Current Search: hydrogen (x)
Pages
-
-
Title
-
TWO-PHOTON CROSS SECTION ENHANCEMENT OF PHOTOCHROMIC COMPOUNDS FOR USE IN 3D OPTICAL DATA STORAGE.
-
Creator
-
Luchita, Gheorghe, Belfield, Kevin, University of Central Florida
-
Abstract / Description
-
Rewritable photochrome-based 3D optical data storage requires photochromic molecules with high two-photon absorption (2PA) cross sections. Currently, the low value of two-photon absorption cross sections of existing photochromes makes them unsuitable for practical application in 3D data storage. Worldwide attempts to increase the cross section of photochromic molecules by altering the chemical structure have yielded poor results. In this work, two ways to increase the two-photon absorption...
Show moreRewritable photochrome-based 3D optical data storage requires photochromic molecules with high two-photon absorption (2PA) cross sections. Currently, the low value of two-photon absorption cross sections of existing photochromes makes them unsuitable for practical application in 3D data storage. Worldwide attempts to increase the cross section of photochromic molecules by altering the chemical structure have yielded poor results. In this work, two ways to increase the two-photon absorption cross sections of photochromes were investigated. In the first method, partial success demonstrated by extending the conjugation of a photochromic molecule, a high two-photon absorption cross section of the closed form isomer and high photoconversion to the closed form were realized. At the same time, a decrease in photoswitching quantum yield and low photoconversion to open form was observed. A discussion is provided to explain the results, suggesting that the proposed method of extending the conjugation may not solve the problem. For this reason a new method for effective two-photon absorption cross section enhancement of photochromes was proposed. As a proof of principle, a new two-photon absorbing dye with a hydrogen bonding moiety was synthesized and used for the formation of supramolecular structures with a photochromic compound. Theoretical reasoning and experimental demonstration of energy transfer from the dye to the photochrome under one and two-photon excitation confirmed the practical value of the method. The effects of a 2PA dye on the photochromic properties of a diarylethene were investigated using a model compound to simplify data analysis. Formation of supramolecular structures was revealed using 1H NMR spectroscopic methods. The model compound, having the same hydrogen bonding moiety as 2PA dye, has been demonstrated to bind with photochrome molecules at very low concentrations. Photochromic properties of 2,3-bis(2,4,5-trimethyl-3-thienyl)maleimide, including conversions at the photostationary state, extinction coefficients, photoisomerization reaction rates and quantum yields, were shown to be affected by hydrogen bonding with the model compound - 2,6-bis-(acetamido)pyridine. The extent of this change was determined and discussed, demonstrating a balanced supramolecular strategy to modulate photochemical and photophysical properties of this important class of photochromic material.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003928, ucf:48695
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003928
-
-
Title
-
THE STUDY OF THREE DIFFERENT LAYERED STRUCTURES AS MODEL SYSTEMS FOR HYDROGEN STORAGE MATERIALS.
-
Creator
-
Oztek, Muzaffer, Hampton, Michael, University of Central Florida
-
Abstract / Description
-
The strength and success of the hydrogen economy relies heavily on the storage of hydrogen. Storage systems in which hydrogen is sequestered in a solid material have been shown to be advantageous over storage of hydrogen as a liquid or compressed gas. Many different types of materials have been investigated, yet the desired capacity and uptake/release characteristics required for implementation have not been reached. In this work, porphyrin aggregates were investigated as a new type of...
