Current Search: signals (x)
Pages
-
-
Title
-
Brain stethoscope: A non-invasive method for monitoring intracranial pressure.
-
Creator
-
Azad, Md Khurshidul, Mansy, Hansen, Kassab, Alain, Bhattacharya, Samik, University of Central Florida
-
Abstract / Description
-
Monitoring intracranial pressure (ICP) is important for patients with increased intracranial pressure. Invasive methods of ICP monitoring include lumbar puncture manometry, which requires high precision, is costly, and can lead to complications. Non-invasive monitoring of ICP using tympanic membrane pulse (TMp) measurement can provide an alternative monitoring method that avoids such complications. In the current study, a piezo based sensor was designed, constructed and used to acquire TMp...
Show moreMonitoring intracranial pressure (ICP) is important for patients with increased intracranial pressure. Invasive methods of ICP monitoring include lumbar puncture manometry, which requires high precision, is costly, and can lead to complications. Non-invasive monitoring of ICP using tympanic membrane pulse (TMp) measurement can provide an alternative monitoring method that avoids such complications. In the current study, a piezo based sensor was designed, constructed and used to acquire TMp signals. The results showed that tympanic membrane waveform changed in morphology and amplitude with increased ICP, which was induced by changing subject position using a tilt table. In addition, the results suggest that TMp are affected by breathing, which has small effects on ICP. The newly developed piezo based brain stethoscope may be a way to monitor patients with increased intracranial pressure thus avoiding invasive ICP monitoring and reducing associated risk and cost.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0006972, ucf:51643
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006972
-
-
Title
-
Juvenile Ornamentation: Its Evolution, Genetic Basis, and Variation Across Habitats.
-
Creator
-
Tringali, Angela, Noss, Reed, Bowman, Reed, Fauth, John, Fedorka, Kenneth, University of Central Florida
-
Abstract / Description
-
Ornamental traits are considered honest advertisements of fitness, and their evolution is usually explained in terms of sexual selection. This explanation remains unsatisfactory in some instances, for example, juvenile birds whose plumage is molted prior to adulthood and breeding. I first evaluate whether juvenile plumage reflectance signals dominance status in the Federally Threatened Florida scrub-jay (Aphelocoma coerulescens) using a combination of observational and experimental methods....
Show moreOrnamental traits are considered honest advertisements of fitness, and their evolution is usually explained in terms of sexual selection. This explanation remains unsatisfactory in some instances, for example, juvenile birds whose plumage is molted prior to adulthood and breeding. I first evaluate whether juvenile plumage reflectance signals dominance status in the Federally Threatened Florida scrub-jay (Aphelocoma coerulescens) using a combination of observational and experimental methods. Then I estimate the heritability, non-genetic maternal and environmental effects, and strength of selection on juvenile plumage reflectance using archived feather samples and a pedigree constructed from historical nest records. Finally, I compare plumage reflectance and its use as a signal between a wildland and suburban population of scrub-jays. I conclude that plumage reflectance is a signal of dominance, and that social selection can also drive the evolution of sexually dimorphic traits. In this species, plumage reflectance is heritable and influenced by maternal effects, but environmental effects are inconsequential. Although this trait appears to have an important function, only mean brightness and female hue are associated with lifetime reproductive success. Plumage reflectance was more UV-shifted in the suburban birds, but there is no reason to believe that urbanization decreases the value of this plumage as a signal. However, these plumage differences may facilitate dispersal from suburban areas, contributing to the decline of suburban populations.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005431, ucf:50413
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005431
-
-
Title
-
Evaluating the Effectiveness of Conversion of Traditional Five Section Head Signal to Flashing Yellow Arrow (FYA) Signal.
-
Creator
-
Almoshaogeh, Meshal, Radwan, Essam, Abdel-Aty, Mohamed, Abou-Senna, Hatem, University of Central Florida
-
Abstract / Description
-
In the United States, there are two schemes of operating traffic signal controls for permitted protected left turns (PPLT) namely the traditional five-section head system (known as Dog-House) and the flashing yellow arrow system (FYA). Past studies have agreed that these controls lead to decrease the average delay per left turn vehicle, decrease the protected green time, increase the left turn capacity, and enhance the intersection overall operation.The flashing yellow arrow (FYA) has been...
