Current Search: Wu, Shin-Tson (x)
View All Items
- Title
- LIQUID CRYSTAL MATERIALS AND TUNABLE DEVICES FOR OPTICAL COMMUNICATIONS.
- Creator
-
Du, Fang, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
In this dissertation, liquid crystal materials and devices are investigated in meeting the challenges for photonics and communications applications. The first part deals with polymer-stabilized liquid crystal (PSLC) materials and devices. Three polymer-stabilized liquid crystal systems are developed for optical communications. The second part reports the experimental investigation of a novel liquid-crystal-infiltrated photonic crystal fiber (PCF) and explores its applications in fiber-optic...
Show moreIn this dissertation, liquid crystal materials and devices are investigated in meeting the challenges for photonics and communications applications. The first part deals with polymer-stabilized liquid crystal (PSLC) materials and devices. Three polymer-stabilized liquid crystal systems are developed for optical communications. The second part reports the experimental investigation of a novel liquid-crystal-infiltrated photonic crystal fiber (PCF) and explores its applications in fiber-optic communications. The curing temperature is found to have significant effects on the PSLC performance. The electro-optic properties of nematic polymer network liquid crystal (PNLC) at different curing temperatures are investigated experimentally. At high curing temperature, a high contrast, low drive voltage, and small hysteresis PNLC is obtained as a result of the formed large LC micro-domains. With the help of curing temperature effect, it is able to develop PNLC based optical devices with highly desirable performances for optical communications. Such high performance is generally considered difficult to realize for a PNLC. In fact, the poor performance of PNLC, especially at long wavelengths, has hindered it from practical applications for optical communications for a long time. Therefore, the optimal curing temperature effect discovered in this thesis would enable PSLCs for practical industrial applications. Further more, high birefringence LCs play an important role for near infrared photonic devices. The isothiocyanato tolane liquid crystals exhibit a high birefringence and low viscosity. The high birefringence LC dramatically improves the PSLC contrast ratio while keeping a low drive voltage and fast response time. A free-space optical device by PNLC is experimentally demonstrated and its properties characterized. Most LC devices are polarization sensitive. To overcome this drawback, we have investigated the polymer-stabilized cholesteric LC (PSCLC). Combining the curing temperature effect and high birefringence LC, a polarization independent fiber-optical device is realized with over 30 dB attenuation, ~12 Vrms drive voltage and 11/28 milliseconds (rise/decay) response times. A polymer-stabilized twisted nematic LC (PS TNLC) is also proposed as a variable optical attenuator for optical communications. By using the polarization control system, the device is polarization independent. The polymer network in a PS TNLC not only results in a fast response time (0.9/9 milliseconds for rise/decay respectively), but also removes the backflow effect of TNLC which occurs in the high voltage regime.
Show less - Date Issued
- 2005
- Identifier
- CFE0000485, ucf:46361
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000485
- Title
- HIGH BIREFRINGENCE LIQUID CRYSTALS FOR OPTICAL COMMUNICATIONS.
- Creator
-
Parish, Amanda, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
High birefringence (n>0.4) nematic liquid crystals are particularly attractive for infrared applications because they enable a thinner cell gap to be used for achieving fast response time and improved diffraction efficiency. In this thesis, the mesomorphic and electro-optic properties of several new fluorinated isothiocyanate (NCS) terphenyl and phenyl tolane single compounds and mixtures are reported. The single compounds demonstrated n~0.35-0.52 in the visible spectral region at room...
Show moreHigh birefringence (n>0.4) nematic liquid crystals are particularly attractive for infrared applications because they enable a thinner cell gap to be used for achieving fast response time and improved diffraction efficiency. In this thesis, the mesomorphic and electro-optic properties of several new fluorinated isothiocyanate (NCS) terphenyl and phenyl tolane single compounds and mixtures are reported. The single compounds demonstrated n~0.35-0.52 in the visible spectral region at room temperature and exhibit relatively low viscosity. It was found that lateral fluorine substitutions and short alkyl chains eliminate smectic phase and lower the melting temperature of the single compounds. However, the consequence of using highly conjugated compounds to improve electro-optic properties is that the nematic phase is exhibited at high temperatures, over 100C, and therefore single compounds cannot be used for device applications. Therefore, several mixtures based on the terphenyl and phenyl-tolane compounds were formulated and evaluated. The purpose of mixtures is to find the optimum balance between electro-optic performance and the mesomorphic properties that determine the operating temperature range. It was found that mixture formulations greatly improved mesomorphic properties to produce nematic phase at or near room temperature and suppressed smectic phase to below 0C or eliminating completely. The analysis presented evaluates the benefits of lowering the operating temperature versus the consequence of degrading the electro-optic properties.
Show less - Date Issued
- 2007
- Identifier
- CFE0001882, ucf:47397
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001882
- Title
- MODELING OF LIQUID CRYSTAL DISPLAY AND PHOTONIC DEVICES.
