Current Search: functionalization (x)
View All Items
Pages
- Title
- Atmospheric Pressure Chemical Vapor Deposition of Functional Oxide Materials for Crystalline Silicon Solar Cells.
- Creator
-
Davis, Kristopher, Schoenfeld, Winston, Likamwa, Patrick, Moharam, Jim, Habermann, Dirk, University of Central Florida
- Abstract / Description
-
Functional oxides are versatile materials that can simultaneously enable efficiency gains and cost reductions in crystalline silicon (c-Si) solar cells. In this work, the deposition of functional oxide materials using atmospheric pressure chemical vapor deposition (APCVD) and the integration of these materials into c-Si solar cells are explored. Specifically, thin oxide films and multi-layer film stacks are utilized for the following purposes: (1) to minimize front surface reflectance without...
Show moreFunctional oxides are versatile materials that can simultaneously enable efficiency gains and cost reductions in crystalline silicon (c-Si) solar cells. In this work, the deposition of functional oxide materials using atmospheric pressure chemical vapor deposition (APCVD) and the integration of these materials into c-Si solar cells are explored. Specifically, thin oxide films and multi-layer film stacks are utilized for the following purposes: (1) to minimize front surface reflectance without increasing parasitic absorption within the anti-reflection coating(s); (2) to maximize internal back reflectance of rear passivated cells, thereby increasing optical absorption of weakly absorbed long wavelength photons (? (>) 900 nm); (3) to minimize recombination losses by providing excellent surface passivation; and (4) to improve doping processes during cell manufacturing (e.g., emitter and surface field formation) by functioning as highly controllable dopant sources compatible with in-line diffusion processes. The oxide materials deposited by APCVD include amorphous and polycrystalline titanium oxide, aluminum oxide, boron-doped aluminum oxide, silicon oxide, phosphosilicate glass, and borosilicate glass. The microstructure, optical properties, and electronic properties of these films are characterized for different deposition conditions. Additionally, the impact of these materials on the performance of different types of c-Si solar cells is presented using both simulated and experimental current-voltage curves.
Show less - Date Issued
- 2015
- Identifier
- CFE0005599, ucf:50267
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005599
- Title
- Multifunctional, Multimaterial Particle Fabrication Via an In-Fiber Fluid Instability.
- Creator
-
Kaufman, Joshua, Abouraddy, Ayman, Schoenfeld, Winston, Christodoulides, Demetrios, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Spherical micro- and nano-particles have found widespread use in many various applications from paint to cosmetics to medicine. Due to the multiplicity of desired particle material(s), structure, size range, and functionality, many approaches exist for generating such particles. Bottom-up methods such as chemical synthesis have a high yield and work with a wide range of materials; however, these processes typically lead to large polydispersity and cannot produce structured particles. Top-down...
Show moreSpherical micro- and nano-particles have found widespread use in many various applications from paint to cosmetics to medicine. Due to the multiplicity of desired particle material(s), structure, size range, and functionality, many approaches exist for generating such particles. Bottom-up methods such as chemical synthesis have a high yield and work with a wide range of materials; however, these processes typically lead to large polydispersity and cannot produce structured particles. Top-down approaches such as microfluidics overcome the polydispersity issue and may produce a few different structures in particles, but at lower rates and only at the micro-scale. A method that can efficiently produce uniformly-sized, structured particles out of a variety of materials and at both the micro- and nano-scales does not yet exist.Over the past few years, I have developed an in-fiber particle fabrication method that relies on a surface tension-driven fluid instability, the Plateau-Rayleigh capillary instability (PRI). Thermal treatment of a multimaterial core/cladding fiber induces the PRI, causing the initially intact core to break up into a periodic array of uniformly-sized spherical particles. During this time, I have demonstrated that this method can produce particles from both polymers and glasses, in a multiplicity of structures, and from diameters of over 1 mm down to 20 nm. Furthermore, by using a stack-and-draw method, a high density of cores may be incorporated into a single fiber, making the in-fiber PRI approach a highly scalable process. Finally, I have shown that it is possible to add dopants to the particles to give them functionality. By structuring the particles, it is thus possible to fabricate multi-functional particles whose functionalities may be allocated arbitrarily throughout the volume of the particles.
Show less - Date Issued
- 2014
- Identifier
- CFE0005357, ucf:50479
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005357
- Title
- The Relationship Between Married Partners' Individual and Relationship Distress: An Actor-Partner Analysis of Low-income, Racially and Ethnically Diverse Couples in Relationship Education.
- Creator
-
Munyon, Matthew, Young, Mark, Hagedorn, William, Daire, Andrew, Sivo, Stephen, University of Central Florida
- Abstract / Description
-
Couples experiencing relationship distress often require professional help, such as counseling and couple and relationship education (CRE). Research recently discovered that among couples in counseling, a circular relationship exists between individual and relationship distress(-)stress begets stress. Until this study, a similar examination had not been conducted among couples selecting CRE. This study examined the relationship between individual and relationship distress among married...
Show moreCouples experiencing relationship distress often require professional help, such as counseling and couple and relationship education (CRE). Research recently discovered that among couples in counseling, a circular relationship exists between individual and relationship distress(-)stress begets stress. Until this study, a similar examination had not been conducted among couples selecting CRE. This study examined the relationship between individual and relationship distress among married couples that had children, were from predominantly low-income and racially and ethnically diverse backgrounds, and selected CRE. A correlational research design was employed and framed in the social interdependence theory. The actor-partner interdependence model was conducted within a three-level hierarchical model. The results confirmed that a circular relationship exists between individual and relationship distress(-)distress begets distress. Within the circular model of individual and relational functioning, personal individual distress predicted partner individual distress as well as personal and partner relationship distress, and personal relationship distress predicted personal individual distress and partner relationship distress. The extent to which distress begot distress was stronger among women, those with low income, and those who were unemployed. The results also revealed a continuum of individual and relational functioning. Dyad members interact along a continuum from intrapersonal individual functioning to interpersonal relational functioning. The continua meet at the nexus of negotiation or the heart of interpersonal interaction, where dyad members communicate and make decisions, among other actions. Implications related to the findings of this study as well as inspirations for future research are discussed.
Show less - Date Issued
- 2012
- Identifier
- CFE0004284, ucf:49529
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004284
- Title
- Prediction of Optical Properties of Pi-Conjugated Organic Materials for Technological Innovations.