Show moreIn the United States, there are two schemes of operating traffic signal controls for permitted protected left turns (PPLT) namely the traditional five-section head system (known as Dog-House) and the flashing yellow arrow system (FYA). Past studies have agreed that these controls lead to decrease the average delay per left turn vehicle, decrease the protected green time, increase the left turn capacity, and enhance the intersection overall operation.The flashing yellow arrow (FYA) has been approved by the Federal Highway Administration as the national standard for the PPLT operations at signalized intersections. So, the Florida Department of Transportation also approved this new system and they are extensively replacing the traditional system with the new system on the area of Central Florida (Lin, et al, 2010). Both these systems have been used for a long time and there are some studies that evaluated these systems but there are limited number of projects that evaluated and/or compared between the two PPLT systems from the operational perspective.The main goal of this research is to study the characteristics of traffic operations and evaluate the effectiveness of the conversion from five-section head signal to the FYA treatments at 13 intersections located in Orlando, Florida. To reach this goal, detailed data collection efforts were conducted at 13 selected intersections in the central Florida area and appropriate statistical tests were conducted using the Minitab 17 Software. Statistical tests were attempted to fit different new regression models that correlate delay and left turn volumes as response variables against a set of independent variables that included permitted green time, opposing volume, percent of trucks, time gaps, speed, and land use type. In addition to fitting the data to regression models, these models were also analyzed for the purpose of detecting any significant differences between the five-section head treatment and FYA treatment.The statistical differences of converting the five-section head system to FYA system were discussed. The results in this thesis agreed with some of the previous studies and did not agree with others. In general, the flashing yellow arrow system was found to enhance the intersection operation, increase the number of left turn vehicles, and reduce the delay. Also, some suggestions and recommendations were made based on this study results.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005296, ucf:50570
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005296
-
-
Title
-
Hidden in Plain Sight: Development and Testing of a Model to Evaluate Political Leadership Tactics.
-
Creator
-
Citron, Albert, Hamann, Kerstin, Handberg, Roger, Houghton, David, University of Central Florida
-
Abstract / Description
-
This thesis analyzes the kinds of verbal and nonverbal signals elites manifest to show leadership qualities. Launching from Max Weber's conceptual framework of charisma as a power term and Harold Lasswell's study of propaganda, this study takes a multidisciplinary approach to studying political leadership with elements of communication methodology and an ontological basis in evolutionary psychology. The study's goal is to offer a framework for defining and evaluating the diverse signal...
Show moreThis thesis analyzes the kinds of verbal and nonverbal signals elites manifest to show leadership qualities. Launching from Max Weber's conceptual framework of charisma as a power term and Harold Lasswell's study of propaganda, this study takes a multidisciplinary approach to studying political leadership with elements of communication methodology and an ontological basis in evolutionary psychology. The study's goal is to offer a framework for defining and evaluating the diverse signal patterns employed by political elites in three real-life situations. These are the Malta Summit, the 1992 Virginia Presidential Debate, and the 2012 South Carolina Republican Presidential Primary. The cases were chosen because they display a diverse set of signal variations during different types of interactions.The three case studies are evaluated by measuring frequency and patterns of occurrence of the five different interaction constructs (indicator of interest, indicator of disinterest, demonstration of high value, demonstration of low value, and compliance testing) to explain different interaction patterns. A simple frequency distribution of the different signals during a given interaction is used to display the empirical findings and to compare patterns across the case studies. This study reveals that the presence of DLV (demonstration of low value) signals weaken an elite's position in relation to other elites and the public while the presence of DHV (demonstration of high value) signals strengthen an elite's position. It is largely the presence, absence, and frequency of these two signals that determines who conveys leadership qualities effectively regardless of leadership style. Studying the signaling patterns of political elites would allow scholars to understand better the kinds of signal patterns and signal frequencies that are used in different types of leadership styles and norm ranges for signals including for political elites belonging to different cultures and subcultures.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004984, ucf:49563
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004984
-
-
Title
-
SIGNAL PROCESSING OF AN ECG SIGNALIN THE PRESENCE OF A STRONG STATIC MAGNETIC FIELD.
-
Creator
-
Gupta, Aditya, Weeks, Arthur, University of Central Florida
-
Abstract / Description
-
This dissertation addresses the problem of elevation of the T wave of an electrocardiogram (ECG) signal in the magnetic resonance imaging (MRI). In the MRI, due to the strong static magnetic field the interaction of the blood flow with this strong magnetic field induces a voltage in the body. This voltage appears as a superimposition at the locus of the T wave of the ECG signal. This looses important information required by the doctors to interpret the ST segment of the ECG and detect...