- Creator
-
Ge, Zhibing, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
Liquid crystal (LC) materials have been widely applied in electro-optical devices, among which display is the most successful playground and numerous new applications in photonic areas (such as laser beam steering devices) are also emerging. To well guide the device design for optimum performance, accurate modeling is of prior and practical importance. Generally, the modeling of LC devices includes two parts in sequence: accurate LC molecule deformation extraction under external electric...
Show moreLiquid crystal (LC) materials have been widely applied in electro-optical devices, among which display is the most successful playground and numerous new applications in photonic areas (such as laser beam steering devices) are also emerging. To well guide the device design for optimum performance, accurate modeling is of prior and practical importance. Generally, the modeling of LC devices includes two parts in sequence: accurate LC molecule deformation extraction under external electric fields and optical calculation thereafter for the corresponding electro-optical behaviors. In this dissertation, first, hybrid finite element method and finite difference method are developed to minimize the free energy of the LC systems. In this part of study, with computer-aided derivation, the full forms of the LC free energy equations without any simplification can be obtained. Besides, Galerkin's method and weak form technique are further introduced to successfully degrade the high order nonlinear derivative terms associated with the free energy equations into ones that can be treated by first order interpolation functions for high accuracy. The developed modeling methods for LC deformation are further employed to study display structures, such as 2D and 3D in-plane switching LC cells, and provides accurate results. Followed is the optical modeling using extended Jones matrix and beam propagation method to calculate the electro-optical performances of different devices, according to their amplitude modulation property or diffractive one. The developed methods are further taken to assist the understanding, development, and optimization of the display and photonic devices. For their application in the display area, sunlight readable transflective LCDs for mobile devices and the related optical films for wide viewing angle are developed and studied. New cell structure using vertically aligned liquid crystal mode is developed and studied to obtain a single cell gap, high light efficiency transflective LCD that can be driven by one gray scale control circuit for both transmissive and reflective modes. And employing an internal wire grid polarizer into a fringe field switching cell produces a single cell gap and wide viewing angle display with workable reflective mode under merely two linear polarizers. To solve the limited viewing angle of conventional circular polarizers, Poincaré sphere as an effective tool is taken to trace and understand the polarization change of the incident light throughout the whole LC system. This study further guides the design of high performance circular polarizers that can consist of purely uniaxial plates or a combination of uniaxial and biaxial plates. The developed circular polarizers greatly enhance the viewing angle of transflective LCDs. Especially, the circular polarizer design using a biaxial film can even provide comparable wide viewing angle performance for the same vertically aligned cell as it is used between merely two linear polarizers, while using circular polarizers can greatly boost the display brightness. As for the beam steering device modeling, the developed LC deformation method is taken to accurately calculate the associated LC director distribution in the spatial light modulator, while beam propagation method and Fourier transformation technique are combined to calculate the near and far fields from such devices. The modeling helps to better understand the origins and formations of the disclinations associated with the fringe fields, which further result in reduced steering efficiency and output asymmetric polarizations between positive and negative diffractions. Optimization in both voltage profile and driving methods is conducted to well tune the LC deformation under strong fringe fields and improve the light efficiency.
Show less - Date Issued
- 2007
- Identifier
- CFE0001908, ucf:47481
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001908
- Title
- ANCHORING ENERGY AND PRETILT ANGLE EFFECTS ON LIQUID CRYSTAL RESPONSE TIME.
- Creator
-
Nie, Xiangyi, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
This dissertation covers some important topics on the liquid crystal-substrate surface effects, including theoretical derivations and confirming experimental results. The research work is expected to make important impacts on liquid crystal device designs and to open new doors for further research along these topics. In this dissertation, a novel high-electric-field technique is developed to characterize the anchoring energy of vertically-aligned liquid crystal cells. Both theoretical...
Show moreThis dissertation covers some important topics on the liquid crystal-substrate surface effects, including theoretical derivations and confirming experimental results. The research work is expected to make important impacts on liquid crystal device designs and to open new doors for further research along these topics. In this dissertation, a novel high-electric-field technique is developed to characterize the anchoring energy of vertically-aligned liquid crystal cells. Both theoretical analyses and confirming experimental results are presented. Vertically-aligned liquid crystal cells with buffed polyimide alignment layers are used to validate the measurement techniques. Based on the voltage-dependent transmittance of the liquid crystal cells, a linear fitting can be obtained, which leads to a precise determination of the anchoring energy. If some specific liquid crystal material parameters are known, then the traditional cell capacitance measurements can be avoided. Anchoring energy and cell gap effects on liquid crystal response time is theoretically analyzed and experimentally investigated. A novel theory on the liquid crystal dynamics is developed. In this part, two different theoretical approaches are discussed: one is surface dynamic equation method and the other is effective cell gap method. These two different approaches lead to consistent results, which are also confirmed by our experimental results. This work opens a new door for LCD industry to optimize liquid crystal response time, and it is especially critical for liquid crystal cells with thin cell gap, which is a promising approach for fast response time liquid crystal display. Pretilt angle effects on liquid crystal dynamics are analyzed theoretically and validated experimentally. Analytical expressions are derived to describe liquid crystal response time under nonzero pretilt angle conditions. The theoretical analysis is confirmed experimentally using vertically-aligned liquid crystal cells. These results quantitatively correlate pretilt angles with liquid crystal response time, which is important for optimizing liquid crystal response time.
