrifugal constants of each constituent. Using the revival signal as a self-reference, ? is directly measured for CS2 molecules in gas phase, which coincides with the ? determined from liquid phase measurements when including the Lorentz-Lorenz local field correction. In semiconductors, the Kerr effect dominates the NLR in the sub-gap regime. Here, we primarily focus on investigating the dispersion of nondegenerate (ND) NLR, namely the refractive index change at frequency ?_a due to the presence of a beam at frequency ?_b. The magnitude and sign of the ND-NLR coefficient n_2 (?_a;?_b ) are determined for ZnO, ZnSe and CdS over a broad spectral range for different values of nondegeneracy, which closely follows our earlier predictions based on nonlinear Kramers-Kronig relations. In the extremely nondegenerate case, n_2 (?_a;?_b ) is positively enhanced near the two-photon absorption (2PA) edge, suggesting applications for nondegenerate all-optical switching. Additionally, n_2 (?_a;?_b ) exhibits a strong anomalous nonlinear dispersion within the ND-2PA spectral region, providing a large phase modulation of a femtosecond pulse with bandwidth centered near the zero-crossing frequency. Another subject of this dissertation is the characterization of a spiro-type two-photon photochromic molecule, in which F(&)#246;rster resonance energy transfer (FRET) is utilized to activate the ring-opening effect from a 2PA-donor chromophore. Evidence of energy transfer is observed via fluorescence measurements of the quantum yield, excitation spectra and anisotropy. The absorption and lifetime of the open form are measured in a dye-doped sol-gel matrix. Transient absorption measurements indicate both ring opening and closing occurs on a several picosecond time scale along with multiple transient photoproducts, from which a high FRET efficiency is measured in agreement with theoretical predictions. This efficient 2PA-FRET photochrome may be implemented into photonic devices such as optical memories. However, with a relatively small open-form absorption cross section and significant ring closing, the photochrome may not be viable for enhancing nonlinear absorption in applications such as optical limiting.
Show less - Date Issued
- 2016
- Identifier
- CFE0006517, ucf:51370
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006517
- Title
- Broad Bandwidth Optical Frequency Combs from Low Noise, High Repetition Rate Semiconductor Mode-Locked Lasers.
- Creator
-
Klee, Anthony, Delfyett, Peter, Vanstryland, Eric, Schulzgen, Axel, DeSalvo, Richard, University of Central Florida
- Abstract / Description
-
Mode-locked lasers have numerous applications in the areas of communications, spectroscopy, and frequency metrology. Harmonically mode-locked semiconductor lasers with external ring cavities offer a unique combination of benefits in that they can produce high repetition rate pulse trains with low timing jitter, achieve narrow axial mode linewidths, have the potential for entire monolithic integration on-chip, feature high wall-plug efficiency due to direct electrical pumping, and can be...
Show moreMode-locked lasers have numerous applications in the areas of communications, spectroscopy, and frequency metrology. Harmonically mode-locked semiconductor lasers with external ring cavities offer a unique combination of benefits in that they can produce high repetition rate pulse trains with low timing jitter, achieve narrow axial mode linewidths, have the potential for entire monolithic integration on-chip, feature high wall-plug efficiency due to direct electrical pumping, and can be engineered to operate in different wavelength bands of interest. However, lasers based on InP/InGaAsP quantum well devices which operate in the important telecom C-band have thus far been relatively limited in bandwidth as compared to competing platforms. Broad bandwidth is critical for increasing information carrying capacity and enabling femtosecond pulse production for coherent continuum generation in offset frequency stabilization. The goal of the work in this dissertation is to maximize the bandwidth of semiconductor lasers, bringing them closer to reaching their full potential as all-purpose sources.Dispersion in the laser cavity is a primary limiter of the achievable bandwidth in the laser architectures covered in this dissertation. In the first part of this dissertation, an accurate self-referenced technique based on multi-heterodyne detection is developed for measuring the spectral phase of a mode-locked laser. This technique is used to characterize the dispersion in several semiconductor laser architectures. In the second part, this knowledge is applied to reduce the dispersion in a laser cavity using a programmable pulse shaper, and thus increase the laser's spectral bandwidth. We demonstrate a 10 GHz frequency comb with bandwidth spanning 5 THz, representing a twofold improvement over the previously achievable bandwidth. Finally, this laser is converted to a stand-alone system by reconfiguring it as a coupled opto-electronic oscillator and a novel stabilization scheme is presented.
Show less - Date Issued
- 2016
- Identifier
- CFE0006129, ucf:51184
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006129
- Title
- Injection Locking of Semiconductor Mode-Locked Lasers for Long-Term Stability of Widely Tunable Frequency Combs.
- Creator
-
Williams, Charles, Delfyett, Peter, Hagan, David, Likamwa, Patrick, Vanstryland, Eric, DeSalvo, Richard, University of Central Florida
- Abstract / Description
-
Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Single frequency injection locking generates widely-spaced and tunable frequency combs from these harmonically mode-locked lasers, while stabilizing the optical frequencies. The output is stabilized long-term with the help of a feedback loop utilizing either a novel technique based on Pound-Drever-Hall...