Show moreThis dissertation addresses the problem of elevation of the T wave of an electrocardiogram (ECG) signal in the magnetic resonance imaging (MRI). In the MRI, due to the strong static magnetic field the interaction of the blood flow with this strong magnetic field induces a voltage in the body. This voltage appears as a superimposition at the locus of the T wave of the ECG signal. This looses important information required by the doctors to interpret the ST segment of the ECG and detect diseases such as myocardial infarction. This dissertation aims at finding a solution to the problem of elevation of the T wave of an ECG signal in the MRI. The first step is to simulate the entire situation and obtain the magnetic field dependent T wave elevation. This is achieved by building a model of the aorta and simulating the blood flow in it. This model is then subjected to a static magnetic field and the surface potential on the thorax is measured to observe the T wave elevation. The various parameters on which the T wave elevation is dependent are then analyzed. Different approaches are used to reduce this T wave elevation problem. The direct approach aims at computing the magnitude of T wave elevation using magneto-hydro-dynamic equations. The indirect approach uses digital signal processing tools like the least mean square adaptive filter to remove the T wave elevation and obtain artifact free ECG signal in the MRI. Excellent results are obtained from the simulation model. The model perfectly simulates the ECG signal in the MRI at all the 12 leads of the ECG. These results are compared with ECG signals measured in the MRI. A simulation package is developed in MATLAB based on the simulation model. This package is a graphical user interface allowing the user to change the strength of magnetic field, the radius of the aorta and the orientation of the aorta with respect to the heart and observe the ECG signals with the elevation at the 12 leads of the ECG. Also the artifacts introduced due to the magnetic field can be removed by the least mean square adaptive filter. The filter adapts the ECG signal in the MRI to the ECG signal of the patient outside the MRI. Before the adaptation, the heart rate of the ECG outside the MRI is matched to the ECG in the MRI by interpolation or decimation. The adaptive filter works excellently to remove the T wave artifacts. When the cardiac output of the patient changes, the simulation model is used along with the adaptive filter to obtain the artifact free ECG signal.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001857, ucf:47389
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001857
-
-
Title
-
LEVEL-OF-SERVICE AND TRAFFIC SAFETY RELATIONSHIP: AN EXPLORATORY ANALYSIS OF SIGNALIZED INTERSECTIONS AND MULTILANE HIGH-SPEED ARTERIAL CORRIDORS.
-
Creator
-
Almonte-Valdivia, Ana, Abdel-Aty, Mohamed, University of Central Florida
-
Abstract / Description
-
Since its inception in 1965, the Level-of-Service (LOS) has proved to be an important and practical "quality of service" indicator for transportation facilities around the world, widely used in the transportation and planning fields. The LOS rates these facilities' traffic operating conditions through the following delay-based indicators (ordered from best to worst conditions): A, B, C, D, E and F. This LOS rating has its foundation on quantifiable measures of effectiveness (MOEs) and on...
Show moreSince its inception in 1965, the Level-of-Service (LOS) has proved to be an important and practical "quality of service" indicator for transportation facilities around the world, widely used in the transportation and planning fields. The LOS rates these facilities' traffic operating conditions through the following delay-based indicators (ordered from best to worst conditions): A, B, C, D, E and F. This LOS rating has its foundation on quantifiable measures of effectiveness (MOEs) and on road users' perceptions; altogether, these measures define a LOS based on acceptable traffic operating conditions for the road user, implying that traffic safety is inherent to this definition. However, since 1994 safety has been excluded from the LOS definition since it cannot be quantified nor explicitly defined. The latter has been the motivation for research based on the LOS-Safety relationship, conducted at the University of Central Florida (UCF). Using data from two of the most studied transportation facility types within the field of traffic safety, signalized intersections and multilane high-speed arterial corridors, the research conducted has the following main objectives: to incorporate the LOS as a parameter in several traffic safety models, to extend the methodology adopted in previous studies to the subject matter, and to provide a platform for future transportation-related research on the LOS-Safety relationship. A meticulous data collection and preparation process was performed for the two LOS-Safety studies comprising this research. Apart from signalized intersections' and multilane-high speed arterial corridors' data, the other required types of information corresponded to crashes and road features, both obtained from FDOT's respective databases. In addition, the Highway Capacity Software (HCS) and the ArcGIS software package were extensively used for the data preparation. The result was a representative and robust dataset for each LOS-Safety study, to be later tested and analyzed with appropriate statistical methods. Regarding the LOS-Safety study for signalized intersections, two statistical techniques were used. The Generalized Estimating Equations (GEEs), the first