Show moreThe strength and success of the hydrogen economy relies heavily on the storage of hydrogen. Storage systems in which hydrogen is sequestered in a solid material have been shown to be advantageous over storage of hydrogen as a liquid or compressed gas. Many different types of materials have been investigated, yet the desired capacity and uptake/release characteristics required for implementation have not been reached. In this work, porphyrin aggregates were investigated as a new type of material for hydrogen storage. The building blocks of the aggregates are porphyrin molecules that are planar and can assume a face to face arrangement that is also known as H-aggregation. The H-aggregates were formed in solution, upon mixing of aqueous solutions of two different porphyrins, one carrying positively charged and the other one carrying negatively charged functional groups. The cationic porphyrin used was meso-tetra(4-N,N,N-trimethylanilinium) porphine (TAP) and it was combined with four different anionic porphyrins, meso-tetra(4-sulfonatophenyl)porphine (TPPS), meso-tetra(4-carboxyphenyl) porphine (TCPP), Cu(II) meso-tetra(4-carboxyphenyl) porphine, and Fe(III) meso-tetra(4-carboxyphenyl) porphine. The force of attraction that held two oppositely charged porphyrin molecules together was electrostatic attraction between the peripheral groups. Solid state aggregates were successfully isolated either by solvent evaporation or by centrifuging and freeze drying. TCPP-TAP and Cu(II)TCPP-TAP aggregates were shown to interact with hydrogen starting from 150 °C up to 250 °C. The uptake capacity was about 1 weight %. Although this value is very low, this is the first observation of porphyrin aggregates absorbing hydrogen. This opened the way for further research to improve hydrogen absorption properties of these materials, as well as other materials based on this model. Two other materials that are also based on planar building blocks were selected to serve as a comparison to the porphyrin aggregates. The first of those materials was metal intercalated graphite compounds. In such compounds, a metal atom is placed between the layers of graphene that make up the graphite. Lithium, calcium and lanthanum were selected in this study. Theoretical hydrogen capacity was calculated for each material based on the hydriding of the metal atoms only. The fraction of that theoretical hydrogen capacity actually displayed by each material increased from La to Ca to Li containing graphite. The weight % hydrogen observed for these materials varied between 0.60 and 2.0 %. The other material tested for comparison was KxMnO2, a layered structure of MnO2 that contained the K atoms in between oxygen layers. The hydrogen capacity of the KxMnO2 samples was similar to the other materials tested in the study, slightly above 1 weight %. This work has shown that porphyrin aggregates, carbon based and manganese dioxide based materials are excellent model materials for hydrogen storage. All three materials absorb hydrogen. Porphyrin aggregates have the potential to exhibit adjustable hydrogen uptake and release temperatures owing to their structure that could interact with an external electric or magnetic field. In the layered materials, it is possible to alter interlayer spacing and the particular intercalates to potentially produce a material with an exceptionally large hydrogen capacity. As a result, these materials can have significant impact on the use of hydrogen as an energy carrier.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003752, ucf:48769
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003752
-
-
Title
-
Monitoring and Modeling to Estimate Hydrogen Sulfide Emissions and Dispersion from Florida Construction and Demolition Landfills to Construct Odor Buffering Distances.
-
Creator
-
Bolyard, Steven, Cooper, Charles, Mackie, Kevin, Randall, Andrew, Zhang, Husen, University of Central Florida
-
Abstract / Description
-
Emissions of hydrogen sulfide (H2S) from construction and demolition (C & D) landfills can result in odors that are a significant nuisance to nearby neighborhoods and businesses. As Florida's population continues to grow and create development pressures, housing is built closer to existing landfills. Additionally, new landfills will be created in the future. This research project was undertaken to develop a detailed modeling methodology for use by counties and other landfill owners to provide...
Show moreEmissions of hydrogen sulfide (H2S) from construction and demolition (C & D) landfills can result in odors that are a significant nuisance to nearby neighborhoods and businesses. As Florida's population continues to grow and create development pressures, housing is built closer to existing landfills. Additionally, new landfills will be created in the future. This research project was undertaken to develop a detailed modeling methodology for use by counties and other landfill owners to provide them with an objective and scientifically defensible means to establish odor buffer zones around C & D landfills. A technique for estimating methane (and odorous gas) emissions from municipal solid waste (MSW) landfills was recently developed by researchers at the University of Central Florida. This technique was based on measuring hundreds of ambient methane concentrations near the surface of the landfill, and combining that data with matrix inversion mathematics to back-solve the dispersion equations. The technique was fully documented in two peer-reviewed journal articles. This project extends that methodology. In this work the author measured ambient H2S concentrations at various locations in a C & D landfill, and applied those same matrix inversion techniques to determine the H2S emission rates from the landfill. The emission rates were then input into the AERMOD dispersion model to determine H2S odor buffer distances around the landfill.Three sampling trips to one C & D landfill were undertaken, data were taken, and the modeling techniques were applied. One problem encountered was that H2S emissions from C & D landfills are typically about 1000 times smaller than methane emissions (from MSW landfills). Thus, H2S ambient concentrations often are near the detection limits of the instruments, and the data may not be as reliable. However, this approach could be used for any particular C & D landfill if the appropriate amount of data were available to characterize its emissions with some certainty. The graphical tool developed in this work shows isopleths of (")H2S(") concentrations at various distances, and color codes the isopleths into a (")green-yellow-red(") scheme (analogous to a traffic signal) that depicts zones where private landowners likely will not detect odors, where they may experience some odors, or where they likely will experience odors. The (")likelihood(") can be quantified by selecting the Nth highest hourly concentrations in one year to form the plot. In this study, N was conservatively selected as 8. Requiring that concentrations be at or below the 8th highest concentration in a year corresponds to a 99.9% probability of not exceeding that concentration at that distance in any future year. The graphical tool can be applied to any C & D landfill but each landfill is different. So this technique depends on having a fairly good estimate of the rate of emissions of H2S from the landfill in question, and at least one year's worth of hourly meteorological data (wind speed, direction, and stability class) that is representative of the landfill location. The meteorological data can be obtained with relative ease for most locations in Florida; however, the emission data must be obtained from on-site measurements for any given landfill.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004272, ucf:52879
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004272
-
-
Title
-
Computational Approach to Electrocatalysis.