Show less - Date Issued
- 2007
- Identifier
- CFE0001927, ucf:47440
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001927
- Title
- STUDIES OF LIQUID CRYSTAL RESPONSE TIME.
- Creator
-
Wang, Haiying, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
In this dissertation, the response time issue of the liquid crystal (LC) devices is investigated in meeting the challenges for display and photonic applications. The correlation between the LC director response time and the optical response time is derived theoretically and confirmed experimentally. A major contribution of this thesis is that, based on the small angle approximation, we derive rigorous analytical solutions for correlating the LC director response time to its consequent optical...
Show moreIn this dissertation, the response time issue of the liquid crystal (LC) devices is investigated in meeting the challenges for display and photonic applications. The correlation between the LC director response time and the optical response time is derived theoretically and confirmed experimentally. A major contribution of this thesis is that, based on the small angle approximation, we derive rigorous analytical solutions for correlating the LC director response time to its consequent optical response times (both rise and decay) of a vertical-aligned nematic LC cell. This work successfully fills the gap in the literature of LCD switching dynamics. An important effect related to response time, backflow is analyzed using a homogeneous LC cell in an infrared wavelength. The Leslie viscosity coefficients can hardly be found in the literature. A new effective approach to estimate the Leslie coefficients of LC mixtures based on MBBA data is proposed in this dissertation. Using this method, the Leslie coefficients of the LC material under study can be extracted based on its order parameters. The simulation results agree with the experimental data very well. This method provides a useful tool for analyzing the dynamic response including backflow. Cell gap is an important factor affecting the LC response time. Usually a thinner cell gap is chosen to achieve faster response time, since normally both rise and decay times are known to be proportional to d2. However, they are valid only in the region. In the large voltage region where , the optical decay time is independent of d. In this thesis, we find that between these two extremes the response time is basically linearly proportional to d. Our analytical derivation is validated by experimental results. Therefore, in the whole voltage region, the physical picture of the optical response time as a function of the cell gap is completed. This analysis is useful for understanding the grayscale switching behaviors of the LC phase modulators. In conclusion, this dissertation has solved some important issues related to LC optical response time and supplied valuable tools for scientists and engineers to numerically analyze the LC dynamics.
Show less - Date Issued
- 2005
- Identifier
- CFE0000796, ucf:46558
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000796
- Title
- REFRACTIVE INDICES OF LIQUID CRYSTALS AND THEIR APPLICATIONS IN DISPLAY AND PHOTONIC DEVICES.
- Creator
-
Li, Jun, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
Liquid crystals (LCs) are important materials for flat panel display and photonic devices. Most LC devices use electrical field-, magnetic field-, or temperature-induced refractive index change to modulate the incident light. Molecular constituents, wavelength, and temperature are the three primary factors determining the liquid crystal refractive indices: ne and no for the extraordinary and ordinary rays, respectively. In this dissertation, we derive several physical models for describing...
Show moreLiquid crystals (LCs) are important materials for flat panel display and photonic devices. Most LC devices use electrical field-, magnetic field-, or temperature-induced refractive index change to modulate the incident light. Molecular constituents, wavelength, and temperature are the three primary factors determining the liquid crystal refractive indices: ne and no for the extraordinary and ordinary rays, respectively. In this dissertation, we derive several physical models for describing the wavelength and temperature effects on liquid crystal refractive indices, average refractive index, and birefringence. Based on these models, we develop some high temperature gradient refractive index LC mixtures for photonic applications, such as thermal tunable liquid crystal photonic crystal fibers and thermal solitons. Liquid crystal refractive indices decrease as the wavelength increase. Both ne and no saturate in the infrared region. Wavelength effect on LC refractive indices is important for the design of direct-view displays. In Chapter 2, we derive the extended Cauchy models for describing the wavelength effect on liquid crystal refractive indices in the visible and infrared spectral regions based on the three-band model. The three-coefficient Cauchy model could be used for describing the refractive indices of liquid crystals with low, medium, and high birefringence, whereas the two-coefficient Cauchy model is more suitable for low birefringence liquid crystals. The critical value of the birefringence is deltan~0.12. Temperature is another important factor affecting the LC refractive indices. The thermal effect originated from the lamp of projection display would affect the performance of the employed liquid crystal. In Chapter 3, we derive the four-parameter and three-parameter parabolic models for describing the temperature effect on the LC refractive indices based on Vuks model and Haller equation. We validate the empirical Haller equation quantitatively. We also validate that the average refractive index of liquid crystal decreases linearly as the temperature increases. Liquid crystals exhibit a large thermal nonlinearity which is attractive for new photonic applications using photonic crystal fibers. We derive the physical models for describing the temperature gradient of the LC refractive indices, ne and no, based on the four-parameter model. We find that LC exhibits a crossover temperature To at which