Current Search: Algorithm (x)
Pages
-
-
Title
-
ESTIMATION OF OCEANIC RAINFALL USING PASSIVE AND ACTIVE MEASUREMENTS FROM SEAWINDS SPACEBORNE MICROWAVE SENSOR.
-
Creator
-
Ahmad, Khalil, Jones, Linwood, University of Central Florida
-
Abstract / Description
-
The Ku band microwave remote sensor, SeaWinds, was developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two identical SeaWinds instruments were launched into space. The first was flown onboard NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the second instrument flew onboard the Japanese Advanced Earth Observing Satellite II (ADEOS-II) from December 2002 till October 2003 when an irrecoverable solar panel failure...
Show moreThe Ku band microwave remote sensor, SeaWinds, was developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two identical SeaWinds instruments were launched into space. The first was flown onboard NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the second instrument flew onboard the Japanese Advanced Earth Observing Satellite II (ADEOS-II) from December 2002 till October 2003 when an irrecoverable solar panel failure caused a premature end to the ADEOS-II satellite mission. SeaWinds operates at a frequency of 13.4 GHz, and was originally designed to measure the speed and direction of the ocean surface wind vector by relating the normalized radar backscatter measurements to the near surface wind vector through a geophysical model function (GMF). In addition to the backscatter measurement capability, SeaWinds simultaneously measures the polarized radiometric emission from the surface and atmosphere, utilizing a ground signal processing algorithm known as the QuikSCAT / SeaWinds Radiometer (QRad / SRad). This dissertation presents the development and validation of a mathematical inversion algorithm that combines the simultaneous active radar backscatter and the passive microwave brightness temperatures observed by the SeaWinds sensor to retrieve the oceanic rainfall. The retrieval algorithm is statistically based, and has been developed using collocated measurements from SeaWinds, the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, and Numerical Weather Prediction (NWP) wind fields from the National Centers for Environmental Prediction (NCEP). The oceanic rain is retrieved on a spacecraft wind vector cell (WVC) measurement grid that has a spatial resolution of 25 km. To evaluate the accuracy of the retrievals, examples of the passive-only, as well as the combined active / passive rain estimates from SeaWinds are presented, and comparisons are made with the standard TRMM rain data products. Results demonstrate that SeaWinds rain measurements are in good agreement with the independent microwave rain observations obtained from TMI. Further, by applying a threshold on the retrieved rain rates, SeaWinds rain estimates can be utilized as a rain flag. In order to evaluate the performance of the SeaWinds flag, comparisons are made with the Impact based Multidimensional Histogram (IMUDH) rain flag developed by JPL. Results emphasize the powerful rain detection capabilities of the SeaWinds retrieval algorithm. Due to its broad swath coverage, SeaWinds affords additional independent sampling of the oceanic rainfall, which may contribute to the future NASA's Precipitation Measurement Mission (PMM) objectives of improving the global sampling of oceanic rain within 3 hour windows. Also, since SeaWinds is the only sensor onboard QuikSCAT, the SeaWinds rain estimates can be used to improve the flagging of rain-contaminated oceanic wind vector retrievals. The passive-only rainfall retrieval algorithm (QRad / SRad) has been implemented by JPL as part of the level 2B (L2B) science data product, and can be obtained from the Physical Oceanography Distributed Data Archive (PO.DAAC).
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001969, ucf:47441
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001969
-
-
Title
-
AN ADAPTIVE MODULAR REDUNDANCY TECHNIQUE TO SELF-REGULATE AVAILABILITY, AREA, AND ENERGY CONSUMPTION IN MISSION-CRITICAL APPLICATIONS.
-
Creator
-
Al-Haddad, Rawad, DeMara, Ronald, University of Central Florida
-
Abstract / Description
-
As reconfigurable devices' capacities and the complexity of applications that use them increase, the need for self-reliance of deployed systems becomes increasingly prominent. A Sustainable Modular Adaptive Redundancy Technique (SMART) composed of a dual-layered organic system is proposed, analyzed, implemented, and experimentally evaluated. SMART relies upon a variety of self-regulating properties to control availability, energy consumption, and area used, in dynamically-changing...
