Current Search: solid (x)
Pages
-
-
Title
-
REDUCTION OF VORTEX-DRIVEN OSCILLATIONS IN A SOLID ROCKET MOTOR COLD FLOW SIMULATION THROUGH ACTIVE CONTROL.
-
Creator
-
Ward, Jami, Leonessa, Alexander, University of Central Florida
-
Abstract / Description
-
Control of vortex-driven instabilities was demonstrated via a scaled-down, cold-flow simulation that modeled closed-end acoustics. When vortex shedding frequencies couple with the natural acoustic modes of a choked chamber, potentially damaging low-frequency instabilities may arise. Although passive solutions can be effective, an active control solution is preferable. An experiment was performed to demonstrate an active control scheme for the reduction of vortex-driven oscillations. A non...
Show moreControl of vortex-driven instabilities was demonstrated via a scaled-down, cold-flow simulation that modeled closed-end acoustics. When vortex shedding frequencies couple with the natural acoustic modes of a choked chamber, potentially damaging low-frequency instabilities may arise. Although passive solutions can be effective, an active control solution is preferable. An experiment was performed to demonstrate an active control scheme for the reduction of vortex-driven oscillations. A non-reacting experiment using a primary flow of air, where both the duct exit and inlet are choked, simulated the closed-end acoustics. Two plates, separated by 1.27 cm, produced the vortex shedding phenomenon at the chamber's first longitudinal mode. Two active control schemes, closed-loop and open-loop, were studied via a cold-flow simulation for validating the effects of reducing vortex shedding instabilities in the system. Actuation for both control schemes was produced by using a secondary injection method. The actuation system consisted of pulsing compressed air from a modifed, 2-stroke model airplane engine, controlled and powered by a DC motor. The use of open-loop only active control was not highly effective in reducing the amplitude of the first longitudinal acoustic mode, near 93 Hz, when the secondary injection was pulsed at the same modal frequency. This was due to the uncontrolled phasing of the secondary injection system. A Pulse Width Modulated (PWM) signal was added to the open-loop control scheme to correct for improper phasing of the secondary injection flow relative to the primary flow. This addition allowed the motor speed to be intermittently increased to a higher RPM before returning to the desired open-loop control state. This proved to be effective in reducing the pressure disturbance by approximately 46%. A closed-loop control scheme was then test for its effectiveness in controlling the phase of the secondary injection. Feedback of the system's state was determined by placing a dynamic pressure transducer near the chamber exit. Closed-loop active control, using the designed secondary injection system, was proven as an effective means of reducing the problematic instabilities. A 50% reduction in the FFT RMS amplitude was realized by utilizing a Proportional-Derivative controller to modify the phase of the secondary injection.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0000920, ucf:46728
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000920
-
-
Title
-
CHEMICAL AND BIOLOGICAL TREATMENT OF MATURE LANDFILLLEACHATE.
-
Creator
-
Batarseh, Eyad, Reinhart, Debra, University of Central Florida
-
Abstract / Description
-
This dissertation is about treatment of the nonbiodegradable organic content of landfill leachate by chemical oxidation combined with biological treatment. It is divided into three parts. In the first part, ferrate was compared to Fenton's reagent for the purpose of removing non-biodegradable organic compounds from mature leachate. Oxidation conditions (time, pH, and dose) were optimized to yield maximum organic removal using two leachate samples from 20 and 12-year old solid waste cells....
Show moreThis dissertation is about treatment of the nonbiodegradable organic content of landfill leachate by chemical oxidation combined with biological treatment. It is divided into three parts. In the first part, ferrate was compared to Fenton's reagent for the purpose of removing non-biodegradable organic compounds from mature leachate. Oxidation conditions (time, pH, and dose) were optimized to yield maximum organic removal using two leachate samples from 20 and 12-year old solid waste cells. Results from this research demonstrated that ferrate and Fenton's reagent had similar optimum pH ranges (3-5), but different organic removal capacities, ranging from 54 to 79 % of initial leachate organic contents. An advantage of ferrate was that it was relatively effective over a wide pH range (Fenton's reagent lost its reactivity outside optimum pH range). Advantages associated with Fenton's reagent include a higher organic removal capacity, production of more oxidized organic compounds (measured as chemical oxygen demand/dissolved organic carbon), and production of more biodegradable byproducts (measured as 5-day biochemical oxygen demand/chemical oxygen demand). Finally, both treatments were found to oxidize larger molecules (>1000 dalton) and produce smaller molecules, as indicated by an increase in smaller molecule contribution to organic carbon. In part two, effects of Fenton's reagent treatment on biodegradability of three landfill leachates collected from a Florida landfill were evaluated using biochemical oxygen demand (BOD), biochemical methane potential (BMP), and tertamethylammonium hydroxide (TMAH) thermochemolysis gas chromatography/mass spectrometry (GC/MS). The hypothesis was that Fenton's reagent will remove refractory compounds that inhibit biodegradation and will produce smaller, more biodegradable organic molecules which will result in an increase in BOD and BMP values. Both BOD and BMP results demonstrated that Fenton's reagent treatment did not convert mature leachate to biodegradable leachate, as indicated by a low BOD5 expressed as C /dissolved organic carbon (DOC) ratio of almost 0.15 in treated samples and a low net methane production / theoretical methane potential (less than 0.15). Ultimate BOD only slightly increased. However the first-order BOD reaction rate increased by more than five fold, suggesting that Fenton's reagent removed refractory and inhibitory compounds. BMP results demonstrated that the ratio of CO2/CH4 produced during anaerobic biodegradation did not increase in treated leachate (compared to untreated), indicating that small biodegradable organic acids produced by oxidation were removed by coagulation promoted by Fenton's reagent. Finally, the TMAH thermochemolysis results showed that several of the refractory and inhibitory compounds were detected fewer times in treated samples and that carboxylic acids did not appear in treated samples. In the third part of this dissertation the application of flushing/Fenton's reagent oxidation to produce sustainable solid waste cells was evaluated. A treatment similar to pump and treat process utilizing Fenton's reagent on-site treated leachate combined with in-situ aeration was proposed. Treated leachate would be recycled to the landfill cell flushes releasable nonbiodegradable carbon from the cell and oxidizes it externally. This technique was demonstrated to have treatment cost and time benefits over other alternatives for producing completely stable solid waste cells such as anaerobic flushing and biological and/or mechanical pretreatment of solid waste (used in the EU).
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001276, ucf:46912
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001276
-
-
Title
-
DESIGN OPTIMIZATION OF SOLID ROCKET MOTOR GRAINS FOR INTERNAL BALLISTIC PERFORMANCE.
-
Creator
-
Hainline, Roger, Nayfeh, Jamal, University of Central Florida
-
Abstract / Description
-
The work presented in this thesis deals with the application of optimization tools to the design of solid rocket motor grains per internal ballistic requirements. Research concentrated on the development of an optimization strategy capable of efficiently and consistently optimizing virtually an unlimited range of radial burning solid rocket motor grain geometries. Optimization tools were applied to the design process of solid rocket motor grains through an optimization framework developed to...