dno/dT is equal to zero. The physical models of the temperature gradient indicate that ne, the extraordinary refractive index, always decreases as the temperature increases since dne/dT is always negative, whereas no, the ordinary refractive index, decreases as the temperature increases when the temperature is lower than the crossover temperature (dno/dT<0 when the temperature is lower than To) and increases as the temperature increases when the temperature is higher than the crossover temperature (dno/dT>0 when the temperature is higher than To ). Measurements of LC refractive indices play an important role for validating the physical models and the device design. Liquid crystal is anisotropic and the incident linearly polarized light encounters two different refractive indices when the polarization is parallel or perpendicular to the optic axis. The measurement is more complicated than that for an isotropic medium. In Chapter 4, we use a multi-wavelength Abbe refractometer to measure the LC refractive indices in the visible light region. We measured the LC refractive indices at six wavelengths, lamda=450, 486, 546, 589, 633 and 656 nm by changing the filters. We use a circulating constant temperature bath to control the temperature of the sample. The temperature range is from 10 to 55 oC. The refractive index data measured include five low-birefringence liquid crystals, MLC-9200-000, MLC-9200-100, MLC-6608 (delta_epsilon=-4.2), MLC-6241-000, and UCF-280 (delta_epsilon=-4); four middle-birefringence liquid crystals, 5CB, 5PCH, E7, E48 and BL003; four high-birefringence liquid crystals, BL006, BL038, E44 and UCF-35, and two liquid crystals with high dno/dT at room temperature, UCF-1 and UCF-2. The refractive indices of E7 at two infrared wavelengths lamda=1.55 and 10.6 um are measured by the wedged-cell refractometer method. The UV absorption spectra of several liquid crystals, MLC-9200-000, MLC-9200-100, MLC-6608 and TL-216 are measured, too. In section 6.5, we also measure the refractive index of cured optical films of NOA65 and NOA81 using the multi-wavelength Abbe refractometer. In Chapter 5, we use the experimental data measured in Chapter 4 to validate the physical models we derived, the extended three-coefficient and two-coefficient Cauchy models, the four-parameter and three-parameter parabolic models. For the first time, we validate the Vuks model using the experimental data of liquid crystals directly. We also validate the empirical Haller equation for the LC birefringence delta_n and the linear equation for the LC average refractive index. The study of the LC refractive indices explores several new photonic applications for liquid crystals such as high temperature gradient liquid crystals, high thermal tunable liquid crystal photonic crystal fibers, the laser induced 2D+1 thermal solitons in nematic crystals, determination for the infrared refractive indices of liquid crystals, comparative study for refractive index between liquid crystals and photopolymers for polymer dispersed liquid crystal (PDLC) applications, and so on. In Chapter 6, we introduce these applications one by one. First, we formulate two novel liquid crystals, UCF-1 and UCF-2, with high dno/dT at room temperature. The dno/dT of UCF-1 is about 4X higher than that of 5CB at room temperature. Second, we infiltrate UCF-1 into the micro holes around the silica core of a section of three-rod core PCF and set up a highly thermal tunable liquid crystal photonic crystal fiber. The guided mode has an effective area of 440 Ým2 with an insertion loss of less than 0.5dB. The loss is mainly attributed to coupling losses between the index-guided section and the bandgap-guided section. The thermal tuning sensitivity of the spectral position of the bandgap was measured to be 27 nm/degree around room temperature, which is 4.6 times higher than that using the commercial E7 LC mixture operated at a temperature above 50 degree C. Third, the novel liquid crystals UCF-1 and UCF-2 are preferred to trigger the laser-induced thermal solitons in nematic liquid crystal confined in a capillary because of the high positive temperature gradient at room temperature. Fourth, we extrapolate the refractive index data measured at the visible light region to the near and far infrared region basing on the extended Cauchy model and four-parameter model. The extrapolation method is validated by the experimental data measured at the visible light and infrared light regions. Knowing the LC refractive indices at the infrared region is important for some photonic devices operated in this light region. Finally, we make a completely comparative study for refractive index between two photocurable polymers (NOA65 and NOA81) and two series of Merck liquid crystals, E-series (E44, E48, and E7) and BL-series (BL038, BL003 and BL006) in order to optimize the performance of polymer dispersed liquid crystals (PDLC). Among the LC materials we studied, BL038 and E48 are good candidates for making PDLC system incorporating NOA65. The BL038 PDLC cell shows a higher contrast ratio than the E48 cell because BL038 has a better matched ordinary refractive index, higher birefringence, and similar miscibility as compared to E48. Liquid crystals having a good miscibility with polymer, matched ordinary refractive index, and higher birefringence help to improve the PDLC contrast ratio for display applications. In Chapter 7, we give a general summary for the dissertation.
Show less - Date Issued
- 2005
- Identifier
- CFE0000808, ucf:46677
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000808
- Title
- WIDE VIEWING ANGLE LIQUID CRYSTAL DISPLAYS.
- Creator
-
Hong, Qi, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
In this dissertation, novel phase compensation technologies are applied to the designs of wide viewing angle and high transmittance liquid crystal displays. First, a design of wide viewing angle liquid crystal displays utilizing crossed linear polarizers is proposed. The designed multi-domain vertical-alignment liquid crystal display predicts superb contrast ratio over wide viewing angles. Next, to increase the bright state transmittance while maintain the high contrast. Finally, to reduce...