Show moreAs reconfigurable devices' capacities and the complexity of applications that use them increase, the need for self-reliance of deployed systems becomes increasingly prominent. A Sustainable Modular Adaptive Redundancy Technique (SMART) composed of a dual-layered organic system is proposed, analyzed, implemented, and experimentally evaluated. SMART relies upon a variety of self-regulating properties to control availability, energy consumption, and area used, in dynamically-changing environments that require high degree of adaptation. The hardware layer is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-repair using a novel approach called a Reconfigurable Adaptive Redundancy System (RARS). The software layer supervises the organic activities within the FPGA and extends the self-healing capabilities through application-independent, intrinsic, evolutionary repair techniques to leverage the benefits of dynamic Partial Reconfiguration (PR). A SMART prototype is evaluated using a Sobel edge detection application. This prototype is shown to provide sustainability for stressful occurrences of transient and permanent fault injection procedures while still reducing energy consumption and area requirements. An Organic Genetic Algorithm (OGA) technique is shown capable of consistently repairing hard faults while maintaining correct edge detector outputs, by exploiting spatial redundancy in the reconfigurable hardware. A Monte Carlo driven Continuous Markov Time Chains (CTMC) simulation is conducted to compare SMART's availability to industry-standard Triple Modular Technique (TMR) techniques. Based on nine use cases, parameterized with realistic fault and repair rates acquired from publically available sources, the results indicate that availability is significantly enhanced by the adoption of fast repair techniques targeting aging-related hard-faults. Under harsh environments, SMART is shown to improve system availability from 36.02% with lengthy repair techniques to 98.84% with fast ones. This value increases to "five nines" (99.9998%) under relatively more favorable conditions. Lastly, SMART is compared to twenty eight standard TMR benchmarks that are generated by the widely-accepted BL-TMR tools. Results show that in seven out of nine use cases, SMART is the recommended technique, with power savings ranging from 22% to 29%, and area savings ranging from 17% to 24%, while still maintaining the same level of availability.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003993, ucf:48660
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003993
-
-
Title
-
An investigation of physiological measures in a marketing decision task.
-
Creator
-
Lerma, Nelson, Karwowski, Waldemar, Elshennawy, Ahmad, Xanthopoulos, Petros, Reinerman, Lauren, University of Central Florida
-
Abstract / Description
-
The objective of the present study was to understand the use of physiological measures as an alternative to traditional market research tools, such as self-reporting measures and focus groups. For centuries, corporations and researchers have relied almost exclusively on traditional measures to gain insights into consumer behavior. Oftentimes, traditional methods have failed to accurately predict consumer demand, and this has prompted corporations to explore alternative methods that will...
Show moreThe objective of the present study was to understand the use of physiological measures as an alternative to traditional market research tools, such as self-reporting measures and focus groups. For centuries, corporations and researchers have relied almost exclusively on traditional measures to gain insights into consumer behavior. Oftentimes, traditional methods have failed to accurately predict consumer demand, and this has prompted corporations to explore alternative methods that will accurately forecast future sales. One the most promising alternative methods currently being investigated is the use of physiological measures as an indication of consumer preference. This field, also referred to as neuromarketing, has blended the principles of psychology, neuroscience, and market research to explore consumer behavior from a physiological perspective. The goal of neuromarketing is to capture consumer behavior through the use of physiological sensors. This study investigated the extent to which physiological measures where correlated to consumer preferences by utilizing five physiological sensors which included two neurological sensors (EEG and ECG) two hemodynamic sensors (TCD and fNIR) and one optic sensor (eye-tracking). All five physiological sensors were used simultaneously to capture and record physiological changes during four distinct marketing tasks. The results showed that only one physiological sensor, EEG, was indicative of concept type and intent to purchase. The remaining four physiological sensors did not show any significant differences for concept type or intent to purchase.Furthermore, Machine Learning Algorithms (MLAs) were used to determine the extent to which MLAs (Na(&)#239;ve Bayes, Multilayer Perceptron, K-Nearest Neighbor, and Logistic Regression) could classify physiological responses to self-reporting measures obtained during a marketing task. The results demonstrated that Multilayer Perceptron, on average, performed better than the other MLAs for intent to purchase and concept type. It was also evident that the models faired best with the most popular concept when categorizing the data based on intent to purchase or final selection. Overall, the four models performed well at categorizing the most popular concept and gave some indication to the extent to which physiological measures are capable of capturing intent to purchase. The research study was intended to help better understand the possibilities and limitations of physiological measures in the field of market research. Based on the results obtained, this study demonstrated that certain physiological sensors are capable of capturing emotional changes, but only when the emotional response between two concepts is significantly different. Overall, physiological measures hold great promise in the study of consumer behavior, providing great insight on the relationship between emotions and intentions in market research.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006345, ucf:51563
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006345
-
-
Title
-
A Triangulation Based Coverage Path Planning For a Mobile Robot With Circular Sensing Range.