technique, was used for the analyses considering all periods of a regular weekday (i.e. Monday through Friday): Early Morning, A.M. Peak, Midday, P.M. Peak and Late Evening; the second technique considered was the Negative Binomial, which was used for performing an individual analysis per period of the day. On the other hand, the LOS-Safety study for multilane high-speed arterial corridors made exclusive use of the Negative Binomial technique. An appropriate variable selection process was required for the respective model building and calibration procedures; the resulting models were built upon the six following response variables: total crashes, severe crashes, as well as rear-end, sideswipe, head-on and angle plus left-turn crashes. The final results proved to be meaningful for the understanding of traffic congestion effects on road safety, and on how they could be useful within the transportation planning scope. Overall, it was found that the risk for crash occurrence at signalized intersections and multilane high-speed arterial corridors is quite high between stable and unacceptable operating conditions; it was also found that this risk increases as it becomes later in the day. Among the significant factors within the signalized intersection-related models were LOS for the intersection as a whole, cycle length, lighting conditions, land use, traffic volume (major and minor roads), left-turn traffic volume (major road only), posted speed limit (major and minor roads), total number of through lanes (major and minor roads), overall total and total number of left-turn lanes (major road only), as well as county and period of the day (dummy variables). For multilane-high speed arterial corridors, the final models included LOS for the road section, average daily traffic (ADT), total number of through lanes in a single direction, total length of the road section, pavement surface type, as well as median and inside shoulder widths. A summary of the overall results per study, model implications and each LOS indicator is presented. Some of the final recommendations are to develop models for other crash types, to perform a LOS-Safety analysis at the approach-level for signalized intersections, as well as one that incorporates intersections within the arterial corridors' framework.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002615, ucf:48285
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002615
-
-
Title
-
Arterial-level real-time safety evaluation in the context of proactive traffic management.
-
Creator
-
Yuan, Jinghui, Abdel-Aty, Mohamed, Eluru, Naveen, Hasan, Samiul, Cai, Qing, Wang, Liqiang, University of Central Florida
-
Abstract / Description
-
In the context of pro-active traffic management, real-time safety evaluation is one of the most important components. Previous studies on real-time safety analysis mainly focused on freeways, seldom on arterials. With the advancement of sensing technologies and smart city initiative, more and more real-time traffic data sources are available on arterials, which enables us to evaluate the real-time crash risk on arterials. However, there exist substantial differences between arterials and...
Show moreIn the context of pro-active traffic management, real-time safety evaluation is one of the most important components. Previous studies on real-time safety analysis mainly focused on freeways, seldom on arterials. With the advancement of sensing technologies and smart city initiative, more and more real-time traffic data sources are available on arterials, which enables us to evaluate the real-time crash risk on arterials. However, there exist substantial differences between arterials and freeways in terms of traffic flow characteristics, data availability, and even crash mechanism. Therefore, this study aims to deeply evaluate the real-time crash risk on arterials from multiple aspects by integrating all kinds of available data sources. First, Bayesian conditional logistic models (BCL) were developed to examine the relationship between crash occurrence on arterial segments and real-time traffic and signal timing characteristics by incorporating the Bluetooth, adaptive signal control, and weather data, which were extracted from four urban arterials in Central Florida. Second, real-time intersection-approach-level crash risk was investigated by considering the effects of real-time traffic, signal timing, and weather characteristics based on 23 signalized intersections in Orange County. Third, a deep learning algorithm for real-time crash risk prediction at signalized intersections was proposed based on Long Short-Term Memory (LSTM) and Synthetic Minority Over-Sampling Technique (SMOTE). Moreover, in-depth cycle-level real-time crash risk at signalized intersections was explored based on high-resolution event-based data (i.e., Automated Traffic Signal Performance Measures (ATSPM)). All the possible real-time cycle-level factors were considered, including traffic volume, signal timing, headway and occupancy, traffic variation between upstream and downstream detectors, shockwave characteristics, and weather conditions. Above all, comprehensive real-time safety evaluation algorithms were developed for arterials, which would be key components for future real-time safety applications (e.g., real-time crash risk prediction and visualization system) in the context of pro-active traffic management.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007743, ucf:52398
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007743
-
-
Title
-
GLIAL DIFFERENTIATION OF HUMAN UMBILICAL STEM CELLS IN 2D AND 3D ENVIRONMENTS.