-
Creator
-
Dhakal, Nagendra, Stolbov, Sergey, Rahman, Talat, Ishigami, Masa, Masunov, Artem, University of Central Florida
-
Abstract / Description
-
The main objective of this work is to understand the theoretical basis of the working principle of the Hydrogen fuel cell. We seek the physical basis of the Rational Design Technique, the smart way of preselecting materials from the material-pool, implemented in our study anticipating highly promising electrocatalysts for promoting the conversion of chemical energy stored in hydrogen molecules into the electrical energy. It needs the understanding of the relationship among the compositions of...
Show moreThe main objective of this work is to understand the theoretical basis of the working principle of the Hydrogen fuel cell. We seek the physical basis of the Rational Design Technique, the smart way of preselecting materials from the material-pool, implemented in our study anticipating highly promising electrocatalysts for promoting the conversion of chemical energy stored in hydrogen molecules into the electrical energy. It needs the understanding of the relationship among the compositions of the materials under consideration, their electronic structure and catalytic activities. We performed the first principle DFT calculations to achieve the goal.Our work is focused first on the issues in hydrogen oxidation reaction taking place in anode compartment of the cell. Next comes up with the issues with Oxygen Reduction Reaction taking place in cathode compartment. Finally, we focus on mechanisms underlying binding of small molecules on substrates.Platinum perfectly catalyzes hydrogen oxidation reaction on the hydrogen fuel cell anodes. However, it has at least two drawbacks: a) it is too expensive; b) it has a low tolerance to CO poisoning. Pt-Ru bi-functional catalysts are more tolerant to CO, but they are still very expensive. In this work, we performed first-principle studies of stability and reactivity of M/W (110) structures, where M = Pd, Ru, Au monolayers. All three systems are found to be stable: formation energy of MLs is significantly higher than cohesive energy of the M-elements. The calculated binding energies of H, H2, OH, CO, and H2O were used to obtain the reaction free energies. Analysis of the free energies suggests that Au-W bonding does not activate sufficiently Au monolayer, whereas Ru/W (110) is still too reactive for the CO removal. Meanwhile, Pd/W (110) is found to catalyze hydrogen oxidation and at the same time to be highly tolerant to the CO poisoning. The latter finding is explained by the fact that CO binds much weaker to Pd on W (110) than to Pt, while the OH binding is strong enough to ensure CO oxidation. The obtained results are traced to the electronic structure of the systems.Oxygen Reduction Reaction (ORR) is the heart core reaction in fuel cells, Proton Exchange Membrane Fuel cell and DEMFC. However, the reaction is not so obvious and need suitable electrocatalyst. Pt or Pt-based catalysts are found to be the best catalyst so far. But, its cost and shortage make it not feasible economically. Moreover, lower onset potential (maximal electrode potential at which the reaction can proceed) of such catalysts is offering another limitation to fuel cell performance. Research has been conducted in many directions for lowering the cost by replacing the Pt with some other elements of lower cost or reducing the Pt-load in the material; and even more finding the material performing better than Pt. In this paper, we've tried to understand the ORR mechanism and look for the material that could be potential option to Pt. Our calculations suggest that for monolayer of Pt on 5 layered slab of Nb or Mo the onset potential is the same as for Pt, while cost of these systems are much lower than that of Pt. Presence of water changes the reaction rate very minimum. Rational design method facilitates the research of selecting the appropriate catalyst and saves time and effort significantly. The result shows that the d-band center model is not accurate to describe the reactivity of the catalyst.For decades, adsorbates' binding energy (????) has been used as an indicator of the adsorbate-substrate bond strength (??????). Thus, although one can compute accurately any ?? models to gauge bond-strength are developed and applied to rationalize and anticipate ????'s because that is a key aspect in the rational search for efficient catalysts. Yet bond-strength alone fails to predict ???? trends. Therefore, quantifying and understanding the difference between ???? and ?????? is essential to catalysts design. Indeed, the adsorbate-substrate bond formation perturbs the substrate's electronic charge density, which reduces ???? by the energy attached to such perturbation: ??????????. Here, with the example of carbon monoxide adsorption on metal-doped graphene, we show that ?????????? may exceed 1 eV and render an unusual situation: although the EB of CO to the Au-doped graphene indicates that binding does not happen, we find evidence of a strong bond between CO and the substrate. Thus, in this case, the large ?????????? totally disrupt the equivalency between ?????? and ???? we also propose a method to compute ?????????? that bypasses dealing with an excited electronic state of the system.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006583, ucf:51336
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006583
-
-
Title
-
Biological Nutrient Removal (BNR) Process Optimization and Recovery of Embedded Energy Using Biodiesel By-product.