Show moreThe work presented in this thesis deals with the application of optimization tools to the design of solid rocket motor grains per internal ballistic requirements. Research concentrated on the development of an optimization strategy capable of efficiently and consistently optimizing virtually an unlimited range of radial burning solid rocket motor grain geometries. Optimization tools were applied to the design process of solid rocket motor grains through an optimization framework developed to interface optimization tools with the solid rocket motor design system. This was done within a programming architecture common to the grain design system, AML. This commonality in conjunction with the object-oriented dependency-tracking features of this programming architecture were used to reduce the computational time of the design optimization process. The optimization strategy developed for optimizing solid rocket motor grain geometries was called the internal ballistic optimization strategy. This strategy consists of a three stage optimization process; approximation, global optimization, and highfidelity optimization, and optimization methodologies employed include DOE, genetic algorithms, and the BFGS first-order gradient-based algorithm. This strategy was successfully applied to the design of three solid rocket motor grains of varying complexity. The contributions of this work was the development and application of an optimization strategy to the design process of solid rocket motor grains per internal ballistic requirements.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001236, ucf:46929
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001236
-
-
Title
-
Bridging the Gap between Application and Solid-State-Drives.
-
Creator
-
Zhou, Jian, Wang, Jun, Lin, Mingjie, Fan, Deliang, Ewetz, Rickard, Qi, GuoJun, University of Central Florida
-
Abstract / Description
-
Data storage is one of the important and often critical parts of the computing systemin terms of performance, cost, reliability, and energy.Numerous new memory technologies,such as NAND flash, phase change memory (PCM), magnetic RAM (STT-RAM) and Memristor,have emerged recently.Many of them have already entered the production system.Traditional storage optimization and caching algorithms are far from optimalbecause storage I/Os do not show simple locality.To provide optimal storage we need...
Show moreData storage is one of the important and often critical parts of the computing systemin terms of performance, cost, reliability, and energy.Numerous new memory technologies,such as NAND flash, phase change memory (PCM), magnetic RAM (STT-RAM) and Memristor,have emerged recently.Many of them have already entered the production system.Traditional storage optimization and caching algorithms are far from optimalbecause storage I/Os do not show simple locality.To provide optimal storage we need accurate predictions of I/O behavior.However, the workloads are increasingly dynamic and diverse,making the long and short time I/O prediction challenge.Because of the evolution of the storage technologiesand the increasing diversity of workloads,the storage software is becoming more and more complex.For example, Flash Translation Layer (FTL) is added for NAND-flash based Solid State Disks (NAND-SSDs).However, it introduces overhead such as address translation delay and garbage collection costs.There are many recent studies aim to address the overhead.Unfortunately, there is no one-size-fits-all solution due to the variety of workloads.Despite rapidly evolving in storage technologies,the increasing heterogeneity and diversity in machines and workloadscoupled with the continued data explosionexacerbate the gap between computing and storage speeds.In this dissertation, we improve the data storage performance from both top-down and bottom-up approach.First, we will investigate exposing the storage level parallelismso that applications can avoid I/O contentions and workloads skewwhen scheduling the jobs.Second, we will study how architecture aware task scheduling can improve the performance of the application when PCM based NVRAM are equipped.Third, we will develop an I/O correlation aware flash translation layer for NAND-flash based Solid State Disks.Fourth, we will build a DRAM-based correlation aware FTL emulator and study the performance in various filesystems.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007273, ucf:52188
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007273
-
-
Title
-
PHYSICOCHEMICAL AND THERMOCHEMICAL PROPERTIES OF SULFONATED POLY(ETHERETHERKETONE) ELECTROLYTE MEMBRANES.
-
Creator
-
Rhoden, Stephen, Diaz, Diego, University of Central Florida
-
Abstract / Description
-
Fuel cells have long been seen as an alternative to combustion powered and diesel powered engines and turbines. Production of energy via a fuel cell conversion method can generate up to 60% efficiency in comparison to 30% using a combustion powered engine, with low co-production of harmful side-products. The polymer electrolyte membrane (PEM) adapted for the fuel cell application is one of the main components that determines the overall efficiency. This research project was focused towards...
Show moreFuel cells have long been seen as an alternative to combustion powered and diesel powered engines and turbines. Production of energy via a fuel cell conversion method can generate up to 60% efficiency in comparison to 30% using a combustion powered engine, with low co-production of harmful side-products. The polymer electrolyte membrane (PEM) adapted for the fuel cell application is one of the main components that determines the overall efficiency. This research project was focused towards novel PEMs, such as sulfonated poly(etheretherketone) or SPEEK, which are cost-efficient and robust with high proton conductivities under hydrated conditions. The degree of sulfonation (DS) of a particular SPEEK polymer determines the proton conducting ability, as well as the long term durability. For SPEEK with high DS, the proton conduction is facile, but the mechanical stability of the polymer decreases almost proportionally. While low DS SPEEK does not have sufficient sulfonic acid density for fast proton conduction in the membrane, the membrane keeps its mechanical integrity under fully saturated conditions. The main purpose of this work was to address both issues encountered with SPEEK sulfonated to low and high DS. The addition of both solid acids and synthetic cross-links were studied to address the main downfalls of the respective SPEEK polymers. Optimization of these techniques led to increased understanding of PEMs and notably better electrochemical performance of these fuel cell materials. Oxo-acids such as tungsten (VI) oxide (WO3) and phosphotungstic acid (PTA) have been identified as candidate materials for creating SPEEK composite membranes. The chemistry of these oxo-acids is well known, with their use as highly acidic catalyst centers adopted for countless homogeneous and heterogeneous, organic and inorganic reactions. Uniform dispersion of WO3 hydrate in SPEEK solution was done by a sol-gel process in which the filler particles were grown in an ionomer solution, cast and allowed to dry. PTA composites were made by adding the solid acid directly to a solution of the ionomer and casting. The latter casting was allowed to dry and Cs+- exchanged to stabilize the PTA from dissolution and leaching from the membrane. The chemical and physical properties of these membranes were characterized and evaluated using mainly conductometric and X-ray photoelectron spectroscopic methods. Composite SPEEK/ PTA membranes showed a 50% decrease in PEM resistance under hydrogen fuel cell testing conditions, while SPEEK/ WO3 composites demonstrated a ten-fold increase in the membrane's in-plane proton conductivity. The chemical and physical properties of these composites changed with respect to their synthesis and fabrication procedures. This study will expound upon their relations.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003470, ucf:48976
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003470
-
-
Title
-
A Solid Phase Assay for Topoisomerase I interfacial Poisons and Catalytic Inhibitors.
-
Creator
-
Cyril Sagayaraj, Vidusha, Muller, Mark, Zhao, Jihe, Chakrabarti, Debopam, University of Central Florida
-
Abstract / Description
-
We report a mechanism based screening technique to rapidly identify eukaryotic topoisomerase I targeting agents. The method is based on genetic tagging of topoisomerase I to immobilize the enzyme on a solid surface in a microtiter well format. DNA is added to the wells and retained DNA is detected by Picogreen fluorescence. Compounds that result in an increase in Picogreen staining represent potential topoisomerase interfacial poisons while those that reduce fluorescence report catalytic...
