Current Search: Distribution system (x)
View All Items
Pages
- Title
- IMPACT OF CORROSION INHIBITOR BLENDED ORTHOPHOSPHATE ON WATER QUALITY IN WATER DISTRIBUTION SYSTEMS.
- Creator
-
Alshehri, Abdulrahman, Taylor, James, University of Central Florida
- Abstract / Description
-
The impact of blended orthophosphate (BOP) inhibitor addition on the corrosion of iron, copper, and lead in drinking water distribution systems was studied under changing water quality environment. Release of iron, copper, and lead were monitored at varying inhibitor doses and changing blends of source waters (groundwater, surface water, and desalinated water). Solid corrosion products on pipe surfaces under BOP treatment were evaluated with surface characterization techniques. Performance of...
Show moreThe impact of blended orthophosphate (BOP) inhibitor addition on the corrosion of iron, copper, and lead in drinking water distribution systems was studied under changing water quality environment. Release of iron, copper, and lead were monitored at varying inhibitor doses and changing blends of source waters (groundwater, surface water, and desalinated water). Solid corrosion products on pipe surfaces under BOP treatment were evaluated with surface characterization techniques. Performance of the BOP inhibitor was compared to other corrosion control strategies. Iron scales for iron and galvanized steel coupons incubated in different blended waters in the presence of BOP inhibitor were analyzed by X-ray Photoelectron Spectroscopy (XPS) for surface composition. Identified iron corrosion products were ferric oxide (Fe2O3), magnetite (Fe3O4), and hydrated ferric oxide (FeOOH), in addition to ferric phosphate (FePO4) on coupons exposed to BOP inhibitor. Variations of water quality did not significantly affect the distribution of solid iron forms on surface films. Thermodynamic modeling indicated siderite (FeCO3) was the controlling solid phase of iron release. XPS indicated addition of BOP inhibitor produced a solid phosphate film in the iron scale which could inhibit iron release. Impact of BOP, orthophosphate, and pH adjustment on iron release in a distribution system was examined. Iron release was sensitive to water quality variations (alkalinity and chloride) associated with source and blends of finished water. Finished waters with high alkalinity content (between 149 and 164 mg/L as CaCO3) consistently mitigated iron release regardless of inhibitor use. Dissolved iron constituted about 10% of total iron release. Empirical models were developed that related water quality, inhibitor type and dose to iron release. The BOP inhibitor minimized total iron release followed closely by increasing pH (between 7.9 and 8.1), while orthophosphate dose did not affect iron release. Temperature (ranged from 21.2 to 25.3) had limited influence on iron release with BOP treatment. Monitoring copper release showed that dissolved copper was the dominant form in the effluent, at about 88%. BOP inhibitor doses of 0.5 to 2.0 mg/L proved beneficial in controlling copper concentrations to an average of below 0.5 mg/L. Control of copper release improved with increasing BOP dose, despite changes in alkalinity. Elevation of pH by 0.3 unit beyond pHs (between 7.9 and 8.1) resulted in noticeable decrease in copper concentrations of about 30%, but was more sensitive to higher alkalinity (146 to 151 mg/L as CaCO3) than BOP treatment. Developed empirical models confirmed the importance of BOP inhibitor dose, pH increase, and alkalinity content on copper release. Statistical comparison of the corrosion control strategies proved the advantage of BOP inhibitor, at all doses, over pH elevation in controlling copper release. The BOP inhibitor mitigated lead release below action level, and consistently outperformed pH elevation, in all water quality conditions. XPS analysis identified lead dioxide (PbO2), lead oxide (PbO), cerussite (PbCO3), and hydrocerussite (Pb3(CO3)2(OH)2) as the corrosion products in the scale of lead/tin coupons exposed to BOP inhibitor. XPS and Scanning Electron Microscopy (SEM) analysis suggested cerussite or hydrocerussite is the controlling solid phase of lead release. Thermodynamic models for cerussite and hydrocerussite grossly over predicted actual concentrations. Solubility and equilibrium relationships suggested the possibility of a lead orthophosphate solid that would describe the effectiveness of BOP inhibitor, although no lead-phosphate solid was detected by surface analysis. BOP inhibitor appeared to have mitigated lead release by forming a surface film between lead scale and the bulk water.