-
Creator
-
Salamah, Sultan, Randall, Andrew, Duranceau, Steven, Chopra, Manoj, University of Central Florida
-
Abstract / Description
-
Enhanced biological phosphorus removal (EBPR) as well as biological nitrogen removal require a carbon source to be carried out. Volatile fatty acid (VFAs) (mainly acetic and propionic acids) are the major driving force for EBPR. Many domestic wastewaters have an insufficient amount of VFAs. However, carbon sources such as acetic and propionic acids can be produced using primary solids fermentation process. Due to the cost of VFA production, an external carbon source can be added to the...
Show moreEnhanced biological phosphorus removal (EBPR) as well as biological nitrogen removal require a carbon source to be carried out. Volatile fatty acid (VFAs) (mainly acetic and propionic acids) are the major driving force for EBPR. Many domestic wastewaters have an insufficient amount of VFAs. However, carbon sources such as acetic and propionic acids can be produced using primary solids fermentation process. Due to the cost of VFA production, an external carbon source can be added to the biological nutrient removal (BNR) system that can be fermented to provide the desired VFAs. Glycerol (biodiesel by-product) offers a solution to reduce carbon addition cost if can be fermented to acetic and propionic acid or can be used directly as an external carbon substrate for EBPR and denitrification. Using glycerol in wastewater treatment can also offset the biodiesel plant disposal cost and reduce the BNR chemical cost. The main objective of this study was to optimize the prefermentation process and optimize the BNR system using glycerol as an external carbon source. In this work, Optimization of the prefermentation process using glycerol, mixing, and hydrogen gas addition was evaluated. EBPR performance within an A2O-BNR system was evaluated using either a direct glycerol method to the anaerobic zone or by co-fermentation with primary solids. Also, optimization of the nitrogen removal (specifically denitrification) efficiency of a 5-stage BardenphoTM BNR system using either a direct glycerol method to the second anoxic zone or by co-fermentation with primary solids was evaluated. It was found in this study that glycerol was an efficient external carbon substrate for EBPR as well as biological nitrogen removal. The prefermentation experiment showed that glycerol co-fermentation with primary solids produced significantly higher (p(<)0.05) VFAs than primary solids fermentation alone, even more than the possible value from the added glycerol (427 mg-COD/L). The increased VFAs imply that the glycerol addition stimulated additional fermentation of primary solids. Lowering the prefermenter mixing energy (50 to 7 rpm) resulted in a significant increase in VFAs production (80%). Also, purging the headspace of the prefermenter with hydrogen gas did not lead to more VFAs, but significantly (p(<)0.05) increased the propionic acid to acetic acid ratio by 41%. In the A2O-BNR pilot plant experiment, it was found that glycerol is a suitable renewable external substrate to drive enhanced EBPR as well as denitrification. The results from both locations of glycerol addition (direct vs. fermented) were beneficial to the BNR system. Both systems had similar effluent quality and achieved total nitrogen (TN) and total phosphorus (TP) removals up to 86% and 92% respectively. The 5-stage BardenphoTM BNR experiment investigated the location of glycerol addition (direct vs. fermented) on the performance of denitrification in the second anoxic zone and the overall performance. The results from both systems were that glycerol was beneficial to the BNR system and had virtually similar effluent quality. Both systems achieve complete denitrification and excellent removal of TN and TP up to 95% and 89% respectively. Also, the pilot that received fermented glycerol had significantly higher VFAs loading and lower observed yield. The side-stream prefermenter effluent flowing to the second anoxic reactor did not cause high effluent ammonia (NH3) concentration. In summary, the location at which glycerol was added did not affect effluent quality for nitrogen and phosphorus. However, glycerol addition and mixing energy did impact prefermenter performance and effluent quality.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006788, ucf:51826
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006788
-
-
Title
-
Computational Fluid Dynamics Simulation of United Launch Alliance Delta IV Hydrogen Plume Mitigation Strategies.