Show moreWe report a mechanism based screening technique to rapidly identify eukaryotic topoisomerase I targeting agents. The method is based on genetic tagging of topoisomerase I to immobilize the enzyme on a solid surface in a microtiter well format. DNA is added to the wells and retained DNA is detected by Picogreen fluorescence. Compounds that result in an increase in Picogreen staining represent potential topoisomerase interfacial poisons while those that reduce fluorescence report catalytic inhibitors; therefore, the solid phase assay represents a 'bimodal' readout that reveals mechanisms of action. The method has been demonstrated to work with known interfacial poisons and catalytic inhibitors. In addition to specific topoisomerase targeting drugs, the method also weakly detects other relevant anticancer agents, such as potent DNA alkylating and intercalating compounds; therefore, topoisomerase I HTS represents an excellent tool for searching and identifying novel genotoxic agents. This method is rapid, robust, economical and scalable for large library screens.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004473, ucf:49304
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004473
-
-
Title
-
High Energy, High Average Power, Picosecond Laser Systems to Drive Few-Cycle OPCPA.
-
Creator
-
Vaupel, Andreas, Richardson, Martin, Delfyett, Peter, Schulzgen, Axel, Shivamoggi, Bhimsen, University of Central Florida
-
Abstract / Description
-
The invention of chirped-pulse amplification (CPA) in 1985 led to a tremendous increase in obtainable laser pulse peak intensities. Since then, several table-top, Ti:sapphire-based CPA systems exceeding the 100 TW-level with more than 10 W average power have been developed and several systems are now commercially available. Over the last decade, the complementary technology of optical parametric chirped-pulse amplification (OPCPA) has improved in its performance to a competitive level. OPCPA...
Show moreThe invention of chirped-pulse amplification (CPA) in 1985 led to a tremendous increase in obtainable laser pulse peak intensities. Since then, several table-top, Ti:sapphire-based CPA systems exceeding the 100 TW-level with more than 10 W average power have been developed and several systems are now commercially available. Over the last decade, the complementary technology of optical parametric chirped-pulse amplification (OPCPA) has improved in its performance to a competitive level. OPCPA allows direct amplification of an almost-octave spanning bandwidth supporting few-cycle pulse durations at center wavelengths ranging from the visible to the mid-IR. The current record in peak power from a table-top OPCPA is 16 TW and the current record average power is 22 W. High energy, few-cycle pulses with stabilized carrier-envelope phase (CEP) are desired for applications such as high-harmonic generation (HHG) enabling attoscience and the generation keV-photon bursts.This dissertation conceptually, numerically and experimentally describes essential aspects of few-cycle OPCPA, and the associated pump beam generation. The main part of the conducted research was directed towards the few-cycle OPCPA facility developed in the Laser Plasma Laboratory at CREOL (University of Central Florida, USA) termed HERACLES. This facility was designed to generate few-cycle pulses in the visible with mJ-level pulse energy, W-level average power and more than 100 GW peak power. Major parts of the implementation of the HERACLES facility are presented.The pump generation beam of the HERACLES system has been improved in terms of pulse energy, average power and stability over the last years. It is based on diode-pumped, solid-state amplifiers with picosecond duration and experimental investigations are presented in detail. A robust system has been implemented producing mJ-level pulse energies with ~100 ps pulse duration at kHz repetition rates. Scaling of this system to high power ((>)30 W) and high peak power (50-MW-level) as well as ultra-high pulse energy ((>)160 mJ) is presented. The latter investigation resulted in the design of an ultra-high energy system for OPCPA pumping. Following this, a new OPCPA facility was designed termed PhaSTHEUS, which is anticipated to reach ultra-high intensities.Another research effort was conducted at CELIA (Univerist(&)#233; de Bordeaux 1, France) and aimed towards a previously unexplored operational regime of OPCPA with ultra-high repetition rates (10 MHz) and high average power. A supercontinuum seed beam generation has been established with an output ranging from 1.3 to 1.9 ?m and few ps duration. The pump beam generation has been implemented based on rod-type fiber amplifiers producing more than 37 W average power and 370 kW peak power. The utility of this system as an OPCPA pump laser is presented along with the OPA design.The discussed systems operate in radically different regimes in terms of peak power, average power, and repetition rate. The anticipated OPCPA systems with few-cycle duration enable a wide range of novel experimental studies in attoscience, ultrafast materials processing, filamentation, LIBS and coherent control.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004952, ucf:49570
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004952
-
-
Title
-
Development of Polymer Derived SiAlCN Ceramic and Its Applications for High-Temperature Sensors.
-
Creator
-
Shao, Gang, An, Linan, Fang, Jiyu, Xu, Chengying, Chow, Lee, Deng, Weiwei, University of Central Florida
-
Abstract / Description
-
Polymer-derived ceramic (PDC) is the name for a class of materials synthesized by thermal decomposition of polymeric precursors which excellent thermomechanical properties, such as high thermal stability, high oxidation/corrosion resistance and high temperature multifunctionalities. Direct polymer-to-ceramic processing routes of PDCs allow easier fabrication into various components/devices with complex shapes/structures. Due to these unique properties, PDCs are considered as promising...
Show morePolymer-derived ceramic (PDC) is the name for a class of materials synthesized by thermal decomposition of polymeric precursors which excellent thermomechanical properties, such as high thermal stability, high oxidation/corrosion resistance and high temperature multifunctionalities. Direct polymer-to-ceramic processing routes of PDCs allow easier fabrication into various components/devices with complex shapes/structures. Due to these unique properties, PDCs are considered as promising candidates for making high-temperature sensors for harsh environment applications, including high temperatures, high stress, corrosive species and/or radiation. The SiAlCN ceramics were synthesized using the liquid precursor of polysilazane (HTT1800) and aluminum-sec-tri-butoxide (ASB) as starting materials and dicumyl peroxide (DP) as thermal initiator. The as-received SiAlCN ceramics have very good thermal-mechanical properties and no detectable weight loss and large scale crystallization. Solid-state NMR indicates that SiAlCN ceramics have the SiN4, SiO4, SiCN3, and AlN5/AlN6 units. Raman spectra reveals that SiAlCN ceramics contain (")free carbon(") phase with two specific Raman peaks of (")D(") band and (")G(") band at 1350 cm-1 and 1600 cm-1, respectively. The (")free carbon(") becomes more and more ordered with increasing the pyrolysis temperature. EPR results show that the defects in SiAlCN ceramics are carbon-related with a g-factor of 2.0016(&)#177;0.0006. Meanwhile, the defect concentration decreases with increasing sintered temperature, which is consistent with the results obtained from Raman spectra.Electric and dielectric properties of SiAlCN ceramics were characterized. The D.C. conductivity of SiAlCN ceramics increases with increasing sintered temperature and the activation energy is about 5.1 eV which higher than that of SiCN ceramics due to the presence of oxygen. The temperature dependent conductivity indicates that the conducting mechanism is a semiconducting band-gap model and follows the Arrhenius equation with two different sections of activation energy of 0.57 eVand 0.23 eV, respectively. The temperature dependent conductivity makes SiAlCN ceramics suit able for high temperature sensor applications. The dielectric properties were carried out by the Agilent 4298A LRC meter. The results reveal an increase in both dielectric constant and loss with increasing temperature (both pyrolysis and tested). Dielectric loss is dominated by the increasing of conductivity of SiAlCN ceramics at high sintered temperatures.SiAlCN ceramic sensors were fabricated by using the micro-machining method. High temperature wire bonding issues were solved by the integrity embedded method (IEM). It's found that the micro-machining method is a promising and cost-effective way to fabricate PDC high temperature sensors. Moreover IEM is a good method to solve the high temperature wire bonding problems with clear bonding interface between the SiAlCN sensor head and Pt wires. The Wheatstone bridge circuit is well designed by considering the resistance relationship between the matching resistor and the SiAlCN sensor resistor. It was found that the maximum sensitivity can be achieved when the resistance of matching resistor is equal to that of the SiAlCN sensor. The as-received SiAlCN ceramic sensor was tested up to 600 degree C with the relative output voltage changing from -3.932 V to 1.153 V. The results indicate that the relationship between output voltage and test temperature is nonlinear. The tested sensor output voltage agrees well with the simulated results. The durability test was carried out at 510 degree C for more than two hours. It was found that the output voltage remained constant for the first 30 min and then decreased gradually afterward by 0.02, 0.04 and 0.07 V for 1, 1.5 and 2 hours.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004937, ucf:49602
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004937
-
-
Title
-
Development of Molecularly Imprinted Polymers for Forensic Applications.