Show less - Date Issued
- 2008
- Identifier
- CFE0002229, ucf:47922
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002229
- Title
- SCHEDULING AND RESOURCE MANAGEMENT FOR COMPLEX SYSTEMS: FROM LARGE-SCALE DISTRIBUTED SYSTEMS TO VERY LARGE SENSOR NETWORKS.
- Creator
-
Yu, Chen, Marinescu, Dan, University of Central Florida
- Abstract / Description
-
In this dissertation, we focus on multiple levels of optimized resource management techniques. We first consider a classic resource management problem, namely the scheduling of data-intensive applications. We define the Divisible Load Scheduling (DLS) problem, outline the system model based on the assumption that data staging and all communication with the sites can be done in parallel, and introduce a set of optimal divisible load scheduling algorithms and the related fault-tolerant...
Show moreIn this dissertation, we focus on multiple levels of optimized resource management techniques. We first consider a classic resource management problem, namely the scheduling of data-intensive applications. We define the Divisible Load Scheduling (DLS) problem, outline the system model based on the assumption that data staging and all communication with the sites can be done in parallel, and introduce a set of optimal divisible load scheduling algorithms and the related fault-tolerant coordination algorithm. The DLS algorithms introduced in this dissertation exploit parallel communication, consider realistic scenarios regarding the time when heterogeneous computing systems are available, and generate optimal schedules. Performance studies show that these algorithms perform better than divisible load scheduling algorithms based upon sequential communication. We have developed a self-organization model for resource management in distributed systems consisting of a very large number of sites with excess computing capacity. This self-organization model is inspired by biological metaphors and uses the concept of varying energy levels to express activity and goal satisfaction. The model is applied to Pleiades, a service-oriented architecture based on resource virtualization. The self-organization model for complex computing and communication systems is applied to Very Large Sensor Networks (VLSNs). An algorithm for self-organization of anonymous sensor nodes called SFSN (Scale-free Sensor Networks) and an algorithm utilizing the Small-worlds principle called SWAS (Small-worlds of Anonymous Sensors) are introduced. The SFSN algorithm is designed for VLSNs consisting of a fairly large number of inexpensive sensors with limited resources. An important feature of the algorithm is the ability to interconnect sensors without an identity, or physical address used by traditional communication and coordination protocols. During the self-organization phase, the collision-free communication channels allowing a sensor to synchronously forward information to the members of its proximity set are established and the communication pattern is followed during the activity phases. Simulation study shows that the SFSN ensures the scalability, limits the amount of communication and the complexity of coordination. The SWAS algorithm is further improved from SFSN by applying the Small-worlds principle. It is unique in its ability to create a sensor network with a topology approximating small-world networks. Rather than creating shortcuts between pairs of diametrically positioned nodes in a logical ring, we end up with something resembling a double-stranded DNA. By exploiting Small-worlds principle we combine two desirable features of networks, namely high clustering and small path length.
Show less - Date Issued
- 2009
- Identifier
- CFE0002907, ucf:48004
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002907
- Title
- EFFECTS OF ORTHOPHOSPHATE CORROSION INHIBITOR IN BLENDED WATER QUALITY ENVIRONMENTS.
- Creator
-
Stone, Erica, Duranceau, Steven, University of Central Florida
- Abstract / Description
-
This study evaluated the effects of orthophosphate (OP) inhibitor addition on iron, copper, and lead corrosion on coupons exposed to different blends of groundwater, surface water, and desalinated seawater. The effectiveness of OP inhibitor addition on iron, copper, and lead release was analyzed by statistical comparison between OP treated and untreated pilot distribution systems (PDS). Four different doses of OP inhibitor, ranging from zero (control) to 2 mg/L as P, were investigated and non...