-
Creator
-
Guimond, Stephen, Kassab, Alain, Divo, Eduardo, Vasu Sumathi, Subith, University of Central Florida
-
Abstract / Description
-
During the launch sequence of the United Launch Alliance Delta IV launch vehicle, large amounts of pure hydrogen are introduced into the launch table and ignited by Radial-Outward-Firing-Igniters (ROFIs). This ignition results in a significant flame, or plume, that rises upwards out of the launch table due to buoyancy. The presence of the plume causes increased and unwanted heat loads on the surface of the vehicle. A proposed solution is to add a series of fans and structures to the existing...
Show moreDuring the launch sequence of the United Launch Alliance Delta IV launch vehicle, large amounts of pure hydrogen are introduced into the launch table and ignited by Radial-Outward-Firing-Igniters (ROFIs). This ignition results in a significant flame, or plume, that rises upwards out of the launch table due to buoyancy. The presence of the plume causes increased and unwanted heat loads on the surface of the vehicle. A proposed solution is to add a series of fans and structures to the existing launch table configuration that are designed to inject ambient air in the immediate vicinity of the launch vehicle's nozzles to suppress the plume rise. In addition to the air injection, secondary fan systems can be added around the launch table openings to further suppress the hydrogen plume. The proposed air injection solution is validated by computational fluid dynamics simulations that capture the combustion and compressible flow observed during the Delta IV launch sequence. A solution to the hydrogen plume problem will have direct influence on the efficiency of the launch vehicle: lower heat loads result in thinner vehicle insulation and thus allow for a larger payload mass. Current results show that air injection around the launch vehicle nozzles and air suppression around the launch table openings significantly reduces the size of the plume around the launch vehicle prior to liftoff.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005500, ucf:50345
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005500
-
-
Title
-
SIZE-EFFECT OF PD NANOPARTICLES SUPPORTED ON ZRO2 IN THE CATALYTIC REDUCTION OF NO BY H2.
-
Creator
-
Joh, YoungWoo, Roldan, Beatriz, University of Central Florida
-
Abstract / Description
-
Size-selected Pd nanoparticles were synthesized by the reverse-micelle encapsulation method and deposited on a ZrO2 support for the catalytic NO reduction by H2. All of our samples were found to be highly selective, but a significant size effect was not seen for Pd nanoparticles of between 1.2 nm and 5.5 nm. Ultra-small Pd clusters of less than 1 nm were found to be much less active, and are assumed to be affected by an encapsulation effect of the support. Catalyst activity was comparable to...
Show moreSize-selected Pd nanoparticles were synthesized by the reverse-micelle encapsulation method and deposited on a ZrO2 support for the catalytic NO reduction by H2. All of our samples were found to be highly selective, but a significant size effect was not seen for Pd nanoparticles of between 1.2 nm and 5.5 nm. Ultra-small Pd clusters of less than 1 nm were found to be much less active, and are assumed to be affected by an encapsulation effect of the support. Catalyst activity was comparable to that of literature, and is applicable to H2-SCR research.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFH0003863, ucf:44687
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0003863
-
-
Title
-
Ignition Studies of Oxy-Syngas/CO2 Mixtures Using Shock Tube for Cleaner Combustion Engines.
-
Creator
-
Barak, Samuel, Vasu Sumathi, Subith, Kapat, Jayanta, Ahmed, Kareem, University of Central Florida
-
Abstract / Description
-
In this study, syngas combustion was investigated behind reflected shock waves in order to gain insight into the behavior of ignition delay times and effects of the CO2 dilution. Pressure and light emissions time-histories measurements were taken at a 2 cm axial location away from the end wall. High-speed visualization of the experiments from the end wall was also conducted. Oxy-syngas mixtures that were tested in the shock tube were diluted with CO2 fractions ranging from 60% - 85% by volume...