-
Creator
-
Davis, Hedvika, Hickman, James, University of Central Florida
-
Abstract / Description
-
During differentiation stem cells are exposed to a range of microenvironmental chemical and physical cues. In this study, human multipotent progenitor cells (hMLPCs) were differentiated from umbilical cord into oligodendrocytes and astrocytes. Chemical cues were represented by a novel defined differentiation medium containing the neurotransmitter norepinephrine (NE). In traditional 2 dimensional (2D) conditions, the hMLPCs differentiated into oligodendrocyte precursors, but did not progress...
Show moreDuring differentiation stem cells are exposed to a range of microenvironmental chemical and physical cues. In this study, human multipotent progenitor cells (hMLPCs) were differentiated from umbilical cord into oligodendrocytes and astrocytes. Chemical cues were represented by a novel defined differentiation medium containing the neurotransmitter norepinephrine (NE). In traditional 2 dimensional (2D) conditions, the hMLPCs differentiated into oligodendrocyte precursors, but did not progress further. However, in a constructed 3 dimensional (3D) environment, the hMLPCs differentiated into committed oligodendrocytes that expressed MBP. When co-cultured with rat embryonic hippocampal neurons (EHNs), hMLPCs developed in astrocytes or oligodendrocytes, based on presence of growth factors in the differentiation medium. In co-culture, physical cues provided by axons were essential for complete differentiation of both astrocytes and oligodendrocytes. This study presents a novel method of obtaining glia from human MLPCs that could eliminate many of the difficulties associated with their differentiation from embryonic stem cells. In addition, it reveals the complex interplay between physical cues and biomolecules on stem cell differentiation.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003570, ucf:48894
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003570
-
-
Title
-
A New Methodology for Evaluating the Effectiveness of Bus Rapid Transit Strategies.
-
Creator
-
Alomari, Ahmad, Al-Deek, Haitham, Eluru, Naveen, Tatari, Omer, Maboudou, Edgard, University of Central Florida
-
Abstract / Description
-
Over the last few years, public transportation has become more desirable as capacity of existing roadways failed to keep up with rapidly increasing traffic demand. Buses are one of the most common modes of public transportation with low impact on network capacity, especially in small and congested urban areas. However, the use of regularly scheduled buses as the main public transport mode can become useless with the presence of traffic congestion and dense construction areas. In cases like...
Show moreOver the last few years, public transportation has become more desirable as capacity of existing roadways failed to keep up with rapidly increasing traffic demand. Buses are one of the most common modes of public transportation with low impact on network capacity, especially in small and congested urban areas. However, the use of regularly scheduled buses as the main public transport mode can become useless with the presence of traffic congestion and dense construction areas. In cases like these, innovative solutions, such as bus rapid transit (BRT), can provide an increased level of service without having to resort to other, more expensive modes, such as light rail transit (LRT) and metro systems (subways). Transit signal priority (TSP), which provides priority to approaching buses at signalized intersections by extending the green or truncating the red, can also increase the performance of the bus service.Understanding the combined impact of TSP and BRT on network traffic operations can be complex. Although TSP has been implemented worldwide, none of the previous studies have examined in depth the effects of using conditional and unconditional TSP strategies with a BRT system. The objective of this research is to evaluate the effectiveness of BRT without TSP, then with conditional or unconditional TSP strategies. The micro-simulation software VISSIM was used to compare different TSP and BRT scenarios. These simulation scenarios include the base scenario (before implementation of the TSP and BRT systems), Unconditional TSP (TSP activates for all buses), Conditional TSP 3 minutes behind (TSP only activates for buses that are 3 minutes or more behind schedule), Conditional TSP 5 minutes behind (only activates for buses 5 minutes or more behind schedule), BRT with no TSP, BRT with Unconditional TSP, BRT with Conditional TSP 3 minutes behind, and BRT with Conditional TSP 5 minutes behind.The VISSIM simulation model was developed, calibrated and validated using a variety of data that was collected in the field. These data included geometric data, (number of lanes, intersection geometries, etc.); traffic data (average daily traffic volumes at major intersections, turning movement percentages at intersections, heavy vehicle percentages, bus passenger data, etc.); and traffic control data (signal types, timings and phasings, split history, etc.). Using this field data ensured the simulation model was sufficient