Show moreIn this dissertation, novel phase compensation technologies are applied to the designs of wide viewing angle and high transmittance liquid crystal displays. First, a design of wide viewing angle liquid crystal displays utilizing crossed linear polarizers is proposed. The designed multi-domain vertical-alignment liquid crystal display predicts superb contrast ratio over wide viewing angles. Next, to increase the bright state transmittance while maintain the high contrast. Finally, to reduce the cost and improve the applicability of the broadband and wide-view circular polarizer, the device configuration of the broadband and wide-view circular polarizer is significantly simplified by the application of biaxial compensation films. The produced states of polarization remain close to the ideal circular polarization over a wide range of incident angles within the visual spectrum. With this circular polarizer, the presented wide-view liquid crystal display predicts high contrast ratio as well as high and uniform transmittance over wide viewing angles within the visual spectrum. ratio, wide viewing angle circular polarizers are developed. The produced states of polarization are very close to the ideal circular state of polarization over a wide range of incident angles within the visual spectrum. This guarantees not only high contrast ratio but also high and uniform transmittance.
Show less - Date Issued
- 2006
- Identifier
- CFE0001378, ucf:46963
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001378
- Title
- CHOLESTERIC LIQUID CRYSTAL PHOTONIC CRYSTAL LASERS AND PHOTONIC DEVICES.
- Creator
-
Zhou, Ying, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser...
Show moreThis dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is tens of micrometers. Therefore lasing efficiency is quite limited and laser beam is highly divergent. To meet the challenges, we demonstrated several new methods to enhance the laser emission while reducing the beam divergence from a cholesteric liquid crystal laser. Enhanced laser emission is demonstrated by incorporating a single external CLC reflector as a polarization conserved reflector. Because the distributed feedback from the active layer is polarization selective, a CLC reflector preserves the original polarization of the reflected light and a further stimulated amplification ensues. As a result of virtually doubled feedback length, the output is dramatically enhanced in the same circular polarization state. Meanwhile, the laser beam divergence is dramatically reduced due to the increased cavity length from micrometer to millimeter scale. Enhanced laser emission is also demonstrated by the in-cell metallic reflector because the active layer is pumped twice. Unlike a CLC reflector, the output from a mirror-reflected CLC laser is linearly polarized as a result of coherent superposition of two orthogonal circular polarization states. The output linear polarization direction can be well controlled and fine tuned by varying the operating temperature and cell gap. Enhanced laser emission is further demonstrated in a hybrid photonic band edge - Fabry-Perot (FP) type structure by sandwiching the CLC active layer within a circular polarized resonator consisting of two CLC reflectors. The resonator generates multiple FP modes while preserving the PBE mode from the active layer. More importantly this band edge mode can be greatly enhanced by the external resonator under some conditions. Theoretical analysis is conducted based on 4×4 transfer matrix and scattering matrix and the results are consistent with our experimental observations. To make the CLC laser more compact and miniaturized, we have developed a flexible polymer laser using dye-doped cholesteric polymeric films. By stacking the mirror reflecting layer, the active layer and the CLC reflecting layer, enhanced laser emission was observed in opposite-handed circular polarization state, because of the light recycling effect. On the other hand, we use the stacked cholesteric liquid crystal films, or the cholesteric liquid crystals and polymer composite films to demonstrate the single film broadband circular polarizers, which are helpful for converting a randomly polarized light into linear polarization. New fabrication methods are proposed and the circular polarizers cover ~280 nm in the visible spectral range. Both theoretical simulation and experimental results are presented with a good match.
Show less - Date Issued
- 2008
- Identifier
- CFE0002198, ucf:47891
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002198
- Title
- FAST RESPONSE DUAL FREQUENCYLIQUID CRYSTAL MATERIALS.
- Creator
-
song, qiong, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
Dual frequency liquid crystal (DFLC) exhibits a positive dielectric anisotropy at low frequencies and negative dielectric anisotropy at high frequencies. The frequency where dielectric anisotropy is zero is called crossover frequency. DFLC can achieve fast rise time and fast decay time with the assistance of applied voltage. However, one drawback of DFLC is that it has dielectric heating effect when driven at a high frequency. Thus, the first part of this dissertation is to develop low...