-
Creator
-
An, Vatana, Qu, Zhihua, Haralambous, Michael, Mikhael, Wasfy, University of Central Florida
-
Abstract / Description
-
In this dissertation, two coverage path planning (CPP) approaches for a nonholonomic mobile robot are proposed. The first approach is the Local Coverage Path Planning (LCPP) approach which is designed for all sensing ranges. The second approach is the Global Coverage Path Planning (GCPP) approach which is designed for sufficient sensing range that can observe all points of interests in the target region (TR). The LCPP approach constructs CP after finding observer points for all local regions...
Show moreIn this dissertation, two coverage path planning (CPP) approaches for a nonholonomic mobile robot are proposed. The first approach is the Local Coverage Path Planning (LCPP) approach which is designed for all sensing ranges. The second approach is the Global Coverage Path Planning (GCPP) approach which is designed for sufficient sensing range that can observe all points of interests in the target region (TR). The LCPP approach constructs CP after finding observer points for all local regions in the TR. The GCPP approach computes observer points after CP construction. Beginning with the sample TR, the LCPP approach requires 8 algorithms to find a smooth CP and sufficient number of observers for complete coverage. The Global Coverage Path Planning approach requires 17 algorithms to find the smooth CP with sufficient number of observers for completed coverage. The worst case running time for both approaches are quadratic which is consider to be very fast as compared to previous works reported in the literature. The main technical contributions of both approaches are to provide a holistic solution that segments any TR, uses triangulation to determine the line of sights and observation points, and then compute the smooth and collision-free CP. Both approaches provide localization, speed control, curvature control, CP length control, and smooth CP control. The first approach has applications in automate vacuum cleaning, search and rescue mission, spray painting, and etc. The second approach is best used in military and space applications as it requires infinite sensing range which only resource rich organizations can afford. At the very least, the second approach provides simulation opportunity and upper bound cost estimate for CPP. Both approaches will lead to a search strategy that provides the shortest CP with the minimum number of observer and with the shortest running time for any sensing range.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006853, ucf:51745
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006853
-
-
Title
-
Transient and Distributed Algorithms to Improve Islanding Detection Capability of Inverter Based Distributed Generation.
-
Creator
-
Alhosani, Mohamed, Qu, Zhihua, Mikhael, Wasfy, Haralambous, Michael, Behal, Aman, Xu, Chengying, University of Central Florida
-
Abstract / Description
-
Recently, a lot of research work has been dedicated toward enhancing performance, reliability and integrity of distributed energy resources that are integrated into distribution networks. The problem of islanding detection and islanding prevention (i.e. anti-islanding) has stimulated a lot of research due to its role in severely compromising the safety of working personnel and resulting in equipment damages. Various Islanding Detection Methods (IDMs) have been developed within the last ten...
Show moreRecently, a lot of research work has been dedicated toward enhancing performance, reliability and integrity of distributed energy resources that are integrated into distribution networks. The problem of islanding detection and islanding prevention (i.e. anti-islanding) has stimulated a lot of research due to its role in severely compromising the safety of working personnel and resulting in equipment damages. Various Islanding Detection Methods (IDMs) have been developed within the last ten years in anticipation of the tremendous increase in the penetration of Distributed Generation (DG) in distribution system. This work proposes new IDMs that rely on transient and distributed behaviors to improve integrity and performance of DGs while maintaining multi-DG islanding detection capability.In this thesis, the following questions have been addressed: How to utilize the transient behavior arising from an islanding condition to improve detectability and robust performance of IDMs in a distributive manner? How to reduce the negative stability impact of the well-known Sandia Frequency Shift (SFS) IDM while maintaining its islanding detection capability? How to incorporate the perturbations provided by each of DGs in such a way that the negative interference of different IDMs is minimized without the need of any type of communication among the different DGs?It is shown that the proposed techniques are local, scalable and robust against different loading conditions and topology changes. Also, the proposed techniques can successfully distinguish an islanding condition from other disturbances that may occur in power system networks. This work improves the efficiency, reliability and safety of integrated DGs, which presents a necessary advance toward making electric power grids a smart grid.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005295, ucf:50567
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005295
-
-
Title
-
Design and Implementation of PV-Firming and Optimization Algorithms For Three-Port Microinverters.