Show moreIn this study, syngas combustion was investigated behind reflected shock waves in order to gain insight into the behavior of ignition delay times and effects of the CO2 dilution. Pressure and light emissions time-histories measurements were taken at a 2 cm axial location away from the end wall. High-speed visualization of the experiments from the end wall was also conducted. Oxy-syngas mixtures that were tested in the shock tube were diluted with CO2 fractions ranging from 60% - 85% by volume. A 10% fuel concentration was consistently used throughout the experiments. This study looked at the effects of changing the equivalence ratios (?), between 0.33, 0.5, and 1.0 as well as changing the fuel ratio (?), hydrogen to carbon monoxide, from 0.25, 1.0 and 4.0. The study was performed at 1.61-1.77 atm and a temperature range of 1006-1162K. The high-speed imaging was performed through a quartz end wall with a Phantom V710 camera operated at 67,065 frames per second. From the experiments, when increasing the equivalence ratio, it resulted in a longer ignition delay time. In addition, when increasing the fuel ratio, a lower ignition delay time was observed. These trends are generally expected with this combustion reaction system. The high-speed imaging showed non-homogeneous combustion in the system, however, most of the light emissions were outside the visible light range where the camera is designed for. The results were compared to predictions of two combustion chemical kinetic mechanisms: GRI v3.0 and AramcoMech v2.0 mechanisms. In general, both mechanisms did not accurately predict the experimental data. The results showed that current models are inaccurate in predicting CO2 diluted environments for syngas combustion.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0006974, ucf:52909
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006974
-
-
Title
-
Nitrogen-Containing Materials for Mechanochemical Synthesis, Luminescence Analysis, and Heterogeneous Catalysis.
-
Creator
-
Nash, David, Zhai, Lei, Hampton, Michael, Harper, James, Rex, Matthew, Blair, Richard, University of Central Florida
-
Abstract / Description
-
Various inorganic nitrogen-containing materials have been exploited for their different properties. Several nitride materials are commercially attractive due to their mechanical properties making them suitable for ceramic industries and wide bandgaps fitting for use as semiconductor and insulator materials, as well as optoelectronics. Nitride materials can exhibit versatility in applications such as the use of gallium nitride to make blue LEDs, nitrides of titanium and silicon being utilized...
Show moreVarious inorganic nitrogen-containing materials have been exploited for their different properties. Several nitride materials are commercially attractive due to their mechanical properties making them suitable for ceramic industries and wide bandgaps fitting for use as semiconductor and insulator materials, as well as optoelectronics. Nitride materials can exhibit versatility in applications such as the use of gallium nitride to make blue LEDs, nitrides of titanium and silicon being utilized as medical implants for their chemical inertness and hardness, and the heavy use of boron nitride as a solid lubricant in the cosmetic industry. Amines have been used as nitrogen-containing organic ligands in organometallic complexes that exhibit phenomenal photophysical properties. These complexes have been heavily studied for potential applications in optoelectronics and chemical sensing. This dissertation will focus on two nitrogen-containing materials that have yet to be explored for the potential applications to be discussed. The first is hexagonal-boron nitride (h-BN), which was previously mentioned to have a substantial use in the cosmetic industry, giving products such as lipstick, foundation, and blush their slick feeling. Computational models have shown the possibility of altered electronic properties of defect sites in the h-BN sheets. These defect sites will be explored experimentally to determine any catalytic activity. Specifically, the hydrogenation reaction using defect-laden hexagonal-boron nitride will be investigated. Successful catalysis would add to the short list of non-metal catalyst, and provide an alternative catalyst that costs significantly less than the traditional metal catalysts commonly used in commercial industries. The second of the two nitrogen-containing materials is a class of metal complexes based on organometallic clusters of copper(I) iodide. Copper(I) iodide clusters formed with amine ligands have been studied for around four decades and the photophysics behind their photoluminescent properties are well understood. Much of the work has been done for use as a potential emissive material in the optoelectronics field. They have also been studied for applications in the sensing of environmental compounds. Here, research will display its use as a novel sensor for narcotic substances. This forensic application will be further explored to develop and eventually commercialize a complete field drug testing system for law enforcement and crime lab use, with the goal to equip law enforcement personnel with a presumptive drug testing method that is accurate, easy-to-use, safe, adaptable, and affordable. This system will consist of a narcotic drug-indicating test strip, a handheld fluorescence spectrometer manufactured in-house using relatively inexpensive parts, and a mobile app that will leverage photoemission data of the tested drug samples collected by multiple crime labs to provide the ability for sample-to-reference data matching. Law enforcement users would have the ability to rapidly identify an unknown substance by applying it to a test strip, testing it using the spectrometer, and capturing an image of the resulting photoemission and analyzing the spectral profile in search of a match with the support of a cloud database.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0007129, ucf:52297
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007129
-
-
Title
-
EVALUATION OF OXIDIZED MEDIA FILTRATION PROCESSES FOR THE TREATMENT OF HYDROGEN SULFIDE IN GROUNDWATER.