- Creator
-
Nayyar, Iffat, Masunov, Artem, Saha, Haripada, Stolbov, Sergey, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
Organic ?-conjugated solids are promising candidates for new optoelectronic materials. The large body of evidence points at their advantageous properties such as high charge-carrier mobility, large nonlinear polarizability, mechanical flexibility, simple and low cost fabrication and superior luminescence. They can be used as nonlinear optical (NLO) materials with large two-photon absorption (2PA) and as electronic components capable of generating nonlinear neutral (excitonic) and charged ...
Show moreOrganic ?-conjugated solids are promising candidates for new optoelectronic materials. The large body of evidence points at their advantageous properties such as high charge-carrier mobility, large nonlinear polarizability, mechanical flexibility, simple and low cost fabrication and superior luminescence. They can be used as nonlinear optical (NLO) materials with large two-photon absorption (2PA) and as electronic components capable of generating nonlinear neutral (excitonic) and charged (polaronic) excitations. In this work, we investigate the appropriate theoretical methods used for the (a) prediction of 2PA properties for rational design of organic materials with improved NLO properties, and (b) understanding of the essential electronic excitations controlling the energy-transfer and charge-transport properties in organic optoelectronics. Accurate prediction of these electro-optical properties is helpful for structure-activity relationships useful for technological innovations.In Chapter 1 we emphasize on the potential use of the organic materials for these two applications. The 2PA process is advantageous over one-photon absorption for deep-tissue fluorescence microscopy, photodynamic therapy, microfabrication and optical data storage owing to the three-dimensional spatial selectivity and improved penetration depth in the absorbing or scattering media. The design of the NLO materials with large 2PA cross-sections may reduce the optical damage due to the use of the high intensity laser beams for excitation. The organic molecules also possess self-localized excited states which can decay radiatively or nonradiatively to form excitonic states. This suggests the use of these materials in the electroluminescent devices such as light-emitting diodes and photovoltaic cells through the processes of exciton formation or dissociation, respectively. It is therefore necessary to understand ultrafast relaxation processes required in understanding the interplay between the efficient radiative transfer between the excited states and exciton dissociation into polarons for improving the efficiency of these devices. In Chapter 2, we provide the detailed description of the various theoretical methods applied for the prediction as well as the interpretation of the optical properties of a special class of substituted PPV [poly (p-phenylene vinylene)] oligomers. In Chapter 3, we report the accuracy of different second and third order time dependent density functional theory (TD-DFT) formalisms in prediction of the 2PA spectra compared to the experimental measurements for donor-acceptor PPV derivatives. We recommend a posteriori Tamm-Dancoff approximation method for both qualitative and quantitative analysis of 2PA properties. Whereas, Agren's quadratic response methods lack the double excitations and are not suitable for the qualitative analysis of the state-specific contributions distorting the overall quality of the 2PA predictions. We trace the reasons to the artifactual excited states above the ionization threshold. We also study the effect of the basis set, geometrical constraints and the orbital exchange fraction on the 2PA excitation energies and cross-sections. Higher exchange (BMK and M05-2X) and range-separated (CAM-B3LYP) hybrid functionals are found to yield inaccurate predictions both quantitatively and qualitatively. The failure of the exchange-correlation (XC) functionals with correct asymptotic is traced to the inaccurate transition dipoles between the valence states, where functionals with low HF exchange succeed. In Chapter 4, we test the performance of different semiempirical wavefunction theory methods for the prediction of 2PA properties compared to the DFT results for the same set of molecules. The spectroscopic parameterized (ZINDO/S) method is relatively better than the general purpose parameterized (PM6) method but the accuracy is trailing behind the DFT methods. The poor performances of PM6 and ZINDO/S methods are attributed to the incorrect description of excited-to-excited state transition and 2PA energies, respectively. The different semiempirical parameterizations can at best be used for quantitative analysis of the 2PA properties. The ZINDO/S method combined with different orders of multi-reference configuration interactions provide an improved description of 2PA properties. However, the results are observed to be highly dependent on the specific choice for the active space, order of excitation and reference configurations.In Chapter 5, we present a linear response TD-DFT study to benchmark the ability of existing functional models to describe the extent of self-trapped neutral and charged excitations in PPV and its derivative MEH-PPV considered in their trans-isomeric forms. The electronic excitations in question include the lowest singlet (S1) and triplet (T1†) excitons, positive (P+) and negative (P-) polarons and the lowest triplet (T1) states. Use of the long-range-corrected DFT functional, such as LC-wPBE, is found to be crucial in order to predict the physically correct spatial localization of all the electronic excitations in agreement with experiment. The inclusion of polarizable dielectric environment play an important role for the charged states. The particle-hole symmetry is preserved for both the polymers in trans geometries. These studies indicate two distinct origins leading to self-localization of electronic excitations. Firstly, distortion of molecular geometry may create a spatially localized potential energy well where the state wavefunction self-traps. Secondly, even in the absence of geometric and vibrational dynamics, the excitation may become spatially confined due to energy stabilization caused by polarization effects from surrounding dielectric medium.In Chapter 6, we aim to separate these two fundamental sources of spatial localization. We observe the electronic localization of P+ and P- is determined by the polarization effects of the surrounding media and the character of the DFT functional. In contrast, the self-trapping of the electronic wavefunctions of S1 and T1(T1†) mostly follows their lattice distortions. Geometry relaxation plays an important role in the localization of the S1 and T1† excitons owing to the non-variational construction of the excited state wavefunction. While, mean-field calculated P+, P- and T1 states are always spatially localized even in ground state S0 geometry. Polaron P+ and P- formation is signified by the presence of the localized states for the hole or the electron deep inside the HOMO-LUMO gap of the oligomer as a result of the orbital stabilization at the LC-wPBE level. The broadening of the HOMO-LUMO band gap for the T1 exciton compared to the charged states is associated with the inverted bond length alternation observed at this level. The molecular orbital energetics are investigated to identify the relationships between state localization and the corresponding orbital structure.In Chapter 7, we investigate the effect of various conformational defects of trans and cis nature on the energetics and localization of the charged P+ and P- excitations in PPV and MEH-PPV. We observe that the extent of self-trapping for P+ and P- polarons is highly sensitive on molecular and structural conformations, and distribution of atomic charges within the polymers. The particle-hole symmetry is broken with the introduction of trans defects and inclusion of the polarizable environment in consistent with experiment. The differences in the behavior of PPV and MEH-PPV is rationalized based on their orbital energetics and atomic charge distributions. We show these isomeric defects influence the behavior and drift mobilities of the charge carriers in substituted PPVs.