Show moreDual frequency liquid crystal (DFLC) exhibits a positive dielectric anisotropy at low frequencies and negative dielectric anisotropy at high frequencies. The frequency where dielectric anisotropy is zero is called crossover frequency. DFLC can achieve fast rise time and fast decay time with the assistance of applied voltage. However, one drawback of DFLC is that it has dielectric heating effect when driven at a high frequency. Thus, the first part of this dissertation is to develop low crossover frequency DFLC materials. The dielectric relaxation and physical properties of some single- and double-ester compounds were investigated. Experimental results indicate that the double-ester compound exhibits a ~ 3 X lower dielectric relaxation frequencies and larger dielectric anisotropy than the single ester, but its viscosity is also higher. More generally, ten groups of dual frequency liquid crystals were compared in terms of dielectric relaxation frequency and dielectric anisotropy. The dielectric relaxation theory was discussed at last. To realize fast response time, high birefringence and low viscosity LC are required. From these two aspects, firstly four new high birefringence laterally difluoro phenyl tolane liquid crystals with a negative dielectric anisotropy were studied. These materials are used to enhance the birefringence of DFLC. They have a fairly small heat fusion enthalpy (~3000 cal/mol) which improves their solubility in a host. We dope 10 wt% of each compound into a commercial negative mixture N1 and measured their birefringence, viscoelastic constant and figure of merit. Birefringence varies very little among homologues while viscoelastic constant increases as alkyl chain length increases. Secondly, we studied the effects of six diluters for lowering the viscosity while stabilizing the vertical alignment (VA) of the laterally difluoro terphenyl host mixture at elevated temperatures. The pros and cons of each diluter are analyzed. These lateral difluoro terphenyls exhibit a high birefringence, fairly low viscosity, and modest dielectric anisotropy, but their molecular alignment in a VA cell is gradually deteriorated at elevated temperatures as their concentration increases. As a result, the device contrast ratio is decreased noticeably due to the light leakage through the crossed polarizers. Finally, liquid crystal doped with metallic nanoparticles, such as Pd, Ag, or Ag-Pd, which are protected with ligand molecules, such as nematic liquid crystal were studied. The metal nanoparticles doped LC exhibit a frequency modulation (FM) electro-optical (EO) response in the millisecond to submillisecond range together with the ordinary root-mean-square voltage response.
Show less - Date Issued
- 2010
- Identifier
- CFE0003152, ucf:48593
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003152
- Title
- FAST-RESPONSE LIQUID CRYSTAL DISPLAYS.
- Creator
-
jiao, meizi, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
After about five decades of extensive material research and device development, followed by massive investment in manufacturing technology, thin-film-transistor liquid-crystal-display (TFT-LCD) has finally become the dominant flat panel display technology. Nowadays, LCD performances, such as viewing angle, contrast ratio, and resolution, have reached acceptable levels. The remaining major technical challenges are response time, light efficiency, and sunlight readability. Fast response time is...
Show moreAfter about five decades of extensive material research and device development, followed by massive investment in manufacturing technology, thin-film-transistor liquid-crystal-display (TFT-LCD) has finally become the dominant flat panel display technology. Nowadays, LCD performances, such as viewing angle, contrast ratio, and resolution, have reached acceptable levels. The remaining major technical challenges are response time, light efficiency, and sunlight readability. Fast response time is desired to reduce motion blur and to enable field sequential color displays using red (R), green (G), and blue (B) LEDs (light emitting diodes) without noticeable color breakup. Sequential RGB colors would eliminate the commonly used spatial color filters which in turn enhances light efficiency and resolution density by ~ 3X. In this dissertation, several new approaches for achieving fast-response LCDs are explored. From material viewpoint, the most straightforward approach for achieving fast response time is to employ a thin cell gap with high birefringence and low viscosity liquid crystal (LC). We investigated the thin cell approach theoretically and experimentally. Voltage shielding effect and anchoring energy effect of alignment layers are found to play important roles on operating voltage and response time. Simulations are carried out to understand the underlying physics and confirm the experimental results quantitatively. Another approach to realize fast response time is to explore novel device configuration. Here, we proposed a dual fringing-field switching (DFFS) mode in which small LC domains are formed following the distribution of fringing fields. Therefore, it exhibits submillisecond response time without using thin cell or overdrive/undershoot voltage method. The response time of the DFFS mode is ~20X faster than a conventional vertical aligned LCD. In addition, high optical efficiency is achieved from the complementary top and bottom active LC domains. Two transmissive and one transflective LCDs using DFFS mode are conceived and their electro-optical properties investigated. A shortcoming of DFFS LCDs is their fabrication complexity. To keep the advantages of this fast-response mode while avoiding the requirement of double-TFTs and pixel registration, we modified the device structure to transflective LCD which uses a single TFT in each pixel and vertical aligned positive dielectric anisotropy LC. Two types of electrodes are considered: fringing-field switching (FFS) and in-plane switching (IPS). Besides fast response time and high transmittance, such a transflective LCD shows good sunlight readability. As nematic LC is gradually approaching to its limit in term of response time, polymer-stabilized blue phase (PSBP) LCD is emerging. It has potential to become next-generation display because of following revolutionary features: submillisecond response time, no need for alignment layer, good dark state and symmetric viewing angle, and cell gap insensitivity if IPS electrode is employed. In this dissertation, we studied the material-property correlation of Kerr effect-induced birefringence in nano-structured PSBP LC composites. Furthermore, a new device configuration of BP LCD with corrugated electrodes is proposed to solve two critical technical issues: high driving voltage and relatively low transmittance. The on-state voltage can be reduced from ~35 Vrms to ~10 Vrms which will enable TFT addressing, and the transmittance is improved from ~65% to ~85%. This new device configuration will accelerate the emergence of PSBP LCD. Wide view is another important requirement for a high-end display. Several new LCD configurations with negative A-plate and biaxial plate as phase compensation films are proposed to achieve wide view and broadband operation. The underlying working principles are studied and detailed display performances are included in this dissertation.