-
Creator
-
Alharbi, Mahmood, Batarseh, Issa, Haralambous, Michael, Mikhael, Wasfy, Yuan, Jiann-Shiun, Kutkut, Nasser, University of Central Florida
-
Abstract / Description
-
With the demand increase for electricity, the ever-increasing awareness of environmental issues, coupled with rolling blackouts, the role of renewable energy generation is increasing along with the thirst for electricity and awareness of environmental issues. This dissertation proposes the design and implementation of PV-firming and optimization algorithms for three-port microinverters.Novel strategies are proposed in Chapters 3 and 4 for harvesting stable solar power in spite of intermittent...
Show moreWith the demand increase for electricity, the ever-increasing awareness of environmental issues, coupled with rolling blackouts, the role of renewable energy generation is increasing along with the thirst for electricity and awareness of environmental issues. This dissertation proposes the design and implementation of PV-firming and optimization algorithms for three-port microinverters.Novel strategies are proposed in Chapters 3 and 4 for harvesting stable solar power in spite of intermittent solar irradiance. PV firming is implemented using a panel-level three-port grid-tied PV microinverter system instead of the traditional high-power energy storage and management system at the utility scale. The microinverter system consists of a flyback converter and an H-bridge inverter/rectifier, with a battery connected to the DC-link. The key to these strategies lies in using static and dynamic algorithms to generate a smooth PV reference power. The outcomes are applied to various control methods to charge/discharge the battery so that a stable power generation profile is obtained. In addition, frequency-based optimization for the inverter stage is presented.One of the design parameters of grid-tied single-phase H-bridge sinusoidal pulse-width modulation (SPWM) microinverters is switching frequency. The selection of the switching frequency is a tradeoff between improving the power quality by reducing the total harmonic distortion (THD), and improving the efficiency by reducing the switching loss. In Chapter 5, two algorithms are proposed for optimizing both the power quality and the efficiency of the microinverter. They do this by using a frequency tracking technique that requires no hardware modification. The first algorithm tracks the optimal switching frequency for maximum efficiency at a given THD value. The second maximizes the power quality of the H-bridge micro-inverter by tracking the switching frequency that corresponds to the minimum THD.Real-time PV intermittency and usable capacity data were evaluated and then further analyzed in MATLAB/SIMULINK to validate the PV firming control. The proposed PV firming and optimization algorithms were experimentally verified, and the results evaluated. Finally, Chapter 6 provides a summary of key conclusions and future work to optimize the presented topology and algorithms.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007305, ucf:52166
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007305
-
-
Title
-
Investigation of Novel Fin Structures Enhancing Micro Heat Sink Thermal Performance.
-
Creator
-
Ismayilov, Fuad, Peles, Yoav, Kassab, Alain, Putnam, Shawn, Akturk, Ali, University of Central Florida
-
Abstract / Description
-
Operating temperature in electronics applications is continuously increasing. Therefore, for the past few decades, high heat flux removing micro heat sinks are investigated in terms of heat transfer effectiveness. This study generally concentrates on improving the passive heat transfer techniques. Micro heat sinks used in experiments are fabricated using MEMS techniques. Resistance temperature detectors, RTDs, were used for temperature measurements. The experimental data was obtained for...