Show less - Date Issued
- 2013
- Identifier
- CFE0005110, ucf:50722
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005110
- Title
- THE RELATIONSHIP BETWEEN PSYCHOMETRICALLY-DEFINED SOCIAL ANXIETY AND WORKING MEMORY PERFORMANCE.
- Creator
-
Paskowski, Timothy, Bedwell, Jeffrey, University of Central Florida
- Abstract / Description
-
Anxiety disorders are among the most commonly diagnosed class of mental illness in the United States, and often involve abnormally high levels of stress and social fear. Despite high lifetime prevalence rates, social anxiety disorder (SAD) has remarkably low diagnosis and treatment rates. Furthermore, while individuals with other specific psychiatric disorders tend to exhibit significant neuropsychological deficits, neuropsychological functioning in individuals with SAD remains largely...
Show moreAnxiety disorders are among the most commonly diagnosed class of mental illness in the United States, and often involve abnormally high levels of stress and social fear. Despite high lifetime prevalence rates, social anxiety disorder (SAD) has remarkably low diagnosis and treatment rates. Furthermore, while individuals with other specific psychiatric disorders tend to exhibit significant neuropsychological deficits, neuropsychological functioning in individuals with SAD remains largely untested. A majority of the few existing studies concerning neuropsychological performance in SAD samples focus on specific functions, and their limited results are highly mixed. The primary objective of this investigation was to provide a more thorough, broad assessment of both auditory and visual working memory as related to psychometrically-defined social anxiety disorder. In addition, this study aimed to help clarify as to whether such deficits are related to the construct of social anxiety, or whether any potential deficits are better explained by generalized state and/or trait (in-the-moment) anxiety. The implications of a deficit in the visual and/or auditory working memory domains are multifaceted. For example, such a deficit may lead to the inability to detect visual cues in social situations. The inability to process these social cues has the potential to exacerbate some SAD- related symptoms, such as fear of humiliation and judgment. Twenty-nine college students completed both phases of this study, including an assessment of state and trait anxiety as well as social phobia and a four-part working memory battery. An analysis of the Phase II data indicates that individual scores on the four measures of both visual and auditory working memory did not relate to trait and/or state anxiety or psychometrically-defined social anxiety. Thus, it appears that social, generalized trait, and generalized state anxiety do not relate to a neuropsychological deficit in either type of working memory in this sample population. However, we did find a statistical trend suggesting that as social anxiety increased, there was a relative decrease in visual vs. auditory working memory. This statistical trend remained after covarying for state and trait anxiety respectively. Therefore, future research in this area should examine the discrepancy in performance between the auditory and visual working memory domains as it relates to both diagnosed social phobia and psychometrically-defined social anxiety.
Show less - Date Issued
- 2011
- Identifier
- CFH0003798, ucf:44744
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0003798
- Title
- TOTAL BODY WATER AND ITS RELATIONSHIP TO FUNCTIONAL PERFORMANCE IN INDIVIDUALS WITH DIAGNOSED OSTEOARTHRITIS.
- Creator
-
Hanson, Sara, Valdes, Anna, University of Central Florida
- Abstract / Description
-
This study examines a possible relationship between Total Body Water (TBW) levels, osteoarthritic pain and functional performance in a sample of untrained adults. Participants will complete a Western Ontario and McMaster Universities Arthritis Index (WOMAC) questionnaire, TBW will be measured using Single-Frequency Bioelectrical Impedance (SF-BIA) and strength, balance and physical function will be measured by the completion of seven standardized functional tests. Participants in this study...
Show moreThis study examines a possible relationship between Total Body Water (TBW) levels, osteoarthritic pain and functional performance in a sample of untrained adults. Participants will complete a Western Ontario and McMaster Universities Arthritis Index (WOMAC) questionnaire, TBW will be measured using Single-Frequency Bioelectrical Impedance (SF-BIA) and strength, balance and physical function will be measured by the completion of seven standardized functional tests. Participants in this study will include adult men and women, age 35 years and older, who have been previously diagnosed with Osteoarthritis (OA) in the hip or knee, or currently score 35 or higher on the WOMAC. This study aims to determine if TBW values, specifically its intracellular compartment (ICW), will have a relationship to WOMAC scores and if TBW and ICW will have a positive correlation to participants' overall performance on balance, strength, and physical function tests. It is hypothesized that the data will show a negative correlation between ICW and WOMAC scores and a positive correlation between ICW and performance on balance, strength and physical function tests. Little research exists on the relationship between TBW and functional performance in older adults; particularly those whose TBW may be affected by inflammatory conditions such as OA. A goal of this study is to contribute to existing research on the relationship between performance and TBW, while providing insight and data on this relationship in an untrained population.
Show less - Date Issued
- 2015
- Identifier
- CFH0004741, ucf:45363
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004741
- Title
- Estimation and clustering in statistical ill-posed linear inverse problems.
- Creator
-
Rajapakshage, Rasika, Pensky, Marianna, Swanson, Jason, Zhang, Teng, Bagci, Ulas, Foroosh, Hassan, University of Central Florida
- Abstract / Description
-
The main focus of the dissertation is estimation and clustering in statistical ill-posed linear inverse problems. The dissertation deals with a problem of simultaneously estimating a collection of solutions of ill-posed linear inverse problems from their noisy images under an operator that does not have a bounded inverse, when the solutions are related in a certain way. The dissertation defense consists of three parts. In the first part, the collection consists of measurements of temporal...
Show moreThe main focus of the dissertation is estimation and clustering in statistical ill-posed linear inverse problems. The dissertation deals with a problem of simultaneously estimating a collection of solutions of ill-posed linear inverse problems from their noisy images under an operator that does not have a bounded inverse, when the solutions are related in a certain way. The dissertation defense consists of three parts. In the first part, the collection consists of measurements of temporal functions at various spatial locations. In particular, we studythe problem of estimating a three-dimensional function based on observations of its noisy Laplace convolution. In the second part, we recover classes of similar curves when the class memberships are unknown. Problems of this kind appear in many areas of application where clustering is carried out at the pre-processing step and then the inverse problem is solved for each of the cluster averages separately. As a result, the errors of the procedures are usually examined for the estimation step only. In both parts, we construct the estimators, study their minimax optimality and evaluate their performance via a limited simulation study. In the third part, we propose a new computational platform to better understand the patterns of R-fMRI by taking into account the challenge of inevitable signal fluctuations and interpretthe success of dynamic functional connectivity approaches. Towards this, we revisit an auto-regressive and vector auto-regressive signal modeling approach for estimating temporal changes of the signal in brain regions. We then generate inverse covariance matrices fromthe generated windows and use a non-parametric statistical approach to select significant features. Finally, we use Lasso to perform classification of the data. The effectiveness of theproposed method is evidenced in the classification of R-fMRI scans
Show less - Date Issued
- 2019
- Identifier
- CFE0007710, ucf:52450
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007710
- Title
- A Fitness Function Elimination Theory for Blackbox Optimization and Problem Class Learning.
