Current Search: Wu, Yina (x)
-
-
Title
-
Understanding Crisis Communication and Mobility Resilience during Disasters from Social Media.
-
Creator
-
Roy, Kamol, Hasan, Samiul, Eluru, Naveen, Wu, Yina, University of Central Florida
-
Abstract / Description
-
Rapid communication during extreme events is one of the critical aspects of successful disaster management strategies. Due to their ubiquitous nature, social media platforms offer a unique opportunity for crisis communication. Moreover, social media usage on GPS enabled devices such as smartphones allow us to collect human movement data which can help understanding mobility during a disaster. This study leverages social media (Twitter) data to understand the effectiveness of social media...
Show moreRapid communication during extreme events is one of the critical aspects of successful disaster management strategies. Due to their ubiquitous nature, social media platforms offer a unique opportunity for crisis communication. Moreover, social media usage on GPS enabled devices such as smartphones allow us to collect human movement data which can help understanding mobility during a disaster. This study leverages social media (Twitter) data to understand the effectiveness of social media-based communication and the resilience of human mobility during a disaster. This thesis has two major contributions. First, about 52.5 million tweets related to hurricane Sandy are analyzed to assess the effectiveness of social media communication during disasters and identify the contributing factors leading to effective crisis communication strategies. Effectiveness of a social media user is defined as the ratio of attention gained over the number of tweets posted. A model is developed to explain more effective users based on several relevant features. Results indicate that during a disaster event, only few social media users become highly effective in gaining attention. In addition, effectiveness does not depend on the frequency of tweeting activity only; instead it depends on the number of followers and friends, user category, bot score (controlled by a human or a machine), and activity patterns (predictability of activity frequency). Second, to quantify the impacts of an extreme event to human movements, we introduce the concept of mobility resilience which is defined as the ability of a mobility infrastructure system to manage shocks and return to a steady state in response to an extreme event. We present a method to detect extreme events from geo-located movement data and to measure mobility resilience and loss of resilience due to those events. Applying this method, we measure resilience metrics from geo-located social media data for multiple types of disasters occurred all over the world. Quantifying mobility resilience may help us to assess the higher-order socio-economic impacts of extreme events and guide policies towards developing resilient infrastructures as well as a nation's overall disaster resilience.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007362, ucf:52090
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007362
-
-
Title
-
Investigation of factors contributing to fog-related single vehicle crashes.
-
Creator
-
Zhu, Jiazheng, Abdel-Aty, Mohamed, Hasan, Samiul, Wu, Yina, University of Central Florida
-
Abstract / Description
-
Fog-related crashes continue to be one of the most serious traffic safety problems in Florida. Based on the historical crash data, we found that single-vehicle crashes have the highest severity among all types of crashes under fog conditions. This study first analyzed the contributing factors of the fog-related single-vehicle crashes' (i.e., off road/rollover/other) severity in Florida from 2011 to 2014 using association rules mining. The results show that lane departure distracted driving,...
Show moreFog-related crashes continue to be one of the most serious traffic safety problems in Florida. Based on the historical crash data, we found that single-vehicle crashes have the highest severity among all types of crashes under fog conditions. This study first analyzed the contributing factors of the fog-related single-vehicle crashes' (i.e., off road/rollover/other) severity in Florida from 2011 to 2014 using association rules mining. The results show that lane departure distracted driving, wet road surface, and dark without road light are the main contributing factors to severe fog-related single vehicle crashes. Some suggested countermeasures were also provided to reduce the risk of fog-related single vehicle crashes. Since lane departure is one of the most important contributing factors to the single-vehicle crashes, an advanced warning system for lane departure under connected vehicle system was tested in driving simulation experiments. The system was designed based on the Vehicle-to-Infrastructure (V2I) with the concept of Augmented Reality (AR) using Head-Up Display (HUD). The results show that the warning with sound would reduce the lane departure and speed at curves, which would enhance the safety under fog conditions. In addition, the warning system was more effective for female drivers.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007118, ucf:51935
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007118
-
-
Title
-
Assessing Pedestrian Safety Conditions on Campus.
-
Creator
-
Morris, Morgan, Abdel-Aty, Mohamed, Hasan, Samiul, Wu, Yina, University of Central Florida
-
Abstract / Description
-
Pedestrian-related crashes are a significant safety issue in the United States and cause considerable amounts of deaths and economic cost. Pedestrian safety is an issue that must be uniquely evaluated in a college campus, where pedestrian volumes are dense. The objective of this research is to identify issues at specific locations around UCF and suggest solutions for improvement. To address this problem, a survey that identifies pedestrian safety issues and locations is distributed to UCF...
Show morePedestrian-related crashes are a significant safety issue in the United States and cause considerable amounts of deaths and economic cost. Pedestrian safety is an issue that must be uniquely evaluated in a college campus, where pedestrian volumes are dense. The objective of this research is to identify issues at specific locations around UCF and suggest solutions for improvement. To address this problem, a survey that identifies pedestrian safety issues and locations is distributed to UCF students and staff, and an evaluation of drivers reactions to pedestrian to vehicle (P2V) warning systems is studied through the use of a NADS MiniSim driving simulator. The survey asks participants to identify problem intersections around campus and other issues as pedestrians or bicyclists in the UCF area. Univariate probit models were created from the survey data to identify which factors contribute to pedestrian safety issues, based off the pedestrian's POV and the driver's POV. The models indicated that the more one is exposed to traffic via walking, biking, and driving to campus contributes to less safe experiences. The models also show that higher concerns with drivers not yielding, unsafety of crossing the intersections, and the number of locations to cross, indicate less safe pedestrian experiences from the point of view of pedestrians and drivers. A promising solution for pedestrian safety is Pedestrian to Vehicle (P2V) communication. This study simulates P2V connectivity using a NADS MiniSim Driving Simulator to study the effectiveness of the warning system on drivers. According to the results, the P2V warning system significantly reduced the number of crashes in the tested pre-crash scenarios by 88%. Particularly, the P2V warning system can help decrease the driver's reaction time as well as impact velocity if the crash were to occur.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007839, ucf:52818
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007839
-
-
Title
-
Improving Safety under Reduced Visibility Based on Multiple Countermeasures and Approaches including Connected Vehicles.
