Current Search: Wang, Yan (x)
-
-
Title
-
AN ANALOGY BASED COSTING SYSTEM FOR INJECTION MOLDS BASED UPON GEOMETRY SIMILARITY WITH WAVELETS.
-
Creator
-
Hillsman, Cyrus, Wang, Yan, University of Central Florida
-
Abstract / Description
-
The injection molding industry is large and diversified. However there is no universally accepted way to bid molds, despite the fact that the mold and related design comprise 50% of the total cost of an injection-molded part over its lifetime. This is due to both the structure of the industry and technical difficulties in developing an automated and practical cost estimation system. The technical challenges include lack of a common data format for both parts and molds; the comprehensive...
Show moreThe injection molding industry is large and diversified. However there is no universally accepted way to bid molds, despite the fact that the mold and related design comprise 50% of the total cost of an injection-molded part over its lifetime. This is due to both the structure of the industry and technical difficulties in developing an automated and practical cost estimation system. The technical challenges include lack of a common data format for both parts and molds; the comprehensive consideration of the data about a wide variety of mold types, designs, complexities, number of cavities and other factors that directly affect cost; and the robustness of estimation due to variations of build time and cost. In this research, we propose a new mold cost estimation approach based upon clustered features of parts. Geometry similarity is used to estimate the complexity of a mold from a 2D image with one orthographic view of the injection-molded part. Wavelet descriptors of boundaries as well as other inherent shape properties such as size, number of boundaries, etc. are used to describe the complexity of the part. Regression models are then built to predict costs. In addition to mean estimates, prediction intervals are calculated to support risk management.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002866, ucf:48041
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002866
-
-
Title
-
AN INTERVAL BASED APPROACH TO MODEL INPUT UNCERTAINTY IN DISCRETE-EVENT SIMULATION.
-
Creator
-
Batarseh, Ola, Wang, Yan, University of Central Florida
-
Abstract / Description
-
The objective of this research is to increase the robustness of discrete-event simulation (DES) when input uncertainties associated models and parameters are present. Input uncertainties in simulation have different sources, including lack of data, conflicting information and beliefs, lack of introspection, measurement errors, and lack of information about dependency. A reliable solution is obtained from a simulation mechanism that accounts for these uncertainty components in simulation. An...
Show moreThe objective of this research is to increase the robustness of discrete-event simulation (DES) when input uncertainties associated models and parameters are present. Input uncertainties in simulation have different sources, including lack of data, conflicting information and beliefs, lack of introspection, measurement errors, and lack of information about dependency. A reliable solution is obtained from a simulation mechanism that accounts for these uncertainty components in simulation. An interval-based simulation (IBS) mechanism based on imprecise probabilities is proposed, where the statistical distribution parameters in simulation are intervals instead of precise real numbers. This approach incorporates variability and uncertainty in systems. In this research, a standard procedure to estimate interval parameters of probability distributions is developed based on the measurement of simulation robustness. New mechanisms based on the inverse transform to generate interval random variates are proposed. A generic approach to specify the required replication length to achieve a desired level of robustness is derived. Furthermore, three simulation clock advancement approaches in the interval-based simulation are investigated. A library of Java-based IBS toolkits that simulates queueing systems is developed to demonstrate the new proposed reliable simulation. New interval statistics for interval data analysis are proposed to support decision making. To assess the performance of the IBS, we developed an interval-based metamodel for automated material handling systems, which generates interval performance measures that are more reliable and computationally more efficient than traditional DES simulation results.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003343, ucf:48441
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003343