-
Creator
-
Trupiano, Vito, Duranceau, Steven, University of Central Florida
-
Abstract / Description
-
This study evaluated alternative sulfide treatment processes for potable water systems that rely on groundwater supplies. Research for this study was conducted at the Imperial Lakes (IL) and Turner Road (TR) water treatment plants (WTPs) in Polk County, Florida. These WTPs are in the process of refurbishment and expansion, and will require the installation of a new groundwater well. The IL and TR WTPs both rely upon groundwater sources that contain total sulfide at concentrations ranging from...
Show moreThis study evaluated alternative sulfide treatment processes for potable water systems that rely on groundwater supplies. Research for this study was conducted at the Imperial Lakes (IL) and Turner Road (TR) water treatment plants (WTPs) in Polk County, Florida. These WTPs are in the process of refurbishment and expansion, and will require the installation of a new groundwater well. The IL and TR WTPs both rely upon groundwater sources that contain total sulfide at concentrations ranging from 1.4 to 2.6 mg/L. Sulfide is a concern because if left untreated it can impact finished water quality, corrosivity, create undesirable taste and odor, and oxidize to form visible turbidity. For this reason, the raw water will require treatment per Florida Department of Environmental Protection (FDEP) "Sulfide Rule" 62-555.315(5)(a). This rule does not allow the use of conventional tray aeration (currently in use at the IL and TR WTPs) for wells that have significant total sulfide content (0.6 to 3.0 mg/L). This research was commissioned because the potential water treatment method identified in the Sulfide Rule (i.e. forced-draft aeration) would not adequately fit within the confines of the existing sites and would pose undue burden to neighboring residents. In addition, an effective sulfide treatment process was desired that offered a low profile, did not necessitate the need for additional complex chemical feed systems, minimized the extent of electrical infrastructure upgrades, and was inexpensive to construct and operate. To meet these goals, several alternative technologies were evaluated at the desktop and bench-scale; these included anion exchange, various oxidation methods, and alternative media filtration processes. From that effort, several processes were selected for evaluation at the pilot scale: bleach (NaOCl) oxidation preceding electromedia filtration; manganese (IV) oxide (MnO2) filtration continuously regenerated with bleach; and ferrate (Fe(VI)) oxidation. Electromedia and MnO2 filtration were shown to be effective for total sulfide treatment. Both processes reduced total sulfide content to below detection levels (< 0.1 mg/L) for groundwater supplies containing as much as 2.6 mg/L of total sulfide. The use of bleach oxidation ahead of media filtration also produced finished water with low turbidity (< 1.0 NTU) as compared to conventional tray aeration and chlorination processes (6-16 NTU, as observed in this study). It was determined that the media filtration approach (electromedia and MnO2) was effective for sulfide treatment and met the County's site objectives established at the outset of the project. Ferrate was also shown to reduce total sulfide content to below detection levels (< 0.1 mg/L) for groundwater supplies containing as much as 2.6 mg/L of total sulfide. An opinion of probable capital costs for installing a sulfide oxidation/filtration process at either the Imperial Lakes or Turner Road WTP was estimated to range from roughly $830,000 to $1,100,000. That equates to a $/kgal capital cost of $0.10 to $0.32 (at 8% for 20 years). An opinion of annual probable bleach chemical costs was estimated to range from $3,500 to $9,800 for the IL WTP and $3,500 to $5,800 for the TR WTP.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003370, ucf:48432
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003370
-
-
Title
-
DEVELOPMENT OF THEORETICAL AND COMPUTATIONAL METHODS FOR THREE-BODY PROCESSES.
-
Creator
-
Blandon Zapata, Juan, Kokoouline, Viatcheslav, University of Central Florida
-
Abstract / Description
-
This thesis discusses the development and application of theoretical and computational methods to study three-body processes. The main focus is on the calculation of three-body resonances and bound states. This broadly includes the study of Efimov states and resonances, three-body shape resonances, three-body Feshbach resonances, three-body pre-dissociated states in systems with a conical intersection, and the calculation of three-body recombination rate coefficients. The method was applied...