Show less - Date Issued
- 2010
- Identifier
- CFE0003435, ucf:48399
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003435
- Title
- FAST RESPONSE LIQUID CRYSTAL DEVICES.
- Creator
-
Wu, Yung-Hsun, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid...
Show moreLiquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. First, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial LC-based VOA. Second, we report a new device called axially-symmetric sheared polymer network liquid crystals (AS-SPNLC) and use it as LC devices. An axially-symmetric sheared polymer network liquid crystal has several attractive features: 1) it is polarization independent, 2) it has gradient phase change, and 3) its response time is fast. It can be used for polarization converter and divergent LC lens. In addition, a new method for simultaneously measuring the phase retardation and optic axis of a compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal. This simple technique can be used for simultaneously measuring the optic axis and phase retardations of both A- and C-plates. These compensation films have been used extensively in wide-view LCD industry. Therefore, this method will make an important impact to the LCD industry.
Show less - Date Issued
- 2006
- Identifier
- CFE0000980, ucf:46708
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000980
- Title
- TUNABLE LIQUID CRYSTAL PHOTONIC DEVICES.
- Creator
-
Fan, Yun-Hsing, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices and their fabrication methods. The devices presented include inhomogeneous polymer-dispersed liquid crystal (PDLC), polymer network liquid crystals (PNLC) and phase-separated composite film (PSCOF). Liquid crystal...
Show moreLiquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices and their fabrication methods. The devices presented include inhomogeneous polymer-dispersed liquid crystal (PDLC), polymer network liquid crystals (PNLC) and phase-separated composite film (PSCOF). Liquid crystal/polymer composites could exist in different forms depending on the fabrication conditions. In Chap. 3, we demonstrate a novel nanoscale PDLC device that has inhomogeneous droplet size distribution. In such a PDLC, the inhomogeneous droplet size distribution is obtained by exposing the LC/monomer with a non-uniform ultraviolet (UV) light. An electrically tunable-efficiency Fresnel lens is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. Different gradient profiles are obtained by using different photomasks. The nanoscale LC droplets are randomly distributed within the polymer matrix, so that the devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated a polymer-network liquid crystal (PNLC) using a rod-like monomer structure. Since the monomer concentration is only about 5%, the operating voltage is below 10 Vrms. The PNLC devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. In Chap. 3, another approach to lower the operating voltage is to use phase-separated composite film (PSCOF) where the LC and polymer are separated completely to form two layers. Without multi-domain formed in the LC cell, PSCOF is free from light scattering. Using PNLC and PSCOF, we also demonstrated LC blazed grating and Fresnel lens. The diffraction efficiency of these devices is continuously controlled by the electric field. Besides Fresnel lens, another critical need for imaging and display is to develop a system with continuously tunable focal length. A conventional zooming system controls the lens distance by mechanical motion along the optical axis. This mechanical zooming system is bulky and power hungry. To overcome the bulkiness, in Chap. 4 we developed an electrically tunable-focus flat LC spherical lens which consists of a spherical electrode imbedded in the top flat substrates while a planar electrode on the bottom substrate. The electric field from the spherical and planar electrodes induces a centrosymmetric gradient refractive index distribution within the LC layer which, in turn, causes the focusing effect. The focal length is tunable by the applied voltage. A tunable range from 0.6 m to infinity is achieved. Microlens array is an attractive device for optical communications and projection displays. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative or vise versa by the applied voltage. The top spherical electrode glass substrate is flattened with a polymer layer. The top convex substrate and LC layer work together like a zoom lens. By tuning the refractive index profile of the LC layer, the focal length of the microlens array can be switched from positive to negative or vise versa. The tunable LC microlens array would be a great replacement of a conventional microlens array which can be moved by mechanical elements. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. A special feature for LC/polymer composites is light scattering. The concept is analogous to the light scattering of clouds which consist of water droplets. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The PNLC can present anisotropic or isotropic light scattering behavior depending on the fabrication methods. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. The applications for display, light shutters, and switchable windows are emphasized. Although polymer networks help to reduce liquid crystal response time, they tend to scatter light. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. Light scattering in the near-infrared region is suppressed by optimizing the polymer concentration such that the network domain sizes are smaller than the wavelength. As a result, the PNLC response time is ~300X faster than that of a pure LC mixture except that the threshold voltage is increased by ~25X. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.
Show less - Date Issued
- 2005
- Identifier
- CFE0000545, ucf:46439
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000545
- Title
- HIGH BIREFRINGENCE AND LOW VISCOSITY LIQUID CRYSTALS.
- Creator
-
Wen, Chien-Hui, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
In this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual- frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ~0.4, and super high birefringence...