for modeling the test corridor. From this model, the main performance parameters (for all vehicles and for buses only) for through movements in both directions (eastbound and westbound) along the corridor were analyzed for the various BRT/TSP scenarios. These parameters included average travel times, average speed profiles, average delays, and average number of stops. As part of a holistic approach, the effects of BRT and TSP on crossing street delay were also evaluated. Simulation results showed that TSP and BRT scenarios were effective in reducing travel times (up to 26 %) and delays (up to 64%), as well as increasing the speed (up to 47%), compared to the base scenario. The most effective scenarios were achieved by combining BRT and TSP. Results also showed that BRT with Conditional TSP 3 minutes behind significantly improved travel times (17 (-) 26%), average speed (30 (-) 39%), and average total delay per vehicle (11 (-) 32%) for the main corridor through movements compared with the base scenario, with only minor effects on crossing street delays. BRT with Unconditional TSP resulted in significant crossing street delays, especially at major intersections with high traffic demand, which indicates that this scenario is impractical for implementation in the corridor. Additionally, BRT with Conditional TSP 3 minutes behind had better travel time savings than BRT with Conditional TSP 5 minutes behind for both travel directions, making this the most beneficial scenario.This research provided an innovative approach by using nested sets (hierarchical design) of TSP and BRT combination scenarios. Coupled with microscopic simulation, nested sets in the hierarchical design are used to evaluate the effectiveness of BRT without TSP, then with conditional or unconditional TSP strategies. The robust methodology developed in this research can be applied to any corridor to understand the combined TSP and BRT effects on traffic performance. Presenting the results in an organized fashion like this can be helpful in decision making. This research investigated the effects of BRT along I-Drive corridor (before and after conditions) at the intersection level. Intersection analysis demonstrated based on real life data for the before and after the construction of BRT using the Highway Capacity SoftwareTM (HCS2010) that was built based on the Highway Capacity Manual (HCM 2010) procedures for urban streets and signalized intersections. The performance measure used in this analysis is the level of service (LOS) criteria which depends on the control delay (seconds per vehicle) for each approach and for the entire intersection. The results show that implementing BRT did not change the LOS. However, the control delay has improved at most of the intersections' approaches. The majority of intersections operated with an overall LOS "C" or better except for Kirkman Road intersection (T2) with LOS "E" because it has the highest traffic volumes before and after BRT construction.This research also used regression analysis to observe the effect of the tested scenarios analyzed in VISSIM software compared to the No TSP (-) No BRT base model for all vehicles and for buses only. The developed regression model can predict the effect of each scenario on each studied Measures of Performance (MOE). Minitab statistical software was used to conduct this multiple regression analysis. The developed models with real life data input are able to predict how proposed enhancements change the studied MOEs. The BRT models presented in this research can be used for further sensitivity analysis on a larger regional network in the upcoming regional expansion of the transit system in Central Florida. Since this research demonstrated the operational functionality and effectiveness of BRT and TSP systems in this critical corridor in Central Florida, these systems' accomplishments can be expanded throughout the state of Florida to provide greater benefits to transit passengers. Furthermore, to demonstrate the methodology developed in this research, it is applied to a test corridor along International Drive (I-Drive) in Orlando, Florida. This corridor is key for regional economic prosperity of Central Florida and the novel approach developed in this dissertation can be expanded to other transit systems.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005918, ucf:50848
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005918
-
-
Title
-
Spatial and Temporal Modeling for Human Activity Recognition from Multimodal Sequential Data.
-
Creator
-
Ye, Jun, Hua, Kien, Foroosh, Hassan, Zou, Changchun, Karwowski, Waldemar, University of Central Florida
-
Abstract / Description
-
Human Activity Recognition (HAR) has been an intense research area for more than a decade. Different sensors, ranging from 2D and 3D cameras to accelerometers, gyroscopes, and magnetometers, have been employed to generate multimodal signals to detect various human activities. With the advancement of sensing technology and the popularity of mobile devices, depth cameras and wearable devices, such as Microsoft Kinect and smart wristbands, open a unprecedented opportunity to solve the...