Show moreOperating temperature in electronics applications is continuously increasing. Therefore, for the past few decades, high heat flux removing micro heat sinks are investigated in terms of heat transfer effectiveness. This study generally concentrates on improving the passive heat transfer techniques. Micro heat sinks used in experiments are fabricated using MEMS techniques. Resistance temperature detectors, RTDs, were used for temperature measurements. The experimental data was obtained for single and two phase flow regions; however, only single phase flow results were considered in numerical simulations. Numerical validations were performed on the micro heat sinks, including cylinder and hydrofoil shaped pin fins. Following the validation phase, optimization has been performed to further improve the hydraulic and thermal performance. DOE study showed that the chord length and leading edge size of the hydrofoil pin fin are significant contributors to the thermal performance. The ranges of geometrical variables were identified and fed into multi-objective optimization cycles implementing the multi-objective genetic algorithm. The optimization objectives were to minimize pumping requirements while enhancing the local and global heat transfer effectiveness over the surface of the heater in single phase flow environment. A broad range of geometries were obtained with an acceptable tradeoff between thermal and hydraulic performance for low Reynolds number. Additionally, tandem geometries were investigated and showed that higher heat transfer effectiveness could be obtained with acceptable pumping power requirements. The importance of such optimization studies before the experimental testing is highlighted, and novel geometries are presented for further experimental investigations. Thermal performance improvement of 28% was obtained via implementing proposed geometries with only a 12% pressure drop increase. Local heat transfer optimization, aiming to decrease the local temperatures were also performed using doublet pin fin configurations. Results showed that tandem hydrofoils could control the flow with minimum pressure drops while reaching the desired low local temperatures.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007821, ucf:52828
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007821
-
-
Title
-
A Comparative Evaluation of FDSA,GA, and SA Non-Linear Programming Algorithms and Development of System-Optimal Dynamic Congestion Pricing Methodology on I-95 Express.
-
Creator
-
Graham, Don, Radwan, Ahmed, Abdel-Aty, Mohamed, Al-Deek, Haitham, Uddin, Nizam, University of Central Florida
-
Abstract / Description
-
As urban population across the globe increases, the demand for adequatetransportation grows. Several strategies have been suggested as a solution to the congestion which results from this high demand outpacing the existing supply of transportation facilities.High (-)Occupancy Toll (HOT) lanes have become increasingly more popular as a feature on today's highway system. The I-95 Express HOT lane in Miami Florida, which is currently being expanded from a single Phase (Phase I) into two Phases,...
Show moreAs urban population across the globe increases, the demand for adequatetransportation grows. Several strategies have been suggested as a solution to the congestion which results from this high demand outpacing the existing supply of transportation facilities.High (-)Occupancy Toll (HOT) lanes have become increasingly more popular as a feature on today's highway system. The I-95 Express HOT lane in Miami Florida, which is currently being expanded from a single Phase (Phase I) into two Phases, is one such HOT facility. With the growing abundance of such facilities comes the need for in- depth study of demand patterns and development of an appropriate pricing scheme which reduces congestion.This research develops a method for dynamic pricing on the I-95 HOT facility such as to minimize total travel time and reduce congestion. We apply non-linear programming (NLP) techniques and the finite difference stochastic approximation (FDSA), genetic algorithm (GA) and simulated annealing (SA) stochastic algorithms to formulate and solve the problem within a cell transmission framework. The solution produced is the optimal flow and optimal toll required to minimize total travel time and thus is the system-optimal solution.We perform a comparative evaluation of FDSA, GA and SA non-linear programmingalgorithms used to solve the NLP and the ANOVA results show that there are differences in the performance of the NLP algorithms in solving this problem and reducing travel time. We then conclude by demonstrating that econometric forecasting methods utilizing vector autoregressive (VAR) techniques can be applied to successfully forecast demand for Phase 2 of the 95 Express which is planned for 2014.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005000, ucf:50019
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005000
-
-
Title
-
IMPROVING AIRLINE SCHEDULE RELIABILITY USING A STRATEGIC MULTI-OBJECTIVE RUNWAY SLOT ASSIGNMENT SEARCH HEURISTIC.
-
Creator
-
Hafner, Florian, Sepulveda, Alejandro, University of Central Florida
-
Abstract / Description
-
Improving the predictability of airline schedules in the National Airspace System (NAS) has been a constant endeavor, particularly as system delays grow with ever-increasing demand. Airline schedules need to be resistant to perturbations in the system including Ground Delay Programs (GDPs) and inclement weather. The strategic search heuristic proposed in this dissertation significantly improves airline schedule reliability by assigning airport departure and arrival slots to each flight in the...