- Creator
-
Anil, Gautham, Wu, Annie, Wiegand, Rudolf, Stanley, Kenneth, Clarke, Thomas, Jansen, Thomas, University of Central Florida
- Abstract / Description
-
The modern view of optimization is that optimization algorithms are not designed in a vacuum, but can make use of information regarding the broad class of objective functions from which a problem instance is drawn. Using this knowledge, we want to design optimization algorithms that execute quickly (efficiency), solve the objective function with minimal samples (performance), and are applicable over a wide range of problems (abstraction). However, we present a new theory for blackbox...
Show moreThe modern view of optimization is that optimization algorithms are not designed in a vacuum, but can make use of information regarding the broad class of objective functions from which a problem instance is drawn. Using this knowledge, we want to design optimization algorithms that execute quickly (efficiency), solve the objective function with minimal samples (performance), and are applicable over a wide range of problems (abstraction). However, we present a new theory for blackbox optimization from which, we conclude that of these three desired characteristics, only two can be maximized by any algorithm.We put forward an alternate view of optimization where we use knowledge about the problem class and samples from the problem instance to identify which problem instances from the class are being solved. From this Elimination of Fitness Functions approach, an idealized optimization algorithm that minimizes sample counts over any problem class, given complete knowledge about the class, is designed. This theory allows us to learn more about the difficulty of various problems, and we are able to use it to develop problem complexity bounds.We present general methods to model this algorithm over a particular problem class and gain efficiency at the cost of specifically targeting that class. This is demonstrated over the Generalized Leading-Ones problem and a generalization called LO**, and efficient algorithms with optimal performance are derived and analyzed. We also tighten existing bounds for LO***. Additionally, we present a probabilistic framework based on our Elimination of Fitness Functions approach that clarifies how one can ideally learn about the problem class we face from the objective functions. This problem learning increases the performance of an optimization algorithm at the cost of abstraction.In the context of this theory, we re-examine the blackbox framework as an algorithm design framework and suggest several improvements to existing methods, including incorporating problem learning, not being restricted to blackbox framework and building parametrized algorithms. We feel that this theory and our recommendations will help a practitioner make substantially better use of all that is available in typical practical optimization algorithm design scenarios.
Show less - Date Issued
- 2012
- Identifier
- CFE0004511, ucf:49268
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004511
- Title
- DFT STUDY OF GEOMETRY AND ENERGETICS OF TRANSITION METAL SYSTEMS.
- Creator
-
Goel, Satyender, MASUNOV, ARTEM, University of Central Florida
- Abstract / Description
-
This dissertation focuses on computational study of the geometry and energetics small molecules and nanoclusters involving transition metals (TM). These clusters may be used for various industrial applications including catalysis and photonics. Specifically, in this work we have studied hydrides and carbides of 3d-transition metal systems (Sc through Cu), small nickel and gold clusters. Qualitatively correct description of the bond dissociation is ensured by allowing the spatial and spin...
Show moreThis dissertation focuses on computational study of the geometry and energetics small molecules and nanoclusters involving transition metals (TM). These clusters may be used for various industrial applications including catalysis and photonics. Specifically, in this work we have studied hydrides and carbides of 3d-transition metal systems (Sc through Cu), small nickel and gold clusters. Qualitatively correct description of the bond dissociation is ensured by allowing the spatial and spin symmetry to break. We have tested applicability of new exchange-correlation functional and alternative theoretical descriptions (spin-contamination correction in broken symmetry DFT and ensemble Kohn-Sham (EKS)) as well. We studies TM hydrides and carbides systems to understand the importance of underlying phenomenon of bond breaking in catalytic processes. We have tested several exchange-correlation functionals including explicit dependence on kinetic energy density for the description of hydrides (both neutral and cationic) and carbides formed by 3d-transition metals. We find M05-2x and BMK dissociation energies are in better agreement with experiment (where available) than those obtained with high level wavefunction theory methods, published previously. This agreement with experiment deteriorates quickly for other functionals when the fraction of the Hartree-Fock exchange in DFT functional is decreased. Higher fraction of HF exchange is also essential in EKS formalism, but it does not help when spin-adapted unrestricted approach is employed. We analyze the electron spin densities using Natural Bond Orbital population analysis and find that simple description of 3d electrons as non-bonding in character is rarely correct. Unrestricted formalism results in appreciable spin-contamination for some of the systems at equilibrium, which motivated us to investigate it further in details. In order to correct the spin contamination effect on the energies, we propose a new scheme to correct for spin contamination arising in broken-symmetry DFT approach. Unlike conventional schemes, our spin correction is introduced for each spin-polarized electron pair individually and therefore is expected to yield more accurate energy values. We derive an expression to extract the energy of the pure singlet state from the energy of the broken-symmetry DFT description of the low spin state and the energies of the high spin states (pentuplet and two spin-contaminated triplets in the case of two spin-polarized electron pairs). We validate our spin-contamination correction approach by a simple example of H2 and applied to more complex MnH system. Ensemble KS formalism is also applied to investigate the dissociation of C2 molecule. We find that high fraction of HF exchange is essential to reproduce the results of EKS treatment with exact exchange-correlation functional. We analyze the geometry and energetics of small nickel clusters (Ni2-Ni5) for several lowest energy isomers. We also study all possible spin states of small nickel cluster isomers and report observed trends in energetics. Finally we determine the geometry and energetics of ten lowest energy isomers of four small gold clusters (Au2, Au4, Au6, and Au8). We have also investigated the influence of cluster geometry, ligation, solvation and relativistic effects on electronic structure of these gold clusters. The effect of one-by-one ligand attachment in vacuum and solvent environment is also studied. Performance of five DFT functionals are tested as well; Local Spin Density Approximation (SVWN5), Generalized Gradient Approximation (PBE), kinetic energy density-dependent functional (TPSS), hybrid DFT (B3LYP), and CAM-B3LYP which accounts for long-range exchange effects believed to be important in the analysis of metal bonding in gold complexes and clusters. Our results exhibit the ligand induced stability enhancement of otherwise less stable isomers of Au4, Au6 and Au8. Ligands are found to play a crucial role in determining the 2D to 3D transition realized in small gold clusters. In order to select an appropriate theory level to use in this study, we investigate the effect of attachment of four different ligands (NH3, NMe3, PH3, PMe3) on cluster geometry and energetics of Au2 and Au4 in vacuum and in solution. Our results benchmark the applicability of DFT functional model and polarization functions in the basis set for calculations of ligated gold cluster systems. We employ five different basis sets with increasing amount of polarization and diffuse functions; LANL2DZ, LANL2DZ-P, def2-SVP, def2-TZVP, and def2-QZVP. We obtain NMe3 = NH3 < PH3 < PMe3 order of ligand binding energies and observe shallow potential energy surfaces in all molecules. Our results suggest appropriate quantum-chemical methodologies to model small noble metal clusters in realistic ligand environment to provide reliable theoretical analysis in order to complement experiments.