Show moreThis thesis discusses the development and application of theoretical and computational methods to study three-body processes. The main focus is on the calculation of three-body resonances and bound states. This broadly includes the study of Efimov states and resonances, three-body shape resonances, three-body Feshbach resonances, three-body pre-dissociated states in systems with a conical intersection, and the calculation of three-body recombination rate coefficients. The method was applied to a number of systems. A chapter of the thesis is dedicated to the related study of deriving correlation diagrams for three-body states before and after a three-body collision. More specifically, the thesis discusses the calculation of the H+H+H three-body recombination rate coefficient using the developed method. Additionally, we discuss a conceptually simple and effective diabatization procedure for the calculation of pre-dissociated vibrational states for a system with a conical intersection. We apply the method to H_3, where the quantum molecular dynamics are notoriously difficult and where non-adiabatic couplings are important, and a correct description of the geometric phase associated with the diabatic representation is crucial for an accurate representation of these couplings. With our approach, we were also able to calculate Efimov-type resonances. The calculations of bound states and resonances were performed by formulating the problem in hyperspherical coordinates, and obtaining three-body eigenstates and eigen-energies by applying the hyperspherical adiabatic separation and the slow variable discretization. We employed the complex absorbing potential to calculate resonance energies and lifetimes, and introduce an uniquely defined diabatization procedure to treat X_3 molecules with a conical intersection. The proposed approach is general enough to be applied to problems in nuclear, atomic, molecular and astrophysics.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002669, ucf:48225
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002669
-
-
Title
-
The Behavior of Cerium Oxide Nanoparticles in Polymer Electrolyte Membranes in Ex-Situ and In-Situ Fuel Cell Durability Tests.
-
Creator
-
Pearman, Benjamin, Hampton, Michael, Blair, Richard, Clausen, Christian, Seal, Sudipta, Campiglia, Andres, Yestrebsky, Cherie, Mohajeri, Nahid, University of Central Florida
-
Abstract / Description
-
Fuel cells are known for their high efficiency and have the potential to become a major technology for producing clean energy, especially when the fuel, e.g. hydrogen, is produced from renewable energy sources such as wind or solar. Currently, the two main obstacles to wide-spread commercialization are their high cost and the short operational lifetime of certain components.Polymer electrolyte membrane (PEM) fuel cells have been a focus of attention in recent years, due to their use of...
Show moreFuel cells are known for their high efficiency and have the potential to become a major technology for producing clean energy, especially when the fuel, e.g. hydrogen, is produced from renewable energy sources such as wind or solar. Currently, the two main obstacles to wide-spread commercialization are their high cost and the short operational lifetime of certain components.Polymer electrolyte membrane (PEM) fuel cells have been a focus of attention in recent years, due to their use of hydrogen as a fuel, their comparatively low operating temperature and flexibility for use in both stationary and portable (automotive) applications.Perfluorosulfonic acid membranes are the leading ionomers for use in PEM hydrogen fuel cells. They combine essential qualities, such as high mechanical and thermal stability, with high proton conductivity. However, they are expensive and currently show insufficient chemical stability towards radicals formed during fuel cell operation, resulting in degradation that leads to premature failure. The incorporation of durability improving additives into perfluorosulfonic acid membranes is discussed in this work.Cerium oxide (ceria) is a well-known radical scavenger that has been used in the biological and medical field. It is able to quench radicals by facilely switching between its Ce(III) and Ce(IV) oxidation states.In this work, cerium oxide nanoparticles were added to perfluorosulfonic acid membranes and subjected to ex-situ and in-situ accelerated durability tests.The two ceria formulations, an in-house synthesized and commercially available material, were found to consist of crystalline particles of 2 (-) 5 nm and 20 (-) 150 nm size, respectively, that did not change size or shape when incorporated into the membranes.At higher temperature and relative humidity in gas flowing conditions, ceria in membranes is found to be reduced to its ionic form by virtue of the acidic environment. In ex-situ Fenton testing, the inclusion of ceria into membranes reduced the emission of fluoride, a strong indicator of degradation, by an order of magnitude with both liquid and gaseous hydrogen peroxide. In open-circuit voltage (OCV) hold fuel cell testing, ceria improved durability, as measured by several parameters such as OCV decay rate, fluoride emission and cell performance, over several hundred hours and influenced the formation of the platinum band typically found after durability testing.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004789, ucf:49731
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004789
Pages