Show moreImproving the predictability of airline schedules in the National Airspace System (NAS) has been a constant endeavor, particularly as system delays grow with ever-increasing demand. Airline schedules need to be resistant to perturbations in the system including Ground Delay Programs (GDPs) and inclement weather. The strategic search heuristic proposed in this dissertation significantly improves airline schedule reliability by assigning airport departure and arrival slots to each flight in the schedule across a network of airports. This is performed using a multi-objective optimization approach that is primarily based on historical flight and taxi times but also includes certain airline, airport, and FAA priorities. The intent of this algorithm is to produce a more reliable, robust schedule that operates in today's environment as well as tomorrow's 4-Dimensional Trajectory Controlled system as described the FAA's Next Generation ATM system (NextGen). This novel airline schedule optimization approach is implemented using a multi-objective evolutionary algorithm which is capable of incorporating limited airport capacities. The core of the fitness function is an extensive database of historic operating times for flight and ground operations collected over a two year period based on ASDI and BTS data. Empirical distributions based on this data reflect the probability that flights encounter various flight and taxi times. The fitness function also adds the ability to define priorities for certain flights based on aircraft size, flight time, and airline usage. The algorithm is applied to airline schedules for two primary US airports: Chicago O'Hare and Atlanta Hartsfield-Jackson. The effects of this multi-objective schedule optimization are evaluated in a variety of scenarios including periods of high, medium, and low demand. The schedules generated by the optimization algorithm were evaluated using a simple queuing simulation model implemented in AnyLogic. The scenarios were simulated in AnyLogic using two basic setups: (1) using modes of flight and taxi times that reflect highly predictable 4-Dimensional Trajectory Control operations and (2) using full distributions of flight and taxi times reflecting current day operations. The simulation analysis showed significant improvements in reliability as measured by the mean square difference (MSD) of filed versus simulated flight arrival and departure times. Arrivals showed the most consistent improvements of up to 80% in on-time performance (OTP). Departures showed reduced overall improvements, particularly when the optimization was performed without the consideration of airport capacity. The 4-Dimensional Trajectory Control environment more than doubled the on-time performance of departures over the current day, more chaotic scenarios. This research shows that airline schedule reliability can be significantly improved over a network of airports using historical flight and taxi time data. It also provides for a mechanism to prioritize flights based on various airline, airport, and ATC goals. The algorithm is shown to work in today's environment as well as tomorrow's NextGen 4-Dimensional Trajectory Control setup.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002067, ucf:47572
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002067
-
-
Title
-
Novelty-Assisted Interactive Evolution of Control Behaviors.
-
Creator
-
Woolley, Brian, Stanley, Kenneth, Hughes, Charles, Gonzalez, Avelino, Wu, Annie, Hancock, Peter, University of Central Florida
-
Abstract / Description
-
The field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact...
Show moreThe field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact they often do not. The consequence is that while solutions may exist, searching for such objectives may not discover them. This problem with objectives is demonstrated through an experiment in this dissertation that compares how images discovered serendipitously during interactive evolution in an online system called Picbreeder cannot be rediscovered when they become the final objective of the very same algorithm that originally evolved them. This negative result demonstrates that pursuing an objective limits evolution by selecting offspring only based on the final objective. Furthermore, even when high fitness is achieved, the experimental results suggest that the resulting solutions are typically brittle, piecewise representations that only perform well by exploiting idiosyncratic features in the target. In response to this problem, the dissertation next highlights the importance of leveraging human insight during search as an alternative to articulating explicit objectives. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with a method called novelty search for the first time to facilitate the serendipitous discovery of agent behaviors. In this approach, the human user directs evolution by selecting what is interesting from the on-screen population of behaviors. However, unlike in typical IEC, the user can then request that the next generation be filled with novel descendants, as opposed to only the direct descendants of typical IEC. The result of such an approach, unconstrained by a priori objectives, is that it traverses key stepping stones that ultimately accumulate meaningful domain knowledge.To establishes this new evolutionary approach based on the serendipitous discovery of key stepping stones during evolution, this dissertation consists of four key contributions: (1) The first contribution establishes the deleterious effects of a priori objectives on evolution. The second (2) introduces the NA-IEC approach as an alternative to traditional objective-based approaches. The third (3) is a proof-of-concept that demonstrates how combining human insight with novelty search finds solutions significantly faster and at lower genomic complexities than fully-automated processes, including pure novelty search, suggesting an important role for human users in the search for solutions. Finally, (4) the NA-IEC approach is applied in a challenge domain wherein leveraging human intuition and domain knowledge accelerates the evolution of solutions for the nontrivial octopus-arm control task. The culmination of these contributions demonstrates the importance of incorporating human insights into simulated evolution as a means to discovering better solutions more rapidly than traditional approaches.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004462, ucf:49335
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004462
-
-
Title
-
DESIGN AND CHARACTERIZATION OF NOVELDEVICES FOR NEW GENERATION OF ELECTROSTATICDISCHARGE (ESD) PROTECTION STRUCTURES.