Show moreThis study evaluated the effects of orthophosphate (OP) inhibitor addition on iron, copper, and lead corrosion on coupons exposed to different blends of groundwater, surface water, and desalinated seawater. The effectiveness of OP inhibitor addition on iron, copper, and lead release was analyzed by statistical comparison between OP treated and untreated pilot distribution systems (PDS). Four different doses of OP inhibitor, ranging from zero (control) to 2 mg/L as P, were investigated and non-linear empirical models were developed to predict iron, copper, and lead release from the water quality and OP doses. Surface characterization evaluations were conducted using X-ray Photoelectron Spectroscopy (XPS) analyses for each iron, galvanized steel, copper, and lead/tin coupon tested. Also, a theoretical thermodynamic model was developed and used to validate the controlling solid phases determined by XPS. A comparison of the effects of phosphate-based corrosion inhibitor addition on iron, copper, and lead release from the PDSs exposed to the different blends was also conducted. Three phosphate-based corrosion inhibitors were employed; blended orthophosphate (BOP), orthophosphate (OP), and zinc orthophosphate (ZOP). Non-linear empirical models were developed to predict iron, copper, and lead release from each PDS treated with different doses of inhibitor ranging from zero (control) to 2 mg/L as P. The predictive models were developed using water quality parameters as well as the inhibitor dose. Using these empirical models, simulation of the water quality of different blends with varying alkalinity and pH were used to compare the inhibitors performance for remaining in compliance for iron, copper and lead release. OP inhibitor addition was found to offer limited improvement of iron release for the OP dosages evaluated for the water blends evaluated compared to pH adjustment alone. Empirical models showed increased total phosphorus, pH, and alkalinity reduced iron release while increased silica, chloride, sulfate, and temperature contributed to iron release. Thermodynamic modeling suggested that FePO4 is the controlling solid that forms on iron and galvanized steel surfaces, regardless of blend, when OP inhibitor is added for corrosion control. While FePO4 does not offer much control of the iron release from the cast iron surfaces, it does offer protection of the galvanized steel surfaces reducing zinc release. OP inhibitor addition was found to reduce copper release for the OP dosages evaluated for the water blends evaluated compared to pH adjustment alone. Empirical models showed increases in total phosphorus, silica, and pH reduced copper release while increased alkalinity and chloride contributed to copper release. Thermodynamic modeling suggested that Cu3(PO4)22H2O is the controlling solid that forms on copper surfaces, regardless of blend, when OP inhibitor is added for corrosion control. OP inhibitor addition was found to reduce lead release for the OP dosages evaluated for the water blends evaluated compared to pH adjustment alone. Empirical models showed increased total phosphorus and pH reduced lead release while increased alkalinity, chloride, and temperature contributed to lead release. Thermodynamic modeling suggested that hydroxypyromorphite is the controlling solid that forms on lead surfaces, regardless of blend, when OP inhibitor is added for corrosion control. The comparison of phosphate-based inhibitors found increasing pH to reduce iron, copper, and lead metal release, while increasing alkalinity was shown to reduce iron release but increase copper and lead release. The ZOP inhibitor was not predicted by the empirical models to perform as well as BOP and OP at the low dose of 0.5 mg/L as P for iron control, and the OP inhibitor was not predicted to perform as well as BOP and ZOP at the low dose of 0.5 mg/L as P for lead control. The three inhibitors evaluated performed similarly for copper control. Therefore, BOP inhibitor showed the lowest metal release at the low dose of 0.5 mg/L as P for control of iron, copper, and lead corrosion.
Show less - Date Issued
- 2008
- Identifier
- CFE0002382, ucf:47760
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002382
- Title
- RULE-BASED DECISION SUPPORT SYSTEM FOR SENSOR DEPLOYMENT IN DRINKING WATER NETWORKS.
- Creator
-
Prapinpongsanone, Natthaphon, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
Drinking water distribution systems are inherently vulnerable to malicious contaminant events with environmental health concerns such as total trihalomethanes (TTHMs), lead, and chlorine residual. In response to the needs for long-term monitoring, one of the most significant challenges currently facing the water industry is to investigate the sensor placement strategies with modern concepts of and approaches to risk management. This study develops a Rule-based Decision Support System (RBDSS)...