-
Creator
-
Martinez, Sara, Sigman, Michael, Bridge, Candice, Yestrebsky, Cherie, University of Central Florida
-
Abstract / Description
-
In some forensic disciplines various methods of extraction are used to perform analysis. Among these methods, solid phase extraction (SPE) and solid phase microextraction (SPME) are used in fields such as toxicology and explosives analysis. To enhance extraction efficiency in SPE and SPME, molecularly imprinted polymers (MIPs), which are designer polymers, can be more selective for the binding of an analyte or group of analytes that are similarly structured. Separation of analytes from...
Show moreIn some forensic disciplines various methods of extraction are used to perform analysis. Among these methods, solid phase extraction (SPE) and solid phase microextraction (SPME) are used in fields such as toxicology and explosives analysis. To enhance extraction efficiency in SPE and SPME, molecularly imprinted polymers (MIPs), which are designer polymers, can be more selective for the binding of an analyte or group of analytes that are similarly structured. Separation of analytes from complex mixtures is possible by utilizing these polymers. This may be especially useful in forensic applications where sample sizes may be small and composition may be complex. In this work, MIP solid phase microextraction fibers (MIP-SPME) were fabricated and caffeine was selectively sampled in the presence of theophylline and theobromine. Calibration studies were performed using the MIP-SPME to quantitate the concentration of caffeine in teas and coffees. MIP-SPME fibers were also prepared with 2,4-dinitrotoluene and deuterated 2,6-dinitrotoluene. Less selectivity was obtained for extraction of 2,4-DNT and 2,6-DNT in the presence of other DNT isomers. Fabricated blank polymers extracted analytes at the same response as templated polymers for both caffeine and DNT, despite expected results. MIP-SPE columns were also fabricated using deuterated 2,6-DNT to determine if changing the extraction procedure would increase extraction selectivity. Using different solvents in the extraction procedure changed the extraction performance efficiency of the MIPs due to the change in solvent polarity. All samples were analyzed using gas chromatography mass spectrometry.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006477, ucf:51423
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006477
-
-
Title
-
Implementation of Optical Interferometry and Spectral Reflectometry for High Fidelity Thin Film Measurements.
-
Creator
-
Arends-Rodriguez, Armando, Putnam, Shawn, Chow, Louis, Kauffman, Jeffrey, University of Central Florida
-
Abstract / Description
-
An in-house reflectometer/interferometer has been built to investigate the varying curvature and thickness profiles in the contact line region of air, acetone, iso-octane, ethanol, and water on various types of substrates. Light intensity measurements were obtained using our reflectometer/interferomter and then analyzed in MATLAB to produce thickness and curvature profiles. The apparatus is based on the principle of a reflectometer, consisting of different optical elements, probe, light...
Show moreAn in-house reflectometer/interferometer has been built to investigate the varying curvature and thickness profiles in the contact line region of air, acetone, iso-octane, ethanol, and water on various types of substrates. Light intensity measurements were obtained using our reflectometer/interferomter and then analyzed in MATLAB to produce thickness and curvature profiles. The apparatus is based on the principle of a reflectometer, consisting of different optical elements, probe, light source, and spectrometer. Our reflectometer/interferomter takes measurements in the UV-Vis-IR range (200nm-1000nm). This range is achieved by using a light source that has both a deuterium light (190nm-800nm), a tungsten halogen light (400nm-1100nm), a Metal-Core Printed Circuit Board LED (800nm-1000nm) and a Metal-Core Printed Circuit board cold white LED (400nm-800nm, 6500 K). A UV-VIS-IR spectrometer reads the light response after light is focused on the region of interest. Then a CCD camera (2448x2048) records the profiles for image analyzing interferometry. The readings were then validated based on results in the literature and studies with cylindrical lens samples.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006559, ucf:51328
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006559
-
-
Title
-
Beneficial Utilization of Municipal Solid Waste Incineration Ashes as Sustainable Road Construction Materials.
-
Creator
-
Tasneem, Kazi, Nam, Boo Hyun, Chopra, Manoj, Reinhart, Debra, Sohn, Yongho, University of Central Florida
-
Abstract / Description
-
Incineration of municipal solid waste (MSW) is common for energy recovery, and management of municipal solid waste incineration (MSWI) ashes has received a growing attention around the world. In the U.S., generation of MSW has increased up to 65% since 1980, to the current level of 251 million tons per year with 53.8% landfilled, 34.5% recycled and composted, and 11.7% incinerated with energy recovery. In the process of incineration, MSWI ash is being produced as byproducts; about 80 to 90%...
Show moreIncineration of municipal solid waste (MSW) is common for energy recovery, and management of municipal solid waste incineration (MSWI) ashes has received a growing attention around the world. In the U.S., generation of MSW has increased up to 65% since 1980, to the current level of 251 million tons per year with 53.8% landfilled, 34.5% recycled and composted, and 11.7% incinerated with energy recovery. In the process of incineration, MSWI ash is being produced as byproducts; about 80 to 90% of the MSWI ash is bottom ash (BA) and 10 to 20% is fly ash (FA) by weight. The current practice of the U.S. is to combine both BA and FA to meet the criteria to qualify as non-hazardous, and all combined ashes are disposed in landfills.European countries have utilized MSWI BA as beneficial construction materials by separating it from FA. The FA is mostly limited to landfill disposal as hazardous material due to its high content of toxic elements and salts. BA has been actively recycled in the areas of roadbed, asphalt paving, and concrete products in many of European and Asian countries. In those countries, recycling programs (including required physical properties and environmental criteria) of ash residue management have been developed so as to encourage and enforce the reuse of MSWI ashes instead of landfill disposal. Moreover, many studies have demonstrated the beneficial use of MSWI ashes as engineering materials with minimum environmental impacts.On the other hand, the U.S. has shown a lack of consistent and effective management plans, as well as environmental regulations for the use of MSWI ashes., Due to persistent uncertainty of engineering properties and inconsistency in the Federal and State regulations in the U.S., however, the recycling of the MSWI ashes has been hindered and they are mostly disposed in landfills.In this research work, current management practice, existing regulations, and environmental consequences of MSWI ashes utilization are comprehensively reviewed worldwide and nationwide with an emphasis of the potential area of its utilization in asphalt paving and concrete product. This research also entails a detailed chemical and microstructural characterization of MSWI BA and FA produced from a Refuse Derived Fuel (RDF) facility in Florida so that the MSWI ash is well characterized for its beneficial uses as construction materials.The material characterization includes Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction (XRD) techniques. In addition, leaching experiments have been conducted to investigate the environmental properties (e.g. leachate concentration) of BA and ash-mixed hot mix asphalt (HMA) and Portland cement concrete (PCC). Leaching results reveals the reduced leaching potential of toxic material from MSWI ashes while incorporated in HMA and PCC. Lastly, a preliminary experimental approach has been devised for the vitrification of FA which is a promising thermal process of transferring material into glassy state with higher physical and chemical integrity to reduce toxicity so that utilization of FA can be possible.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005425, ucf:50404
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005425
-
-
Title
-
NEW DEVELOPMENTS ON HIGH-RESOLUTION LUMINESCENCE SPECTROSCOPY AND THEIR APPLICATION TO THE DIRECT ANALYSIS OF ORGANIC POLLUTANTS IN ENVIRONMENTAL SAMPLES.