-
Creator
-
Wu, Yina, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
-
Abstract / Description
-
The effect of low visibility on both crash occurrence and severity is a major concern in the traffic safety field. Different approaches were utilized in this research to analyze the effects of fog on traffic safety and evaluate the effectiveness of different fog countermeasures. First, a (")Crash Risk Increase Indicator (CRII)(") was proposed to explore the differences of crash risk between fog and clear conditions. A binary logistic regression model was applied to link the increase of crash...
Show moreThe effect of low visibility on both crash occurrence and severity is a major concern in the traffic safety field. Different approaches were utilized in this research to analyze the effects of fog on traffic safety and evaluate the effectiveness of different fog countermeasures. First, a (")Crash Risk Increase Indicator (CRII)(") was proposed to explore the differences of crash risk between fog and clear conditions. A binary logistic regression model was applied to link the increase of crash risk with traffic flow characteristics. Second, a new algorithm was proposed to evaluate the rear-end crash risk under fog conditions. Logistic and negative binomial models were estimated in order to explore the relationship between the potential of rear-end crashes and the reduced visibility together with other traffic parameters. Moreover, the effectiveness of real-time fog warning systems was assessed by quantifying and characterizing drivers' speed adjustments through driving simulator experiments. A hierarchical assessment concept was suggested to explore the drivers' speed adjustment maneuvers. Two linear regression models and one hurdle beta regression model were estimated for the indexes. Also, another driving simulator experiment was conducted to explore the effectiveness of Connected-Vehicles (CV) crash warning systems on the drivers' awareness of the imminent situation ahead to take timely crash avoidance action(s). Finally, a micro-simulation experiment was also conducted to evaluate the safety benefits of a proposed Variable Speed limit (VSL) strategy and CV technologies. The proposed VSL strategy and CV technologies were implemented and tested for a freeway section through the micro-simulation software VISSIM. The results of the above mentioned studies showed the impact of reduced visibility on traffic safety, and the effectiveness of different fog countermeasures.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006928, ucf:51704
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006928
-
-
Title
-
A comparative analysis of different Dilemma Zone countermeasures at signalized intersections based on Cellular Automaton Model.
-
Creator
-
Wu, Yina, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
-
Abstract / Description
-
In the United States, intersections are among the most frequent locations for crashes. One of the major problems at signalized intersection is the dilemma zone, which is caused by false driver behavior during the yellow interval. This research evaluated driver behavior during the yellow interval at signalized intersections and compared different dilemma zone countermeasures. The study was conducted through four stages.First, the driver behavior during the yellow interval were collected and...
Show moreIn the United States, intersections are among the most frequent locations for crashes. One of the major problems at signalized intersection is the dilemma zone, which is caused by false driver behavior during the yellow interval. This research evaluated driver behavior during the yellow interval at signalized intersections and compared different dilemma zone countermeasures. The study was conducted through four stages.First, the driver behavior during the yellow interval were collected and analyzed. Eight variables, which are related to risky situations, are considered. The impact factors of drivers' stop/go decisions and the presence of the red-light running (RLR) violations were also analyzed. Second, based on the field data, a logistic model, which is a function of speed, distance to the stop line and the lead/follow position of the vehicle, was developed to predict drivers' stop/go decisions. Meanwhile, Cellular Automata (CA) models for the movement at the signalized intersection were developed. In this study, four different simulation scenarios were established, including the typical intersection signal, signal with flashing green phases, the intersection with pavement marking upstream of the approach, and the intersection with a new countermeasure: adding an auxiliary flashing indication next to the pavement marking. When vehicles are approaching the intersection with a speed lower than the speed limit of the intersection approach, the auxiliary flashing yellow indication will begin flashing before the yellow phase. If the vehicle that has not passed the pavement marking before the onset of the auxiliary flashing yellow indication and can see the flashing indication, the driver should choose to stop during the yellow interval. Otherwise, the driver should choose to go at the yellow duration. The CA model was employed to simulate the traffic flow, and the logistic model was applied as the stop/go decision rule. Dilemma situations that lead to rear-end crash risks and potential RLR risks were used to evaluate the different scenarios. According to the simulation results, the mean and standard deviation of the speed of the traffic flow play a significant role in rear-end crash risk situations, where a lower speed and standard deviation could lead to less rear-end risk situations at the same intersection. High difference in speed are more prone to cause rear-end crashes. With Respect to the RLR violations, the RLR risk analysis showed that the mean speed of the leading vehicle has important influence on the RLR risk in the typical intersection simulation scenarios as well as intersections with the flashing green phases' simulation scenario.Moreover, the findings indicated that the flashing green could not effectively reduce the risk probabilities. The pavement marking countermeasure had positive effects on reducing the risk probabilities if a platoon's mean speed was not under the speed used for designing the pavement marking. Otherwise, the risk probabilities for the intersection would not be reduced because of the increase in the RLR rate. The simulation results showed that the scenario with the pavement marking and an auxiliary indication countermeasure, which adds a flashing indication next to the pavement marking, had less risky situations than the other scenarios with the same speed distribution. These findings suggested the effectiveness of the pavement marking and an auxiliary indication countermeasure to reduce both rear-end collisions and RLR violations than other countermeasures.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005562, ucf:50291
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005562