Show less - Date Issued
- 2010
- Identifier
- CFE0003293, ucf:48498
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003293
- Title
- Chemistry and dissipation at mineral surfaces in the space environment.
- Creator
-
Tucker, William, Schelling, Patrick, Britt, Daniel, Kara, Abdelkader, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation,...
Show moreThe composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation, experimental results are first presented which demonstrate that mineral grains subjected to high temperatures in a reducing environment lead to iron nanoparticles which are strongly catalytic for the formation of complex organic species. Next, results obtained using molecular-dynamics simulations demonstrate that uncoordinated surface atoms in metallic nanoparticles result in plastic deformation, strong dissipation and adhesion during collisions. This can be contrasted with previous simulations which demonstrate significantly weaker dissipation when surface atoms are passivated. Calculations of critical sticking velocities demonstrate that simple coarse- grain models are insufficient for predicting the adhesive behavior of sub-micron sized grains. Next, results are presented describing a computational study illuminating the role of surface chemistry on adhesion and dissipation for iron nanoparticle collisions, which in the case of free radical adsorbates may also contribute to the creation of more complex species. Lastly, to further elucidate dissipation, the direct coupling of harmonic vibrational modes in the dissipation process is established. The results demonstrate broad participation of low and high-frequency modes during a collision during a timescale less than time required for particles to rebound. Hence, our results demonstrate extremely strong likelihood of adhesion during collisions. This approach provides a way to use density-functional theory calculations to directly compute dissipative couplings at mineral interfaces.
Show less - Date Issued
- 2019
- Identifier
- CFE0007545, ucf:52592
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007545
- Title
- An Optimization of Thermodynamic Efficiency vs. Capacity for Communications Systems.
- Creator
-
Rawlins, Gregory, Wocjan, Pawel, Wahid, Parveen, Georgiopoulos, Michael, Jones, W Linwood, Mucciolo, Eduardo, University of Central Florida
- Abstract / Description
-
This work provides a fundamental view of the mechanisms which affect the power efficiency of communications processes along with a method for efficiency enhancement. Shannon's work is the definitive source for analyzing information capacity of a communications system but his formulation does not predict an efficiency relationship suitable for calculating the power consumption of a system, particularly for practical signals which may only approach the capacity limit. This work leverages...
Show moreThis work provides a fundamental view of the mechanisms which affect the power efficiency of communications processes along with a method for efficiency enhancement. Shannon's work is the definitive source for analyzing information capacity of a communications system but his formulation does not predict an efficiency relationship suitable for calculating the power consumption of a system, particularly for practical signals which may only approach the capacity limit. This work leverages Shannon's while providing additional insight through physical models which enable the calculation and improvement of efficiency for the encoding of signals. The proliferation of Mobile Communications platforms is challenging capacity of networks largely because of the ever increasing data rate at each node. This places significant power management demands on personal computing devices as well as cellular and WLAN terminals. The increased data throughput translates to shorter meantime between battery charging cycles and increased thermal footprint. Solutions are developed herein to counter this trend. Hardware was constructed to measure the efficiency of a prototypical Gaussian signal prior to efficiency enhancement. After an optimization was performed, the efficiency of the encoding apparatus increased from 3.125% to greater than 86% for a manageable investment of resources. Likewise several telecommunications standards based waveforms were also tested on the same hardware. The results reveal that the developed physical theories extrapolate in a very accurate manner to an electronics application, predicting the efficiency of single ended and differential encoding circuits before and after optimization.
Show less - Date Issued
- 2015
- Identifier
- CFE0006051, ucf:50994
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006051
- Title
- The effects of chronic sleep deprivation on sustained attention: A study of brain dynamic functional connectivity.
- Creator
-
He, Yiling, Karwowski, Waldemar, Xanthopoulos, Petros, Hancock, Peter, Mikusinski, Piotr, University of Central Florida
- Abstract / Description
-
It is estimated that about 35-40% of adults in the U.S. suffer from insufficient sleep. Chronic sleep deprivation has become a prevalent phenomenon because of contemporary lifestyle and work-related factors. Sleep deprivation can reduce the capabilities and efficiency of attentional performance by impairing perception, increasing effort to maintain concentration, as well as introducing vision disturbance. Thus, it is important to understand the neural mechanisms behind how chronic sleep...