-
Creator
-
yu, shenjiang, Campiglia, Andres, University of Central Florida
-
Abstract / Description
-
Polycyclic aromatic compounds (PACs), which comprise a complex class of condensed multi-ring benzenoid compounds, are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. PACs are generally formed during incomplete combustion of pyrolisis of organic matter containing carbon and hydrogen. Because combustion of organic materials is involved in countless natural processes or human activities, PACs are omnipresent and abundant pollutants in air,...
Show morePolycyclic aromatic compounds (PACs), which comprise a complex class of condensed multi-ring benzenoid compounds, are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. PACs are generally formed during incomplete combustion of pyrolisis of organic matter containing carbon and hydrogen. Because combustion of organic materials is involved in countless natural processes or human activities, PACs are omnipresent and abundant pollutants in air, soil, and water. Chemical analysis of PACs is of great environmental and toxicological importance. Many of them are highly suspect as etiological agents in human cancer. Because PACs carcinogenic properties strongly depend on molecular structure and differ significantly from isomer to isomer, it is of paramount importance to determine the most toxic isomers even if they are present at much lower concentrations than their less toxic isomers. Gas chromatography (GC), high-resolution GC, and high-performance liquid chromatography (HPLC) are the basis for standard PACs identification and determination. Many cases exist where GC, HPLC, and even HR-GC have not been capable to provide unambiguous isomer identification. The lack of reliable analytical data has lead to serious errors in environmental and toxicological studies. This dissertation deals with the development of novel instrumentation and analytical methods for the analysis of PACs in environmental samples. The developed methodology is based on two well-known high-resolution luminescence techniques, namely Shpol'skii Spectroscopy (SS) and Fluorescence Line Narrowing Spectroscopy (FLNS). Although these two techniques have long been recognized for their capability in providing direct determination of target PACs in complex environmental samples, several reasons have hampered their widespread use for the problem at hand. These include inconvenient sample freezing procedures; questions about signal reproducibility; lengthy spectral acquisition, which might cause severe sample degradation due to prolonged excitation; broadband fluorescence background that degrades quality of spectra, precision of measurements and detection limits; solvent constrains imposed by the need of optically transparent media; and, most importantly, the lack of selectivity and sensitivity for unambiguous determination of closely related PACs metabolites. This dissertation presents significant advances on all fronts. The analytical methodology is then extended to the analysis of fluoroquinolones (FQs) in aqueous samples. FQs are one of the most powerful classes of antibiotics currently used for the treatment of urinary tract infections. Their widespread use in both human and animal medicine has prompted their appearance in aquatic systems. The search for a universal method capable to face this new environmental challenge has been centered on HPLC. Depending on the FQ and its concentration level, successful determination has been accomplished with mass spectrometry, room-temperature fluorescence (RTF) or UV absorption spectrometry. Unfortunately, no single detection mode has shown the ability to detect all FQ at the concentration ratios found in environmental waters. We provide a feasible alternative based on FLNS. On the instrumentation side, we present a single instrument with the capability to collect multidimensional data formats in both the fluorescence and the phosphorescence time domains. We demonstrate the ability to perform luminescence measurements in highly scattering media by comparing the precision of measurements in optically transparent solvents (Shpol'skii solvents) to those obtained in "snow-like" matrixes and solid samples. For decades, conventional low-temperature methodology has been restricted to optically transparent media. This restriction has limited its application to organic solvents that freeze into a glass. In this dissertation, we remove this limitation with the use of cryogenic fiber-optic probes. Our final efforts deal with low-temperature absorption measurements. Recording absorption spectra via transmittance through frozen matrixes is a challenging task. The main reason is the difficulty to overcome the strong scattering light reaching the detector. This is particularly true when thick samples are necessary for recording absorption spectra of weak oscillators. In the case of strongly fluorescent compounds, additional errors in absorbance measurements arise from the emission reaching the detector, which might have comparable intensity to that of the transmitted light. We present a fundamentally different approach to low-temperature absorption measurements as the sought-for-information is the intensity of laser excitation returning from the frozen sample to the intensified-charge coupled device (ICCD). Laser excitation is collected with the aid of a cryogenic fiber optic probe. The feasibility of our approach is demonstrated with single-site and multiple-site Shpol'skii systems. 4.2K absorption spectra show excellent agreement to their literature counterparts recorded via transmittance with closed cycle cryogenators. Fluorescence quantum yields measured at room-temperature compare well to experimental data acquired in our lab via classical methodology. Similar agreement is observed between 77K fluorescence quantum yields and previously reported data acquired with classical methodology. We then extend our approach to generate original data on fluorescence quantum yields at 4.2K.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001456, ucf:47039
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001456
-
-
Title
-
Novel solid state lasers based on volume Bragg gratings.
-
Creator
-
Hale, Evan, Glebov, Leonid, Divliansky, Ivan, Schulzgen, Axel, Vodopyanov, Konstantin, Lyakh, Arkadiy, University of Central Florida
-
Abstract / Description
-
Since their invention in 1960, lasers have revolutionized modern technology, and tremendous amounts of innovation and development has gone into advancing their properties and efficiencies. This dissertation reports on further innovations by presenting novel solid state laser systems based on the volume Bragg gratings (VBGs) and the newly developed holographic phase mask (HPMs) for brightness enhancement, dual wavelength operation, and mode conversion. First, a new optical element was created...