Show moreHarmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Single frequency injection locking generates widely-spaced and tunable frequency combs from these harmonically mode-locked lasers, while stabilizing the optical frequencies. The output is stabilized long-term with the help of a feedback loop utilizing either a novel technique based on Pound-Drever-Hall stabilization or by polarization spectroscopy. Error signals of both techniques are simulated and compared to experimentally obtained signals. Frequency combs spaced by 2.5 GHz and ~10 GHz are generated, with demonstrated optical sidemode suppression of unwanted modes of 36 dB, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of actively harmonically mode-locked lasers, the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEOs), is also demonstrated and characterized extensively.
Show less - Date Issued
- 2013
- Identifier
- CFE0004774, ucf:49805
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004774
- Title
- Cascaded plasmon resonances for enhanced nonlinear optical response.
- Creator
-
Toroghi, Seyfollah, Kik, Pieter, Vanstryland, Eric, Kuebler, Stephen, Hagan, David, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
The continued development of integrated photonic devices requires low-power, small volume all-optical modulators. The weak nonlinear optical response of conventional optical materials requires the use of high intensities and large interaction volumes in order to achieve significant light modulation, hindering the miniaturization of all-optical switches and the development of lightweight transmission optics with nonlinear optical response. These challenges may be addressed using plasmonic...
Show moreThe continued development of integrated photonic devices requires low-power, small volume all-optical modulators. The weak nonlinear optical response of conventional optical materials requires the use of high intensities and large interaction volumes in order to achieve significant light modulation, hindering the miniaturization of all-optical switches and the development of lightweight transmission optics with nonlinear optical response. These challenges may be addressed using plasmonic nanostructures due to their unique ability to confine and enhance electric fields in sub-wavelength volumes. The ultrafast nonlinear response of free electrons in such plasmonic structures and the fast thermal nonlinear optical response of metal nanoparticles, as well as the plasmon enhanced nonlinear Kerr-type response of the host material surrounding the nanostructures could allow ultrafast all-optical modulation with low modulation energy. In this thesis, we investigate the linear and nonlinear optical response of engineered effective media containing coupled metallic nanoparticles. The fundamental interactions in systems containing coupled nanoparticles with size, shape, and composition dissimilarity, are evaluated analytically and numerically, and it is demonstrated that under certain conditions the achieved field enhancement factors can exceed the single-particle result by orders of magnitude in a process called cascaded plasmon resonance. It is demonstrated that these conditions can be met in systems containing coupled nanospheres, and in systems containing non-spherical metal nanoparticles that are compatible with common top-down nanofabrication methods such as electron beam lithography and nano-imprint lithography. We show that metamaterials based on such cascaded plasmon resonance structures can produce enhanced nonlinear optical refraction and absorption compared to that of conventional plasmonic nanostructures. Finally, it is demonstrated that the thermal nonlinear optical response of metal nanoparticles can be enhanced in carefully engineered heterogeneous nanoparticle clusters, potentially enabling strong and fast thermal nonlinear optical response in system that can be produced in bulk through chemical synthesis.
Show less - Date Issued
- 2014
- Identifier
- CFE0005556, ucf:50272
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005556
- Title
- White Light Continuum for Broadband Nonlinear Spectroscopy.
- Creator
-
Ensley, Trenton, Hagan, David, Vanstryland, Eric, Zeldovich, Boris, Christodoulides, Demetrios, Schulte, Alfons, University of Central Florida
- Abstract / Description
-
Supercontinuum (SC) generation, oftentimes referred to as white-light continuum (WLC), has been a subject of interest for more than 40 years. From the first observation of WLC in condensed media in the early 1970s to the first observation of WLC in gases in the mid-1980s, much work has been devoted to developing a framework for understanding the complex nature of this phenomenon as well as discovering its utility in various applications. The main effort of this dissertation is to develop a...