Show moreIt is estimated that about 35-40% of adults in the U.S. suffer from insufficient sleep. Chronic sleep deprivation has become a prevalent phenomenon because of contemporary lifestyle and work-related factors. Sleep deprivation can reduce the capabilities and efficiency of attentional performance by impairing perception, increasing effort to maintain concentration, as well as introducing vision disturbance. Thus, it is important to understand the neural mechanisms behind how chronic sleep deprivation impairs sustained attention.In recent years, more attention has been paid to the study of the integration between anatomically distributed and functionally connected brain regions. Functional connectivity has been widely used to characterize brain functional integration, which measures the statistical dependency between neurophysiological events of the human brain. Further, evidence from recent studies has shown the non-stationary nature of brain functional connectivity, which may reveal more information about the human brain. Thus, the objective of this thesis is to investigate the effects of chronic sleep deprivation on sustained attention from the perspective of dynamic functional connectivity.A modified spatial cueing paradigm was used to assess human sustained attention in rested wakefulness and chronic sleep deprivation conditions. Partial least squares approach was applied to distinguish brain functional connectivity for the experimental conditions. With the integration of a sliding-window approach, dynamic patterns of brain functional connectivity were identified in two experimental conditions. The brain was modeled as a series of dynamic functional networks in each experimental condition. Graph theoretic analysis was performed to investigate the dynamic properties of brain functional networks, using network measures of clustering coefficient and characteristics path length.In the chronic sleep deprivation condition, a compensation mechanism between highly clustered organization and ineffective adaptability of brain functional networks was observed. Specifically, a highly clustered organization of brain functional networks was illustrated with a large clustering coefficient. This organization suggested that brain utilizes more connections to maintain attention in the chronic sleep deprivation condition. A smaller impact of clustering coefficient variation on characteristics path lengths indicated an ineffective adaptability of brain functional networks in the chronic sleep deprivation condition. In the rested wakefulness condition, brain functional networks showed the small-world topology in general, with the average small-world topology index larger than one. Small-world topology was identified as an optimal network structure with the balance between local information processing and global integration. Given the fluctuating values of the index over time, small-world brain networks were observed in most cases, indicating an effective adaptability of the human brain to maintain the dominance of small-world networks in the rested wakefulness condition. On the contrary, given that the average small-world topology index was smaller than one, brain functional networks generally exhibited random network structure. From the perspective of dynamic functional networks, even though there were few cases showing small-world brain networks, brain functional networks failed to maintain the dominance of small-world topology in the chronic sleep deprivation condition.In conclusion, to the best of our knowledge this thesis was the first to investigate the effects of chronic sleep deprivation on sustained attention from the perspective of dynamic brain functional connectivity. A compensation mechanism between highly clustered organization and ineffective adaptability of brain functional networks was observed in the chronic sleep deprivation condition. Furthermore, chronic sleep deprivation impaired sustained attention by reducing the effectiveness of brain functional networks' adaptability, resulting in the disrupted dominance of small-world brain networks.
Show less - Date Issued
- 2015
- Identifier
- CFE0006036, ucf:50990
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006036
- Title
- Genetically-programmed suicide of adrenergic cells in the mouse leads to severe left ventricular dysfunction, impaired weight gain, and symptoms of neurological dysfunction.
- Creator
-
Owji, Aaron, Ebert, Steven, King, Stephen, Sugaya, Kiminobu, University of Central Florida
- Abstract / Description
-
Phenylethanolamine-N-methyltransferase (Pnmt) catalyzes the conversion of noradrenaline to adrenaline and is the last enzyme in the catecholamine biosynthetic pathway. Pnmt serves as a marker for adrenergic cells, and lineage-tracing experiments have identified the embryonic heart and hindbrain region as the first sites of Pnmt expression in the mouse. Pnmt expression in the heart occurs before the adrenal glands have formed and prior to sympathetic innervation, suggesting that the heart is...
Show morePhenylethanolamine-N-methyltransferase (Pnmt) catalyzes the conversion of noradrenaline to adrenaline and is the last enzyme in the catecholamine biosynthetic pathway. Pnmt serves as a marker for adrenergic cells, and lineage-tracing experiments have identified the embryonic heart and hindbrain region as the first sites of Pnmt expression in the mouse. Pnmt expression in the heart occurs before the adrenal glands have formed and prior to sympathetic innervation, suggesting that the heart is the first site of catecholamine production in the mouse. The function of these Pnmt+ cells in heart development remains unclear. In the present study, we test the hypothesis that (i) a genetic ablation technique utilizing a suicide reporter gene selectively destroys Pnmt cells in the mouse, and (ii) Pnmt cells are required for normal cardiovascular and neurological function.To genetically ablate adrenergic cells, we mated Pnmt-Cre mice, in which Cre-recombinase is under the transcriptional regulation of the Pnmt promoter, and a Cre -activated diphtheria toxin A (DTA) mouse strain (ROSA26-eGFP-DTA), thereby causing activation of the toxic allele (DTA) in Pnmt-expressing (adrenergic) cells resulting in selective (")suicide(") of these cells in approximately half of the offspring. The other half serve as controls because they do not have the ROSA26-eGFP-DTA construct. In the Pnmt+/Cre; R26+/DTA offspring, we achieve a dramatic reduction in Pnmt transcript and Pnmt immunoreactive area in the adrenal glands. Furthermore, we show that loss of Pnmt cells results in severe left ventricular dysfunction that progressively worsens with age. These mice exhibit severely reduced cardiac output and ejection fraction due to decreased LV contractility and bradycardia at rest. Surprisingly, these mice appear to have a normal stress response, as heart rate and ejection fraction increased to a similarextent compared to controls. In addition to baseline cardiac dysfunction, these mice fail to gain body weight in a normal manner and display gross neurological dysfunction, including muscular weakness, abnormal gaiting, and altered tail suspension reflex, an indicator of neurological function.This work demonstrates that selective Pnmt cell destruction leads to severe left ventricular dysfunction, lack of weight gain, and neurological dysfunction. This novel mouse is expected to shed insight into the role of Pnmt cells in the heart, and suggests a role for Pnmt cells in neurological regulation of feeding behavior, metabolism, and motor control.
Show less - Date Issued
- 2015
- Identifier
- CFE0006048, ucf:50984
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006048
- Title
- Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta-analytic review of cognitive, academic, and behavioral outcomes.
- Creator
-
Orban, Sarah, Rapport, Mark, Beidel, Deborah, Cassisi, Jeffrey, University of Central Florida
- Abstract / Description
-
Children with ADHD are characterized frequently as possessing underdeveloped executive functions and sustained attentional abilities, and recent commercial claims suggest that computer-based cognitive training can remediate these impairments and provide significant and lasting improvement in their attention, impulse control, social functioning, academic performance, and complex reasoning skills. The present review critically evaluates these claims through meta-analysis of 25 studies of...
Show moreChildren with ADHD are characterized frequently as possessing underdeveloped executive functions and sustained attentional abilities, and recent commercial claims suggest that computer-based cognitive training can remediate these impairments and provide significant and lasting improvement in their attention, impulse control, social functioning, academic performance, and complex reasoning skills. The present review critically evaluates these claims through meta-analysis of 25 studies of facilitative intervention training (i.e., cognitive training) for children with ADHD. Random effects models corrected for publication bias and sampling error revealed that studies training short-term memory alone resulted in moderate magnitude improvements in short-term memory (d= 0.63), whereas training attention did not significantly improve attention and training mixed executive functions did not significantly improve the targeted executive functions (both nonsignificant: 95% confidence intervals include 0.0). Far transfer effects of cognitive training on academic functioning, blinded ratings of behavior (both nonsignificant), and cognitive tests (d= 0.14) were nonsignificant or negligible. Unblinded raters (d= 0.48) reported significantly larger benefits relative to blinded raters and objective tests (both p (<) .05), indicating the likelihood of Hawthorne effects. Critical examination of training targets revealed incongruence with empirical evidence regarding the specific executive functions that are (a) most impaired in ADHD, and (b) functionally related to the behavioral and academic outcomes these training programs are intended to ameliorate. Collectively, meta-analytic results indicate that claims regarding the academic, behavioral, and cognitive benefits associated with extant cognitive training programs are unsupported in ADHD. The methodological limitations of the current evidence base, however, leaves open the possibility that cognitive training techniques designed to improve empirically documented executive function deficits may benefit children with ADHD.