Show moreSince their invention in 1960, lasers have revolutionized modern technology, and tremendous amounts of innovation and development has gone into advancing their properties and efficiencies. This dissertation reports on further innovations by presenting novel solid state laser systems based on the volume Bragg gratings (VBGs) and the newly developed holographic phase mask (HPMs) for brightness enhancement, dual wavelength operation, and mode conversion. First, a new optical element was created by pairing the HPM with two surface gratings creating an achromatic holographic phase mask. This new optical device successfully performed transverse mode conversion of multiple narrow line laser sources operating from 488 to 1550 nm and a broadband mode locked femtosecond source with no angular tuning. Also, two types of HPMs were tested on high power Yb fiber lasers to demonstrate high energy mode conversion.Secondly, the effects of implementing VBGs for brightness enhancement of passively Q-switched systems with large Fresnel numbers was investigated. Implementing VBGs for angular mode selection allowed for higher pulse energies to be extracted without sacrificing brightness and pulse duration. This technique could potentially be applied to construct compact cavities with 1 cm diameter beams and nearly diffraction limited beam quality.Lastly, a spectral beam combining approach was applied to create Tm3+ and Yb3+ based narrowband dual-wavelength pump sources for terahertz generation, using VBGs as frequency selectors and beam combiners. Comparison of pulse duration and synchronization was done between passive and active Q-switching operation. An experimental set up for THz generation and detection using high sensitive detectors was created, and modeling of terahertz conversion efficiencies were done
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007812, ucf:52333
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007812
-
-
Title
-
NOVEL IMPROVEMENTS ON THE ANALYTICAL CHEMISTRY OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR METABOLITES.
-
Creator
-
Wang, Huiyong, Campiglia, Andres, University of Central Florida
-
Abstract / Description
-
Polycyclic aromatic hydrocarbons (PAH) are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. Because many of them are highly suspect as etiological agents in human cancer, chemical analysis of PAH is of great environmental and toxicological importance. Current methodology for PAH follows the classical pattern of sample preparation and chromatographic analysis. Sample preparation pre-concentrates PAH, simplifies matrix composition, and...
Show morePolycyclic aromatic hydrocarbons (PAH) are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. Because many of them are highly suspect as etiological agents in human cancer, chemical analysis of PAH is of great environmental and toxicological importance. Current methodology for PAH follows the classical pattern of sample preparation and chromatographic analysis. Sample preparation pre-concentrates PAH, simplifies matrix composition, and facilitates analytical resolution in the chromatographic column. Among the several approaches that exist to pre-concentrate PAH from water samples, the Environmental Protection Agency (EPA) recommends the use of solid-phase extraction (SPE). High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) are the basis for standard PAH identification and determination. Ultraviolet (UV) absorption and room temperature fluorescence detection are both widely used in HPLC, but the specificity of these detectors is modest. Since PAH identification is solely based on retention times, unambiguous PAH identification requires complete chromatographic resolution of sample components. When HPLC is applied to "unfamiliar" samples, the EPA recommends that a supporting analytical technique such as GC-MS be applied to verify compound identification and to check peak-purity HPLC fractions. Independent of the volume of extracted water, the approximate time required to separate and determine the sixteen "priority pollutants" (EPA-PAH) via HPLC is approximately 60min. If additional GC-MS analysis is required for unambiguous PAH determination, the total analysis time will reach 2-3 hours per sample. If the concentrations of target species are found to lie outside the detector's response range, the sample must be diluted and the process repeated. These are important considerations when routine analysis of numerous samples is contemplated. Parent PAH are relatively inert and need metabolic activation to express their carcinogenicity. By virtue of the rich heterogeneous distribution of metabolic products they produce, PAH provide a full spectrum of the complexity associated with understanding the initial phase of carcinogenesis. PAH metabolites include a variety of products such as expoxides, hydroxyl aromatics, quinines, dihydrodiols, dioepoxides, tetrols and water soluble conjugates. During the past decades tremendous efforts have been made to develop bio-analytical techniques that possess the selectivity and sensitivity for the problem at hand. Depending on the complexity of the sample and the relative concentrations of the targeted metabolites, a combination of sample preparation techniques is often necessary to reach the limits of detection of the instrumental method of analysis. The numerous preparation steps open ample opportunity to metabolite loss and collection of inaccurate data. Separation of metabolites has been accomplished via HPLC, capillary electrophoresis (CE) and GC-MS. Unfortunately, the existence of chemically related metabolic products with virtually identical fragmentation patterns often challenges the specificity of these techniques. This dissertation presents significant improvements in various fronts. Its first original component - which we have named solid-phase nano-extraction (SPNE) - deals with the use of gold nanoparticles (Au NPs) as extracting material for PAH. The advantages of SPNE are demonstrated for the analysis of PAH in water samples via both HPLC and Laser-Excited Time-Resolved Shpol'skii Spectroscopy (LETRSS). The same concept is then extended to the analysis of monohydroxy-PAH in urine samples via SPE- HPLC and In-Capillary SPNE-CE. The second original component of this dissertation describes the application of Shpol'skii Spectroscopy to the analysis of polar PAH metabolites. The outstanding selectivity and sensitivity for the direct analysis of PAH at trace concentration levels has made Shpol'skii spectroscopy a leading technique in environmental analysis. Unfortunately, the requirement of a specific guest-host combination - typically a non-polar PAH dissolved in an n-alkane - has hindered its widespread application to the field of analytical chemistry. This dissertation takes the first steps in removing this limitation demonstrating its feasibility for the analysis of polar benzopyrene metabolites in alcohol matrixes.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003202, ucf:48579
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003202
-
-
Title
-
Life-cycle Greenhouse Gas Emissions and Water Footprint of Residential Waste Collection and Management Systems.
-
Creator
-
Maimoun, Mousa, Reinhart, Debra, McCauley, Pamela, Cooper, David, University of Central Florida
-
Abstract / Description
-
Three troublesome issues concerning residential curbside collection (RCC) and municipal solid waste (MSW) management systems in the United States motivated this research. First, reliance upon inefficient collection and scheduling procedures negatively affect RCC efficiency, greenhouse gas (GHG) emissions, and cost. Second, the neglected impact of MSW management practices on water resources. Third, the implications of alternative fuels on the environmental and financial performance of waste...
Show moreThree troublesome issues concerning residential curbside collection (RCC) and municipal solid waste (MSW) management systems in the United States motivated this research. First, reliance upon inefficient collection and scheduling procedures negatively affect RCC efficiency, greenhouse gas (GHG) emissions, and cost. Second, the neglected impact of MSW management practices on water resources. Third, the implications of alternative fuels on the environmental and financial performance of waste collection where fuel plays a significant rule. The goal of this study was to select the best RCC program, MSW management practice, and collection fuel. For this study, field data were collected for RCC programs across the State of Florida. The garbage and recyclables generation rates were compared based on garbage collection frequency and use of dual-stream (DS) or single-stream (SS) recyclables collection system. The assessment of the collection programs was evaluated based on GHG emissions, while for the first time, the water footprint (WFP) was calculated for the most commonly used MSW management practices namely landfilling, combustion, and recycling. In comparing alternative collection fuels, two multi-criteria decision analysis (MCDA) tools, TOPSIS and SAW, were used to rank fuel alternatives for the waste collection industry with respect to a multi-level environmental and financial decision matrix. The results showed that SS collection systems exhibited more than a two-fold increase in recyclables generation rates, and a ~2.2-fold greater recycling efficiency compared to DS. The GHG emissions associated with the studied collection programs were estimated to be between 36 and 51 kg CO2eq per metric ton of total household waste (garbage and recyclables), depending on the garbage collection frequency, recyclables collection system (DS or SS) and recyclables compaction. When recyclables offsets were considered, the GHG emissions associated with programs using SS were estimated between -760 and -560, compared to between -270 and -210 kg CO2eq per metric ton of total waste for DS programs. In comparing the WFP of MSW management practices, the results showed that the WFP of waste landfilling can be reduced through implementing bioreactor landfilling. The WFP of electricity generated from waste combustion was less than the electricity from landfill gas. Overall, the WFP of electricity from MSW management practices was drastically less than some renewable energy sources. In comparing the WFP offsets of recyclables, the recycling of renewable commodities, e.g. paper, contributed to the highest WFP offsets compared to other commodities, mainly due to its raw material acquisition high WFPs. This suggests that recycling of renewable goods is the best management practice to reduce the WFP of MSW management. Finally, the MCDA of alternative fuel technologies revealed that diesel is still the best option, followed by hydraulic-hybrid waste collection vehicles (WCVs), then landfill gas (LFG) sourced natural gas, fossil natural gas and biodiesel. The elimination of the fueling station criterion from the financial criteria ranked LFG-sourced natural gas as the best option; suggesting that LFG sourced natural gas is the best alternative to fuel WCV when accessible. In conclusion, field data suggest that RCC system design can significantly impact recyclables generation rate and efficiency, and consequently determine environmental and economic impact of collection systems. The WFP concept was suggested as a method to systematically assess the impact of MSW management practices on water resources. A careful consideration of the WFP of MSW management practices and energy recovered from MSW management facilities is essential for the sustainable appropriation of water resources and development.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005656, ucf:50174
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005656
-
-
Title
-
The Influence of Alloying Additions on Diffusion and Strengthening of Magnesium.