Show moreSupercontinuum (SC) generation, oftentimes referred to as white-light continuum (WLC), has been a subject of interest for more than 40 years. From the first observation of WLC in condensed media in the early 1970s to the first observation of WLC in gases in the mid-1980s, much work has been devoted to developing a framework for understanding the complex nature of this phenomenon as well as discovering its utility in various applications. The main effort of this dissertation is to develop a WLC for the purpose of broadband nonlinear spectroscopy and use it in spectroscopic measurements. The ability to generate a high-quality, high-spectral-irradiance source of radiation confined in a single beam that spans the visible and near-infrared spectral regimes has great utility for nonlinear measurement methods such as the Z-scan technique. Using a broadband WLC instead of conventional tunable sources of radiation such as optical parametric generators/amplifiers has been shown to increase the efficiency of such measurements by nearly an order of magnitude. Although WLC generation has many complex processes involved, and complete models of the process involve highly complex numerical modeling, simple models can still guide us in the optimization of systems for WLC generation. In this dissertation the effects of two key mechanisms behind WLC generation in gaseous media are explored: self-phase modulation (SPM) and ionization leading to plasma production. The effects of SPM are largely dependent upon the third-order nonlinear refractive index, n2, of the gaseous medium whereas the effects of plasma production are dependent upon many parameters including the initial number density, ionization potential/energy, and the rate of ionization production. It is found that in order to generate a stable WLC suitable for nonlinear spectroscopy, the phase contributions from SPM and plasma production should be nearly equal. This guided our experiments in inert gases using mJ level, 150 fs-FWHM (full-width at half-maximum) pulses at 780 nm as well as 40 fs-FWHM pulses primarily at 1800 nm to create a stable, high-spectral-irradiance WLC. The generated WLC is shown to have sufficient spectral energy and spatial quality suitable for nonlinear spectroscopic measurements. In addition to extending the WLC bandwidth by using a long wavelength (1800 nm) pump source, it is found that by using a secondary weak seed pulse with a peak irradiance three orders of magnitude less than the main pulse, the spectral energy density is enhanced by more than a factor of 3 in Krypton gas for a WLC spectrum that spans over 2 octaves. Numerical simulations are presented which qualitatively describe the experimental results. The spectral enhancement of the WLC by seeding is also demonstrated for other inert gases and condensed media. Other efforts described in this dissertation include the development of the Dual-Arm Z-scan technique and its extension to measuring thin film nonlinearities in the presence of large substrate signals as well as predicting the n2 spectra of organic molecules (where we can approximate their behavior as if they were centrosymmetric) from knowledge of the one-photon and two-photon absorption spectra using a simplified sum-over-states quantum perturbative model by utilizing a quasi 3-level and quasi 4-level system.
Show less - Date Issued
- 2015
- Identifier
- CFE0005608, ucf:50264
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005608
- Title
- Two-photon absorption in bulk semiconductors and quantum well structures and its applications.
- Creator
-
Pattanaik, Himansu, Vanstryland, Eric, Hagan, David, Delfyett, Peter, Schoenfeld, Winston, Peale, Robert, University of Central Florida
- Abstract / Description
-
The purpose of this dissertation is to provide a study and possible applications of two-photon absorption (2PA), in direct-gap semiconductors and quantum-well (QW) semiconductor structures. One application uses extremely nondegenerate (END) 2PA, for mid-infrared (mid-IR) detection in uncooled semiconductors. The use of END, where the two photons have very different energies gives strong enhancement comapared to degenerate 2PA. This END-2PA enhanced detection is also applied to mid-IR imaging...
Show moreThe purpose of this dissertation is to provide a study and possible applications of two-photon absorption (2PA), in direct-gap semiconductors and quantum-well (QW) semiconductor structures. One application uses extremely nondegenerate (END) 2PA, for mid-infrared (mid-IR) detection in uncooled semiconductors. The use of END, where the two photons have very different energies gives strong enhancement comapared to degenerate 2PA. This END-2PA enhanced detection is also applied to mid-IR imaging and light detection and ranging (LIDAR) in uncooled direct-gap photodiodes. A theoretical study of degenerate 2PA (D-2PA) in quantum wells, QWs, is presented, along with a new theory of ND 2PA in QWs is developed. Pulsed mid-IR detection of femtosecond pulses is investigated in two different semiconductor p-i-n photodiodes (GaAs and GaN). With the smaller gap materials having larger ND-2PA, it is observed that they have better sensitivity to mid-IR detection, but unwanted background from D-2PA outweighs this advantage. A comparison of responsivity and signal-to-background ratio for GaAs and GaN in END-2PA based detection is presented. END-2PA enhancement is utilized for CW IR detection in uncooled GaAs and GaN p-i-n photodiodes. The pulsed mid-IR detection experiments are further extended to perform mid-IR imaging in uncooled GaN p-i-n photodetectors. A 3-D automated scanning gated imaging system is developed to obtain 3-D mid-IR images of various objects. The gated imaging system allows simultaneous 3-D and 2-D imaging of objects. The 3-D gated imaging system described in the dissertation could be used for examination of buried structures (microchannels, defects etc.) or laser written volumetric structures and could also be suitable for in-vivo imaging applications in biology in the mid-IR spectral region. As an example, 3-D imaging of buried semiconductor structures is presented.A theoretical study of D-2PA of QWs for transverse electric (TE) and transverse magnetic (TM) fields is carried out and an analytical expression for the D-2PA coefficient in QWs using second-order perturbation theory is derived. A theory for ND-2PA in QW semiconductor using second-order perturbation theory is developed for the first time and an analytical expression for the ND-2PA coefficient for TE, TM, and the mixed case of TE and TM is derived. The shape of the 2PA curve for the D-2PA and ND-2PA for QWs in the TE case is similar to that of bulk semiconductors. As governed by the selection rules both the D-2PA and ND-2PA curves for the TE case does not show a step-like signature for the density of states of the QWs whereas 2PA curve for the TM case shows such step like sharp features. The ND-2PA coefficient for TE, TM, and the mixed case is compared with that obtained for bulk semiconductors. Large enhancement in ND-2PA of QW semiconductors for the TM case over bulk semiconductors is predicted.
Show less - Date Issued
- 2015
- Identifier
- CFE0005684, ucf:50164
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005684