Show moreIn this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual- frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ~0.4, and super high birefringence isothiocyanato biphenyl-bistolane LC compounds with birefringence as high as ~0.7. Moreover, we have studied the photostability of several high birefringence LC compounds, mixtures, and LC alignment layers in order to determine the failure mechanism concerning the lifetime of LC devices. Although cyano and isothiocyanato LC compounds have similar absorption peaks, the isothiocyanato compounds are more stable than their cyano counterparts under the same illumination conditions. This ultraviolet-durable performance of isothiocyanato compounds originates from its molecular structure and the delocalized electron distribution. We have investigated the alignment performance of negative dielectric anisotropic LCs in homeotropic (vertical aligned, VA) LC cell. Some (2,3) laterally difluorinated biphenyls, terphenyls and tolanes are selected for this study. Due to the strong repulsive force between LCs and alignment layer, (2,3) laterally difluorinated terphenyls and tolanes do not align well in a VA cell resulting in a poor contrast ratio for the LC panel. We have developed a novel method to suppress the light leakage at dark state. By doping positive ´Õ or non-polar LC compounds/mixtures into the host negative LC mixtures, the repulsive force is reduced and the cell exhibits an excellent dark state. In addition, these dopants increase the birefringence and reduce the viscosity of the host LCs which leads to a faster response time. Dual-frequency liquid crystal exhibits a unique feature that its dielectric anisotropy changes from positive to negative when we increase the operating frequency. Submillisecond response time can be achieved by switching the frequency of a biased voltage, rather than switching the voltage at a given frequency. In this dissertation, we investigate the dielectric heating effect of dual-frequency LCs. Because the absorption peak of imaginary dielectric constant occurs at high frequency region (~ MHz), there is a heat generated when the LC cell is operated at a high frequency voltage. To measure the transient temperature change of the LC inside the cell, we have developed a non-contact method by utilizing the temperature-dependent birefringence property of the LC. Most importantly, we have formulated a new dual-frequency LC mixture which greatly reduces the dielectric heating effect while maintaining good physical properties. Another achievement in this thesis is that we have developed a polarization independent phase modulator by using a negative dielectric anisotropic LC gel. With ~20 % of polymer mixed in the LC host, the LC forms polymer network which, in turn, exerts a strong anchoring force to the neighboring LC molecules. As a result, the operating voltage increases but the response time is significantly decreased. On the phase shift point of view, our homeotropic LC gel has ~0.08 ànphase shift, which is 2X larger than the previous nano-sized polymer-dispersed liquid crystal droplets. Moreover, it is free from light scattering and requires a lower operating voltage. In conclusion, this dissertation provides solutions to improve the performance of LC devices both in photonics and displays applications. These will have great impacts in defense and display systems such as optical phased array, LCD TVs, projectors, and LCD monitors.
Show less - Date Issued
- 2006
- Identifier
- CFE0000970, ucf:46698
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000970
- Title
- POLARIZATION-INDEPENDENT LIQUID CRYSTAL DEVICES.
- Creator
-
Lin, Yi-Hsin, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
Liquid crystal (LC) devices can be operated as amplitude modulators and phase modulators. LC amplitude modulation is commonly used in liquid crystal display (LCD) while phase-only modulation is useful for laser beam steering, tunable grating, prism, lens, and other photonic devices. Most LC devices are polarization dependent and require at least one polarizer. As a result, the optical efficiency is low. To enhance display brightness, a power hungry backlight has to be used leading to a high...
Show moreLiquid crystal (LC) devices can be operated as amplitude modulators and phase modulators. LC amplitude modulation is commonly used in liquid crystal display (LCD) while phase-only modulation is useful for laser beam steering, tunable grating, prism, lens, and other photonic devices. Most LC devices are polarization dependent and require at least one polarizer. As a result, the optical efficiency is low. To enhance display brightness, a power hungry backlight has to be used leading to a high power consumption and short battery life. In a LC phase modulator, the polarization dependent property complicates the laser beam steering system. It is highly desirable to develop new operating mechanisms that are independent of the incident light polarization. In this dissertation, we have developed eight polarization-independent liquid crystal operation principles: three of them are aimed for displays and the other five are for phase modulators. For amplitude modulations, a new polymer-dispersed liquid crystal (PDLC) and two new dye-doped LC gels are polarizer-free by combining light scattering with dye-absorption effects. In phase modulation, we explore five device concepts: PDLC and Polymer-Stabilized Cholesteric Texture (PSCT), homeotropic LC gels, thin polymer film separated double-layered structure, and double-layered LC gels. In the low voltage regime, both PDLC and PSCT have a strong light scattering. However, as the voltage exceeds a certain level, the phase modulation is scattering-free and is independent of polarization. The homeotropic LC gels do not require any biased voltage and the response time is still fast. Although the remaining phase in these devices is small, they are still useful for micro-photonic device applications. To increase the phase change, thin polymer film separated double-layered structure is a solution. The orthogonal arrangement of top and bottom LC directors results in polarization independence. However, the response time is slow. Similarly, double-layered LC gels are not only polarization independent but also fast response due to the established polymer network.
Show less - Date Issued
- 2006
- Identifier
- CFE0000983, ucf:46706
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000983