Show moreHuman Activity Recognition (HAR) has been an intense research area for more than a decade. Different sensors, ranging from 2D and 3D cameras to accelerometers, gyroscopes, and magnetometers, have been employed to generate multimodal signals to detect various human activities. With the advancement of sensing technology and the popularity of mobile devices, depth cameras and wearable devices, such as Microsoft Kinect and smart wristbands, open a unprecedented opportunity to solve the challenging HAR problem by learning expressive representations from the multimodal signals recording huge amounts of daily activities which comprise a rich set of categories.Although competitive performance has been reported, existing methods focus on the statistical or spatial representation of the human activity sequence;while the internal temporal dynamics of the human activity sequence arenot sufficiently exploited. As a result, they often face the challenge of recognizing visually similar activities composed of dynamic patterns in different temporal order. In addition, many model-driven methods based on sophisticated features and carefully-designed classifiers are computationally demanding and unable to scale to a large dataset. In this dissertation, we propose to address these challenges from three different perspectives; namely, 3D spatial relationship modeling, dynamic temporal quantization, and temporal order encoding.We propose a novel octree-based algorithm for computing the 3D spatial relationships between objects from a 3D point cloud captured by a Kinect sensor. A set of 26 3D spatial directions are defined to describe the spatial relationship of an object with respect to a reference object. These 3D directions are implemented as a set of spatial operators, such as "AboveSouthEast" and "BelowNorthWest," of an event query language to query human activities in an indoor environment; for example, "A person walks in the hallway from north to south." The performance is quantitatively evaluated in a public RGBD object dataset and qualitatively investigated in a live video computing platform.In order to address the challenge of temporal modeling in human action recognition, we introduce the dynamic temporal quantization, a clustering-like algorithm to quantize human action sequences of varied lengths into fixed-size quantized vectors. A two-step optimization algorithm is proposed to jointly optimize the quantization of the original sequence. In the aggregation step, frames falling into the sample segment are aggregated by max-polling and produce the quantized representation of the segment. During the assignment step, frame-segment assignment is updated according to dynamic time warping, while the temporal order of the entire sequence is preserved. The proposed technique is evaluated on three public 3D human action datasets and achieves state-of-the-art performance.Finally, we propose a novel temporal order encoding approach that models the temporal dynamics of the sequential data for human activity recognition. The algorithm encodes the temporal order of the latent patterns extracted by the subspace projection and generates a highly compact First-Take-All (FTA) feature vector representing the entire sequential data. An optimization algorithm is further introduced to learn the optimized projections in order to increase the discriminative power of the FTA feature. The compactness of the FTA feature makes it extremely efficient for human activity recognition with nearest neighbor search based on Hamming distance. Experimental results on two public human activity datasets demonstrate the advantages of the FTA feature over state-of-the-art methods in both accuracy and efficiency.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006516, ucf:51367
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006516
-
-
Title
-
Hierarchical Corridor Safety Analysis Using Multiple Approaches.
-
Creator
-
Alarifi, Saif, Abdel-Aty, Mohamed, Tatari, Omer, Kuo, Pei-Fen, University of Central Florida
-
Abstract / Description
-
Traffic crashes are a major cause of concern globally. Extensive efforts from transportation professionals have been made to investigate new methods to identify the contributing factors to crashes at various locations on the road network. Corridors, among other road network's components, play a vital role in moving people and goods between primary zones in different areas, and the safety and operational improvements of them have been the focus of many studies since they carry the most traffic...
Show moreTraffic crashes are a major cause of concern globally. Extensive efforts from transportation professionals have been made to investigate new methods to identify the contributing factors to crashes at various locations on the road network. Corridors, among other road network's components, play a vital role in moving people and goods between primary zones in different areas, and the safety and operational improvements of them have been the focus of many studies since they carry the most traffic on the road network. Corridors contain mainly intersections and segments, and previous corridor studies have focused on a sole type of road entity. Having both components while analyzing corridors in addition to corridor-level variables in a hierarchical joint model framework would provide a comprehensive understanding of the existing safety problems along corridors. Therefore, this research aims to provide a complete understanding of the contributing factors to crashes at intersections and segments along corridors. In addition, it explores the associated crash risk factors with crash counts of different types and severity levels. The results reveal that accounting for the variations in traffic volumes and roadway characteristics, by estimating the model with random parameters, across corridors improved the model's performance. Also, the results confirm the importance of accounting for the spatial autocorrelation between road entities along the same corridor, and the adjacency-based first-order neighboring structure provides the best fit for the data among the other neighboring structures. Furthermore, it was found that the significant variables and their magnitudes are different across crash types and severity levels. Also, road designers and engineers should carefully identify the optimal number and location of driveways, median openings, and access points within the influence area of intersections since they significantly affect crashes along corridors. Lastly, this research suggests and justifies considering the proposed hierarchical joint model for future corridor studies
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0006967, ucf:51666
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006967
-
-
Title
-
Examining Multiple Approaches for the Transferability of Safety Performance Functions.