Show less - Date Issued
- 2013
- Identifier
- CFE0005040, ucf:49962
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005040
- Title
- THE EFFECTS OF THE ATTAINMENT OF FUNCTIONAL ASSESSMENT SKILLS BY PRESCHOOL TEACHERS AND THEIR ASSISTANTS ON STUDENTS' CLASSROOM BEHAVIOR.
- Creator
-
Wagner, Karen, Cross, Lee, University of Central Florida
- Abstract / Description
-
The purpose of this study was to examine the effects of teaching functional assessment skills to three Prekindergarten teachers and their teaching assistants. The effects were measured by examining the behavior of the teachers and assistants, as well as the behaviors of the students; before, during and after the delivery of three, two-hour functional assessment classes. The teaching staff videotaped themselves and their students during a regular class time, predetermined by the researcher and...
Show moreThe purpose of this study was to examine the effects of teaching functional assessment skills to three Prekindergarten teachers and their teaching assistants. The effects were measured by examining the behavior of the teachers and assistants, as well as the behaviors of the students; before, during and after the delivery of three, two-hour functional assessment classes. The teaching staff videotaped themselves and their students during a regular class time, predetermined by the researcher and each teacher prior to the onset of baseline data collection, over an approximate nine-week period. The video was taken in twelve-minute segments every day. Later, the video was coded for specific behaviors. Although there were gains in appropriate intervention strategies from teachers and assistants during the intervention phase, the interventions generally peaked a week or two after the classes ended and gradually declined. Teacher skills were retained however, as most ratios of appropriate interventions maintained at higher rates than baseline. Relationships between student behavior and correct teacher interventions were established and maintained. The intervention resulted in changes in staff behavior, but results did not sustain at high levels over time. The realization that escape maintained some student behavior, and teaching skills to "test" for function, were likely the most important concepts for many of the participants. Further research should include adding a behavior coach to assist in shaping the teaching staffs' emerging skills and to provide a sounding board when developing specific student interventions.
Show less - Date Issued
- 2008
- Identifier
- CFE0002088, ucf:47575
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002088
- Title
- NONLINEAR OPTICAL PROPERTIES OF ORGANIC CHROMOPHORES CALCULATED WITHIN TIME DEPENDENT DENSITY FUNCTIONAL THEORY.
- Creator
-
Tafur, Sergio, Kokoouline, Viatcheslav, University of Central Florida
- Abstract / Description
-
Time Dependent Density Functional Theory offers a good accuracy/computational cost ratio among different methods used to predict the electronic structure for molecules of practical interest. The Coupled Electronic Oscillator (CEO) formalism was recently shown to accurately predict Nonlinear Optical (NLO) properties of organic chromophores when combined with Time Dependent Density Functional Theory. Unfortunately, CEO does not lend itself easily to interpretation of the structure activity...
Show moreTime Dependent Density Functional Theory offers a good accuracy/computational cost ratio among different methods used to predict the electronic structure for molecules of practical interest. The Coupled Electronic Oscillator (CEO) formalism was recently shown to accurately predict Nonlinear Optical (NLO) properties of organic chromophores when combined with Time Dependent Density Functional Theory. Unfortunately, CEO does not lend itself easily to interpretation of the structure activity relationships of chromophores. On the other hand, the Sum Over States formalism in combination with semiempirical wavefunction methods has been used in the past for the design of simplified essential states models. These models can be applied to optimization of NLO properties of interest for applications. Unfortunately, TD-DFT can not be combined directly with SOS because state-to-state transition dipoles are not defined in the linear response TD approach. In this work, a second order CEO approach to TD-DFT is simplified so that properties of double excited states and state-to-state transition dipoles may be expressed through the combination of linear response properties. This approach is termed the a posteriori Tamm-Dancoff approximation (ATDA), and validated against high-level wavefunction theory methods. Sum over States (SOS) and related Two-Photon Transition Matrix formalism are then used to predict Two-Photon Absorption (2PA) profiles and anisotropy, as well as Second Harmonic Generation (SHG) properties. Numerical results for several conjugated molecules are in excellent agreement with CEO and finite field calculations, and reproduce experimental measurements well.
Show less - Date Issued
- 2007
- Identifier
- CFE0001853, ucf:47372
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001853
- Title
- ANALYSIS OF TIME SYNCHRONIZATION ERRORS IN HIGH DATA RATE ULTRAWIDEBAND ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING DATA LINKS.
- Creator
-
Bates, Lakesha, Jones, W. Linwood, University of Central Florida
- Abstract / Description
-
Emerging Ultra Wideband (UWB) Orthogonal Frequency Division Multiplexing (OFDM) systems hold the promise of delivering wireless data at high speeds, exceeding hundreds of megabits per second over typical distances of 10 meters or less. The purpose of this Thesis is to estimate the timing accuracies required with such systems in order to achieve Bit Error Rates (BER) of the order of magnitude of 10-12 and thereby avoid overloading the correction of irreducible errors due to misaligned timing...
Show moreEmerging Ultra Wideband (UWB) Orthogonal Frequency Division Multiplexing (OFDM) systems hold the promise of delivering wireless data at high speeds, exceeding hundreds of megabits per second over typical distances of 10 meters or less. The purpose of this Thesis is to estimate the timing accuracies required with such systems in order to achieve Bit Error Rates (BER) of the order of magnitude of 10-12 and thereby avoid overloading the correction of irreducible errors due to misaligned timing errors to a small absolute number of bits in error in real-time relative to a data rate of hundreds of megabits per second. Our research approach involves managing bit error rates through identifying maximum timing synchronization errors. Thus, it became our research goal to determine the timing accuracies required to avoid operation of communication systems within the asymptotic region of BER flaring at low BERs in the resultant BER curves. We propose pushing physical layer bit error rates to below 10-12 before using forward error correction (FEC) codes. This way, the maximum reserve is maintained for the FEC hardware to correct for burst as well as recurring bit errors due to corrupt bits caused by other than timing synchronization errors.