-
Creator
-
Kammerer, Catherine, Sohn, Yongho, Coffey, Kevin, Challapalli, Suryanarayana, Gordon, Ali, University of Central Florida
-
Abstract / Description
-
Magnesium alloys are being developed as advanced materials for structural applications where reduced weight is a primary motivator. Alloying can enhance the properties of magnesium without significantly affecting its density. Essential to alloy development, inclusive of processing parameters, is knowledge of thermodynamic, kinetic, and mechanical behavior of the alloy and its constituents. Appreciable progress has been made through conventional development processes, but to accelerate...
Show moreMagnesium alloys are being developed as advanced materials for structural applications where reduced weight is a primary motivator. Alloying can enhance the properties of magnesium without significantly affecting its density. Essential to alloy development, inclusive of processing parameters, is knowledge of thermodynamic, kinetic, and mechanical behavior of the alloy and its constituents. Appreciable progress has been made through conventional development processes, but to accelerate development of suitable wrought Mg alloys, an integrated Materials Genomic approach must be taken where thermodynamics and diffusion kinetic parameters form the basis of alloy design, process development, and properties-driven applications.The objective of this research effort is twofold: first, to codify the relationship between diffusion behavior, crystal structure, and mechanical properties; second, to provide fundamental data for the purpose of wrought Mg alloy development. Together, the principal deliverable of this work is an advanced understanding of Mg systems. To that end, the objective is accomplished through an aggregate of studies. The solid-to-solid diffusion bonding technique is used to fabricate combinatorial samples of Mg-Al-Zn ternary and Mg-Al, Mg-Zn, Mg-Y, Mg-Gd, and Mg-Nd binary systems. The combinatorial samples are subjected to structural and compositional characterization via Scanning Electron Microscopy with X-ray Energy Dispersive Spectroscopy, Electron Probe Microanalysis, and analytical Transmission Electron Microscopy. Interdiffusion in binary Mg systems is determined by Sauer-Freise and Boltzmann-Matano methods. Kirkaldy's extension of the Boltzmann-Matano method, on the basis of Onsager's formalism, is employed to quantify the main- and cross-interdiffusion coefficients in ternary Mg solid solutions. Impurity diffusion coefficients are determined by way of the Hall method. The intermetallic compounds and solid solutions formed during diffusion bonding of the combinatorial samples are subjected to nanoindentation tests, and the nominal and compositionally dependent mechanical properties are extracted by the Oliver-Pharr method.In addition to bolstering the scantly available experimental data and first-principles computations, this work delivers several original contributions to the state of Mg alloy knowledge. The influence of Zn concentration on Al impurity diffusion in binary Mg(Zn) solid solution is quantified to impact both the pre-exponential factor and activation energy. The main- and cross-interdiffusion coefficients in the ternary Mg solid solution of Mg-Al-Zn are reported wherein the interdiffusion of Zn is shown to strongly influence the interdiffusion of Mg and Al. A critical examination of rare earth element additions to Mg is reported, and a new phase in thermodynamic equilibrium with Mg-solid solution is identified in the Mg-Gd binary system. It is also demonstrated that Mg atoms move faster than Y atoms. For the first time the mechanical properties of intermetallic compounds in several binary Mg systems are quantified in terms of hardness and elastic modulus, and the influence of solute concentration on solid solution strengthening in binary Mg alloys is reported. The most significant and efficient solid solution strengthening is achieved by alloying Mg with Gd. The Mg-Nd and Mg-Gd intermetallic compounds exhibited better room temperature creep resistance than intermetallic compounds of Mg-Al. The correlation between the concentration dependence of mechanical properties and atomic diffusion is deliberated in terms of electronic nature of the atomic structure.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005815, ucf:50043
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005815
-
-
Title
-
THERMAL MANAGEMENT, BEAM CONTROL,AND PACKAGING DESIGNS FOR HIGH POWER DIODE LASER ARRAYS AND PUMP CAVITY DESIGNS FOR DIODE LASER ARRAY PUMPED ROD SHAPED LASERS.
-
Creator
-
Chung, Te-yuan, Bass, Michael, University of Central Florida
-
Abstract / Description
-
Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time....
Show moreSeveral novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000259, ucf:46222
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000259
-
-
Title
-
Design, Synthesis, Stability, and Photocatalytic Studies of Sustainable Metal-Organic Frameworks.
-
Creator
-
Logan, Matthew, Uribe Romo, Fernando, Zhai, Lei, Yuan, Yu, Kuebler, Stephen, Rahman, Talat, University of Central Florida
-
Abstract / Description
-
The presented dissertation focuses on the design, synthesis, and characterization of metal-organic frameworks (MOFs) composed of earth-abundant elements the exhibit photoredox activity and studied their application as heterogeneous photocatalysts in organic synthesis and in solar-to-chemical energy conversion. In particular, the structure-property relationships of titanium-based MOFs relating the structure of the organic building unit and the photophysical and photochemical activity of the...
Show moreThe presented dissertation focuses on the design, synthesis, and characterization of metal-organic frameworks (MOFs) composed of earth-abundant elements the exhibit photoredox activity and studied their application as heterogeneous photocatalysts in organic synthesis and in solar-to-chemical energy conversion. In particular, the structure-property relationships of titanium-based MOFs relating the structure of the organic building unit and the photophysical and photochemical activity of the solid material is studied. The first novel family of seven MOFs isoreticular to MIL-125-NH2, includes functionalized with N-alkyl groups with increasing chain length (methyl to heptyl) and with varying connectivity (primary or secondary). The functionalized materials displayed reduced optical bandgaps correlated with the increased inductive donor ability of the alkyl substituents, enhanced excited-state lifetimes, mechanistic information towards visible light CO2 reduction, and improved water stability. The second family of titanium MOFs was prepared with a new secondary building unit and organic links of varying lengths, for which Their crystal structure was solved utilizing powder X-ray diffraction crystallography. This work provides guidelines for the next generation of photocatalyst for the conversion of solar-to-chemical energy and other organic transformations.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007219, ucf:52217
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007219
-
-
Title
-
Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell.