-
Creator
-
SALCEDO, Javier, Liou, Juin, University of Central Florida
-
Abstract / Description
-
The technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications' performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the...
Show moreThe technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications' performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the design of robust protection structures and circuits remains challenging because ESD failure mechanisms continue to become more acute and design windows less flexible. The sensitivity of smaller devices, along with a limited understanding of the ESD phenomena and the resulting empirical approach to solving the problem have yielded time consuming, costly and unpredictable design procedures. As turnaround design cycles in new technologies continue to decrease, the traditional trial-and-error design strategy is no longer acceptable, and better analysis capabilities and a systematic design approach are essential to accomplish the increasingly difficult task of adequate ESD protection-circuit design. This dissertation presents a comprehensive design methodology for implementing custom on-chip ESD protection structures in different commercial technologies. First, the ESD topic in the semiconductor industry is revised, as well as ESD standards and commonly used schemes to provide ESD protection in ICs. The general ESD protection approaches are illustrated and discussed using different types of protection components and the concept of the ESD design window. The problem of implementing and assessing ESD protection structures is addressed next, starting from the general discussion of two design methods. The first ESD design method follows an experimental approach, in which design requirements are obtained via fabrication, testing and failure analysis. The second method consists of the technology computer aided design (TCAD)-assisted ESD protection design. This method incorporates numerical simulations in different stages of the ESD design process, and thus results in a more predictable and systematic ESD development strategy. Physical models considered in the device simulation are discussed and subsequently utilized in different ESD designs along this study. The implementation of new custom ESD protection devices and a further integration strategy based on the concept of the high-holding, low-voltage-trigger, silicon controlled rectifier (SCR) (HH-LVTSCR) is demonstrated for implementing ESD solutions in commercial low-voltage digital and mixed-signal applications developed using complementary metal oxide semiconductor (CMOS) and bipolar CMOS (BiCMOS) technologies. This ESD protection concept proposed in this study is also successfully incorporated for implementing a tailored ESD protection solution for an emerging CMOS-based embedded MicroElectroMechanical (MEMS) sensor system-on-a-chip (SoC) technology. Circuit applications that are required to operate at relatively large input/output (I/O) voltage, above/below the VDD/VSS core circuit power supply, introduce further complications in the development and integration of ESD protection solutions. In these applications, the I/O operating voltage can extend over one order of magnitude larger than the safe operating voltage established in advanced technologies, while the IC is also required to comply with stringent ESD robustness requirements. A practical TCAD methodology based on a process- and device- simulation is demonstrated for assessment of the device physics, and subsequent design and implementation of custom P1N1-P2N2 and coupled P1N1-P2N2//N2P3-N3P1 silicon controlled rectifier (SCR)-type devices for ESD protection in different circuit applications, including those applications operating at I/O voltage considerably above/below the VDD/VSS. Results from the TCAD simulations are compared with measurements and used for developing technology- and circuit-adapted protection structures, capable of blocking large voltages and providing versatile dual-polarity symmetric/asymmetric S-type current-voltage characteristics for high ESD protection. The design guidelines introduced in this dissertation are used to optimize and extend the ESD protection capability in existing CMOS/BiCMOS technologies, by implementing smaller and more robust single- or dual-polarity ESD protection structures within the flexibility provided in the specific fabrication process. The ESD design methodologies and characteristics of the developed protection devices are demonstrated via ESD measurements obtained from fabricated stand-alone devices and on-chip ESD protections. The superior ESD protection performance of the devices developed in this study is also successfully verified in IC applications where the standard ESD protection approaches are not suitable to meet the stringent area constraint and performance requirement.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001213, ucf:46942
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001213
-
-
Title
-
Adaptive Architectural Strategies for Resilient Energy-Aware Computing.