-
Creator
-
Farid, Ahmed Tarek Ahmed, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
-
Abstract / Description
-
Safety performance functions (SPFs) are essential in road safety since they are used to predict crash frequencies. They are commonly applied for detecting hot spots in network screening and assessing whether road safety countermeasures are effective. In the Highway Safety Manual (HSM), SPFs are provided for several crash classifications for several types of roadway facilities. The SPFs of the HSM are developed using data from multiple states. In regions where jurisdiction specific SPFs are...
Show moreSafety performance functions (SPFs) are essential in road safety since they are used to predict crash frequencies. They are commonly applied for detecting hot spots in network screening and assessing whether road safety countermeasures are effective. In the Highway Safety Manual (HSM), SPFs are provided for several crash classifications for several types of roadway facilities. The SPFs of the HSM are developed using data from multiple states. In regions where jurisdiction specific SPFs are not available, it is custom to adopt nationwide SPFs for crash predictions then apply a calibration factor. Yet, the research is limited regarding the application of national SPFs for local jurisdictions. In this study, the topic of transferability is explored by examining rural multilane highway SPFs from Florida, Ohio, and California. That is for both divided segments and intersections. Traffic, road geometrics and crash data from the three states are collected to develop one-state, two-state and three-state SPFs. The SPFs are negative binomial models taking the form of those of the HSM. Evaluation of the transferability of models is undertaken by calculating a measure known as the transfer index. It is used to explain which SPFs may be transferred tolerably to other jurisdictions. According to the results, the transferability of rural divided segments' SPFs of Florida to California and vice versa is superior to that of Ohio's SPFs. For four-leg signalized intersections, neither state's models are transferable to any state. Also, the transfer index indicates improved transferability when using pooled data from multiple states. Furthermore, a modified version of the Empirical Bayes method that is responsible for segment specific adjustment factors is proposed as an alternative to the HSM calibration method. It is used to adjust crash frequencies predicted by the SPFs being transferred to the jurisdiction of interest. The modified method, proposed, outperforms the HSM calibration method as per the analysis results.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006298, ucf:51604
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006298
-
-
Title
-
Investigating the universality and comprehensive ability of measures to assess the state of workload.
-
Creator
-
Abich, Julian, Reinerman, Lauren, Lackey, Stephanie, Szalma, James, Taylor, Grant, University of Central Florida
-
Abstract / Description
-
Measures of workload have been developed on the basis of the various definitions, some are designed to capture the multi-dimensional aspects of a unitary resource pool (Kahneman, 1973) while others are developed on the basis of multiple resource theory (Wickens, 2002). Although many theory based workload measures exist, others have often been constructed to serve the purpose of specific experimental tasks. As a result, it is likely that not every workload measure is reliable and valid for all...
Show moreMeasures of workload have been developed on the basis of the various definitions, some are designed to capture the multi-dimensional aspects of a unitary resource pool (Kahneman, 1973) while others are developed on the basis of multiple resource theory (Wickens, 2002). Although many theory based workload measures exist, others have often been constructed to serve the purpose of specific experimental tasks. As a result, it is likely that not every workload measure is reliable and valid for all tasks, much less each domain. To date, no single measure, systematically tested across experimental tasks, domains, and other measures is considered a universal measure of workload. Most researchers would argue that multiple measures from various categories should be applied to a given task to comprehensively assess workload. The goal for Study 1 to establish task load manipulations for two theoretically different tasks that induce distinct levels of workload assessed by both subjective and performance measures was successful. The results of the subjective responses support standardization and validation of the tasks and demands of that task for investigating workload. After investigating the use of subjective and objective measures of workload to identify a universal and comprehensive measure or set of measures, based on Study 2, it can only be concluded that not one or a set of measures exists. Arguably, it is not to say that one will never be conceived and developed, but at this time, one does not reside in the psychometric catalog. Instead, it appears that a more suitable approach is to customize a set of workload measures based on the task. The novel approach of assessing the sensitivity and comprehensive ability of conjointly utilizing subjective, performance, and physiological workload measures for theoretically different tasks within the same domain contributes to the theory by laying the foundation for improving methodology for researching workload. The applicable contribution of this project is a stepping-stone towards developing complex profiles of workload for use in closed-loop systems, such as human-robot team interaction. Identifying the best combination of workload measures enables human factors practitioners, trainers, and task designers to improve methodology and evaluation of system designs, training requirements, and personnel selection.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005119, ucf:50675
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005119
Pages