-
Creator
-
Aman, Amjad, Orlovskaya, Nina, Xu, Yunjun, Das, Tuhin, University of Central Florida
-
Abstract / Description
-
Solid Oxide Fuel Cells are fuel cells that operate at high temperatures usually in the range of 600oC to 1000oC and employ solid ceramics as the electrolyte. In Solid Oxide Fuel Cells oxygen ions (O2-) are the ionic charge carriers. Solid Oxide Fuel Cells are known for their higher electrical efficiency of about 50-60% [1] compared to other types of fuel cells and are considered very suitable in stationary power generation applications. It is very important to study the effects of different...
Show moreSolid Oxide Fuel Cells are fuel cells that operate at high temperatures usually in the range of 600oC to 1000oC and employ solid ceramics as the electrolyte. In Solid Oxide Fuel Cells oxygen ions (O2-) are the ionic charge carriers. Solid Oxide Fuel Cells are known for their higher electrical efficiency of about 50-60% [1] compared to other types of fuel cells and are considered very suitable in stationary power generation applications. It is very important to study the effects of different parameters on the performance of Solid Oxide Fuel Cells and for this purpose the experimental or numerical simulation method can be adopted as the research method of choice. Numerical simulation involves constructing a mathematical model of the Solid Oxide Fuel Cell and use of specifically designed software programs that allows the user to manipulate the model to evaluate the system performance under various configurations and in real time. A model is only usable when it is validated with experimental results. Once it is validated, numerical simulation can give accurate, consistent and efficient results. Modeling allows testing and development of new materials, fuels, geometries, operating conditions without disrupting the existing system configuration. In addition, it is possible to measure internal variables which are experimentally difficult or impossible to measure and study the effects of different operating parameters on power generated, efficiency, current density, maximum temperatures reached, stresses caused by temperature gradients and effects of thermal expansion for electrolytes, electrodes and interconnects.Since Solid Oxide Fuel Cell simulation involves a large number of parameters and complicated equations, mostly Partial Differential Equations, the situation calls for a sophisticated simulation technique and hence a Finite Element Method (FEM) multiphysics approach will be employed. This can provide three-dimensional localized information inside the fuel cell. For this thesis, COMSOL Multiphysics(&)#174; version 4.2a will be used for simulation purposes because it has a Batteries (&) Fuel Cells module, the ability to incorporate custom Partial Differential Equations and the ability to integrate with and utilize the capabilities of other tools like MATLAB(&)#174;, Pro/Engineer(&)#174;, SolidWorks(&)#174;. Fuel Cells can be modeled at the system or stack or cell or the electrode level. This thesis will study Solid Oxide Fuel Cell modeling at the cell level. Once the model can be validated against experimental data for the cell level, then modeling at higher levels can be accomplished in the future. Here the research focus is on Solid Oxide Fuel Cells that use hydrogen as the fuel. The study focuses on solid oxide fuel cells that use 3-layered, 4-layered and 6-layered electrolytes using pure YSZ or pure SCSZ or a combination of layers of YSZ and SCSZ. A major part of this research will be to compare SOFC performance of the different configurations of these electrolytes. The cathode and anode material used are (La0.6Sr0.4)0.95-0.99Co0.2Fe0.8O3 and Ni-YSZ respectively.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004349, ucf:49431
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004349
-
-
Title
-
Novel Developments on the Extraction and Analysis of Polycyclic Aromatic Hydrocarbons in Environmental Samples.
-
Creator
-
Wilson, Walter, Campiglia, Andres, Belfield, Kevin, Rex, Matthew, Harper, James, Hoffman, Jay, University of Central Florida
-
Abstract / Description
-
This dissertation focuses on the development of analytical methodology for the analysis of polycyclic aromatic hydrocarbons (PAHs) in water samples. Chemical analysis of PAHs is of great environmental and toxicological importance. Many of them are highly suspect as etiological agents in human cancer. Among the hundreds of PAHs present in the environment, the U.S. Environmental Protection Agency (EPA) lists sixteen as "Consent Decree" priority pollutants. Their routine monitoring in...
Show moreThis dissertation focuses on the development of analytical methodology for the analysis of polycyclic aromatic hydrocarbons (PAHs) in water samples. Chemical analysis of PAHs is of great environmental and toxicological importance. Many of them are highly suspect as etiological agents in human cancer. Among the hundreds of PAHs present in the environment, the U.S. Environmental Protection Agency (EPA) lists sixteen as "Consent Decree" priority pollutants. Their routine monitoring in environmental samples is recommended to prevent human contamination risks.A primary route of human exposure to PAHs is the ingestion of contaminated water. The rather low PAH concentrations in water samples make the analysis of the sixteen priority pollutants particularly challenging. Current EPA methodology follows the classical pattern of sample extraction and chromatographic analysis. The method of choice for PAHs extraction and pre-concentration is solid-phase extraction (SPE). PAHs determination is carried out via high-performance liquid chromatography (HPLC) or gas chromatography/mass spectrometry (GC/MS). When HPLC is applied to highly complex samples, EPA recommends the use of GC/MS to verify compound identification and to check peak-purity of HPLC fractions. Although EPA methodology provides reliable data, the routine monitoring of numerous samples via fast, cost effective and environmentally friendly methods remains an analytical challenge. Typically, 1 L of water is processed through the SPE device in approximately 1 h. The rather large water volume and long sample processing time are recommended to reach detectable concentrations and quantitative removal of PAHs from water samples. Chromatographic elution times of 30 (-) 60 min are typical and standards must be run periodically to verify retention times. If concentrations of targeted PAHs are found to lie outside the detector's response range, the sample must be diluted (or concentrated), and the process repeated. In order to prevent environmental risks and human contamination, the routine monitoring of the sixteen EPA-PAHs is not sufficient anymore. Recent toxicological studies attribute a significant portion of the biological activity of PAH contaminated samples to the presence of high molecular weight (HMW) PAHs, i.e. PAHs with MW ? 300. Because the carcinogenic properties of HMW-PAHs differ significantly from isomer to isomer, it is of paramount importance to determine the most toxic isomers even if they are present at much lower concentrations than their less toxic isomers. Unfortunately, established methodology cannot always meet the challenge of specifically analyzing HMW-PAHs at the low concentration levels of environmental samples. The main problems that confront classic methodology arise from the relatively low concentration levels and the large number of structural isomers with very similar elution times and similar, possibly even virtually identical, fragmentation patterns. This dissertation summarizes significant improvements on various fronts. Its first original component deals with the unambiguous determination of four HMW-PAHs via laser-excited time-resolved Shpol'skii spectroscopy (LETRSS) without previous chromatographic separation. The second original component is the improvement of a relatively new PAH extraction method - solid-phase nanoextraction (SPNE) - which uses gold nanoparticles as extracting material for PAHs. The advantages of the improved SPNE procedure are demonstrated for the analysis of EPA-PAHs and HMW-PAHs in water samples via GC/MS and LETRSS, respectively.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005443, ucf:50384
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005443
Pages