-
Creator
-
Ashraf, Rizwan, DeMara, Ronald, Lin, Mingjie, Wang, Jun, Jha, Sumit, Johnson, Mark, University of Central Florida
-
Abstract / Description
-
Reconfigurable logic or Field-Programmable Gate Array (FPGA) devices have the ability to dynamically adapt the computational circuit based on user-specified or operating-condition requirements. Such hardware platforms are utilized in this dissertation to develop adaptive techniques for achieving reliable and sustainable operation while autonomously meeting these requirements. In particular, the properties of resource uniformity and in-field reconfiguration via on-chip processors are exploited...
Show moreReconfigurable logic or Field-Programmable Gate Array (FPGA) devices have the ability to dynamically adapt the computational circuit based on user-specified or operating-condition requirements. Such hardware platforms are utilized in this dissertation to develop adaptive techniques for achieving reliable and sustainable operation while autonomously meeting these requirements. In particular, the properties of resource uniformity and in-field reconfiguration via on-chip processors are exploited to implement Evolvable Hardware (EHW). EHW utilize genetic algorithms to realize logic circuits at runtime, as directed by the objective function. However, the size of problems solved using EHW as compared with traditional approaches has been limited to relatively compact circuits. This is due to the increase in complexity of the genetic algorithm with increase in circuit size. To address this research challenge of scalability, the Netlist-Driven Evolutionary Refurbishment (NDER) technique was designed and implemented herein to enable on-the-fly permanent fault mitigation in FPGA circuits. NDER has been shown to achieve refurbishment of relatively large sized benchmark circuits as compared to related works. Additionally, Design Diversity (DD) techniques which are used to aid such evolutionary refurbishment techniques are also proposed and the efficacy of various DD techniques is quantified and evaluated.Similarly, there exists a growing need for adaptable logic datapaths in custom-designed nanometer-scale ICs, for ensuring operational reliability in the presence of Process, Voltage, and Temperature (PVT) and, transistor-aging variations owing to decreased feature sizes for electronic devices. Without such adaptability, excessive design guardbands are required to maintain the desired integration and performance levels. To address these challenges, the circuit-level technique of Self-Recovery Enabled Logic (SREL) was designed herein. At design-time, vulnerable portions of the circuit identified using conventional Electronic Design Automation tools are replicated to provide post-fabrication adaptability via intelligent techniques. In-situ timing sensors are utilized in a feedback loop to activate suitable datapaths based on current conditions that optimize performance and energy consumption. Primarily, SREL is able to mitigate the timing degradations caused due to transistor aging effects in sub-micron devices by reducing the stress induced on active elements by utilizing power-gating. As a result, fewer guardbands need to be included to achieve comparable performance levels which leads to considerable energy savings over the operational lifetime.The need for energy-efficient operation in current computing systems has given rise to Near-Threshold Computing as opposed to the conventional approach of operating devices at nominal voltage. In particular, the goal of exascale computing initiative in High Performance Computing (HPC) is to achieve 1 EFLOPS under the power budget of 20MW. However, it comes at the cost of increased reliability concerns, such as the increase in performance variations and soft errors. This has given rise to increased resiliency requirements for HPC applications in terms of ensuring functionality within given error thresholds while operating at lower voltages. My dissertation research devised techniques and tools to quantify the effects of radiation-induced transient faults in distributed applications on large-scale systems. A combination of compiler-level code transformation and instrumentation are employed for runtime monitoring to assess the speed and depth of application state corruption as a result of fault injection. Finally, fault propagation models are derived for each HPC application that can be used to estimate the number of corrupted memory locations at runtime. Additionally, the tradeoffs between performance and vulnerability and the causal relations between compiler optimization and application vulnerability are investigated.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006206, ucf:52889
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006206
Pages