Show less - Date Issued
- 2004
- Identifier
- CFE0000197, ucf:46173
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000197
- Title
- EVALUATING COMPETITION BETWEEN VERBAL AND IMPLICIT SYSTEMS WITH FUNCTIONAL NEAR-INFRARED SPECTROSCOPY.
- Creator
-
Schiebel, Troy A, Bohil, Corey, University of Central Florida
- Abstract / Description
-
In category learning, explicit processes function through the prefrontal cortex (PFC) and implicit processes function through the basal ganglia. Research suggested that these two systems compete with each other. The goal of this study was to shed light on this theory. 15 undergraduate subjects took part in an event-related experiment that required them to categorize computer-generated line-stimuli, which varied in length and/or angle depending on condition. Subjects participated in an...
Show moreIn category learning, explicit processes function through the prefrontal cortex (PFC) and implicit processes function through the basal ganglia. Research suggested that these two systems compete with each other. The goal of this study was to shed light on this theory. 15 undergraduate subjects took part in an event-related experiment that required them to categorize computer-generated line-stimuli, which varied in length and/or angle depending on condition. Subjects participated in an explicit "rule-based" (RB) condition and an implicit "information-integration" (II) condition while connected to a functional near-infrared spectroscopy (fNIRS) apparatus, which measured the hemodynamic response (HR) in their PFC. Each condition contained 2 blocks. We hypothesized that the competition between explicit and implicit systems (COVIS) would be demonstrated if, by block 2, task-accuracy was approximately equal across conditions with PFC activity being comparatively higher in the II condition. This would indicate that subjects could learn the categorization task in both conditions but were only able to decipher an explicit rule in the RB condition; their PFC would struggle to do so in the II condition, resulting in perpetually high activation. In accordance with predictions, results revealed no difference in accuracy across conditions with significant difference in channel activation. There were channel trends (p<.1) which showed PFC activation decrease in the RB condition and increase in the II condition by block 2. While these results support our predictions, they are largely nonsignificant, which could be attributed to the event-related design. Future research should utilize a larger samples size for improved statistical power.
Show less - Date Issued
- 2016
- Identifier
- CFH2000086, ucf:45502
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000086
- Title
- PREDICTING COGNITIVE WORKLOAD WITH MEASURES FROM FUNCTIONAL NEAR-INFRARED SPECTROSCOPY (FNIRS) AND HEART RATE.
- Creator
-
Duany, John, Bohil, Corey, University of Central Florida
- Abstract / Description
-
The objective of this study was to assess low to high levels of Cognitive Workload by measuring heart rate and cortical blood flow in real-time. Four conditions were implemented into a within-subjects experimental design. Two conditions of difficulty and two conditions of trial order were used to illicit different levels of workload which will be analyzed with psychophysiological equipment. Functional Near-Infrared Spectroscopy (fNIRS) has become more prominent for measuring the blood...
Show moreThe objective of this study was to assess low to high levels of Cognitive Workload by measuring heart rate and cortical blood flow in real-time. Four conditions were implemented into a within-subjects experimental design. Two conditions of difficulty and two conditions of trial order were used to illicit different levels of workload which will be analyzed with psychophysiological equipment. Functional Near-Infrared Spectroscopy (fNIRS) has become more prominent for measuring the blood oxygenation levels in the prefrontal cortex of individuals operating in hazardous work environments, students with learning disabilities, and in research for military training. This is due to the fNIR device being highly mobile, inexpensive, and able to produce a high-spatial resolution of the dorsolateral prefrontal cortex during executive functioning. Heart Rate will be measured by an Electrocardiogram, which will be used in concordance with fNIR oxygenation levels to predict if an individual is in a condition that produces low or high mental workload. Successfully utilizing heart rate and blood oxygenation data as predictors of cognitive workload may validate implementing multiple physiological devices together in real-time and may be a more accurate solution for preventing excessive workload.
Show less - Date Issued
- 2013
- Identifier
- CFH0004478, ucf:45070
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004478
- Title
- Biomechanical Models of Human Upper and Tracheal Airway Functionality.
- Creator
-
Kuruppumullage, Don Nadun, Ilegbusi, Olusegun, Kassab, Alain, Moslehy, Faissal, Santhanam, Anand, Mansy, Hansen, Hoffman Ruddy, Bari, University of Central Florida
- Abstract / Description
-
The respiratory tract, in other words, the airway, is the primary airflow path for several physiological activities such as coughing, breathing, and sneezing. Diseases can impact airway functionality through various means including cancer of the head and neck, Neurological disorders such as Parkinson's disease, and sleep disorders and all of which are considered in this study. In this dissertation, numerical modeling techniques were used to simulate three distinct airway diseases: a weak...
Show moreThe respiratory tract, in other words, the airway, is the primary airflow path for several physiological activities such as coughing, breathing, and sneezing. Diseases can impact airway functionality through various means including cancer of the head and neck, Neurological disorders such as Parkinson's disease, and sleep disorders and all of which are considered in this study. In this dissertation, numerical modeling techniques were used to simulate three distinct airway diseases: a weak cough leading to aspiration, upper airway patency in obstructive sleep apnea, and tongue cancer in swallow disorders. The work described in this dissertation, therefore, divided into three biomechanical models, of which fluid and particulate dynamics model of cough is the first. Cough is an airway protective mechanism, which results from a coordinated series of respiratory, laryngeal, and pharyngeal muscle activity. Patients with diminished upper airway protection often exhibit cough impairment resulting in aspiration pneumonia. Computational Fluid Dynamics (CFD) technique was used to simulate airflow and penetrant behavior in the airway geometry reconstructed from Computed Tomography (CT) images acquired from participants. The second study describes Obstructive Sleep Apnea (OSA) and the effects of dilator muscular activation on the human retro-lingual airway in OSA. Computations were performed for the inspiration stage of the breathing cycle, utilizing a fluid-structure interaction (FSI) method to couple structural deformation with airflow dynamics. The spatiotemporal deformation of the structures surrounding the airway wall was predicted and found to be in general agreement with observed changes in luminal opening and the distribution of airflow from upright to supine posture. The third study describes the effects of cancer of the tongue base on tongue motion during swallow. A three-dimensional biomechanical model was developed and used to calculate the spatiotemporal deformation of the tongue under a sequence of movements which simulate the oral stage of swallow.
Show less - Date Issued
- 2018
- Identifier
- CFE0007034, ucf:51986
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007034