Show moreDrinking water distribution systems are inherently vulnerable to malicious contaminant events with environmental health concerns such as total trihalomethanes (TTHMs), lead, and chlorine residual. In response to the needs for long-term monitoring, one of the most significant challenges currently facing the water industry is to investigate the sensor placement strategies with modern concepts of and approaches to risk management. This study develops a Rule-based Decision Support System (RBDSS) to generate sensor deployment strategies with no computational burden as we oftentimes encountered via large-scale optimization analyses. Three rules were derived to address the efficacy and efficiency characteristics and they include: 1) intensity, 2) accessibility, and 3) complexity rules. To retrieve the information of population exposure, the well-calibrated EPANET model was applied for the purpose of demonstration of vulnerability assessment. Graph theory was applied to retrieve the implication of complexity rule eliminating the need to deal with temporal variability. In case study 1, implementation potential was assessed by using a small-scale drinking water network in rural Kentucky, the United States with the sensitivity analysis. The RBDSS was also applied to two networks, a small-scale and large-scale network, in "The Battle of the Water Sensor Network" (BWSN) in order to compare its performances with the other models. In case study 2, the RBDSS has been modified by implementing four objective indexes, the expected time of detection (Z1), the expected population affected prior to detection (Z2), the expected consumption of contaminant water prior to detection, and the detection likelihood (Z4), are being used to evaluate RBDSS's performance and compare to other models in Network 1 analysis in BWSN. Lastly, the implementation of weighted optimization is applied to the large water distribution analysis in case study 3, Network 2 in BWSN.
Show less - Date Issued
- 2011
- Identifier
- CFE0003704, ucf:48825
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003704
- Title
- Network Partitioning in Distributed Agent-Based Models.
- Creator
-
Petkova, Antoniya, Deo, Narsingh, Hughes, Charles, Bassiouni, Mostafa, Shaykhian, Gholam, University of Central Florida
- Abstract / Description
-
Agent-Based Models (ABMs) are an emerging simulation paradigm for modeling complex systems, comprised of autonomous, possibly heterogeneous, interacting agents. The utility of ABMs lies in their ability to represent such complex systems as self-organizing networks of agents. Modeling and understanding the behavior of complex systems usually occurs at large and representative scales, and often obtaining and visualizing of simulation results in real-time is critical.The real-time requirement...
Show moreAgent-Based Models (ABMs) are an emerging simulation paradigm for modeling complex systems, comprised of autonomous, possibly heterogeneous, interacting agents. The utility of ABMs lies in their ability to represent such complex systems as self-organizing networks of agents. Modeling and understanding the behavior of complex systems usually occurs at large and representative scales, and often obtaining and visualizing of simulation results in real-time is critical.The real-time requirement necessitates the use of in-memory computing, as it is dif?cult and challenging to handle the latency and unpredictability of disk accesses. Combining this observation with the scale requirement emphasizes the need to use parallel and distributed computing platforms, such as MPI-enabled CPU clusters. Consequently, the agent population must be "partitioned" across different CPUs in a cluster. Further, the typically high volume of interactions among agents can quickly become a signi?cant bottleneck for real-time or large-scale simulations. The problem is exacerbated if the underlying ABM network is dynamic and the inter-process communication evolves over the course of the simulation. Therefore, it is critical to develop topology-aware partitioning mechanisms to support such large simulations.In this dissertation, we demonstrate that distributed agent-based model simulations bene?t from the use of graph partitioning algorithms that involve a local, neighborhood-based perspective. Such methods do not rely on global accesses to the network and thus are more scalable. In addition, we propose two partitioning schemes that consider the bottom-up individual-centric nature of agent-based modeling. The ?rst technique utilizes label-propagation community detection to partition the dynamic agent network of an ABM. We propose a latency-hiding, seamless integration of community detection in the dynamics of a distributed ABM. To achieve this integration, we exploit the similarity in the process flow patterns of a label-propagation community-detection algorithm and self-organizing ABMs.In the second partitioning scheme, we apply a combination of the Guided Local Search (GLS) and Fast Local Search (FLS) metaheuristics in the context of graph partitioning. The main driving principle of GLS is the dynamic modi?cation of the objective function to escape local optima. The algorithm augments the objective of a local search, thereby transforming the landscape structure and escaping a local optimum. FLS is a local search heuristic algorithm that is aimed at reducing the search space of the main search algorithm. It breaks down the space into sub-neighborhoods such that inactive sub-neighborhoods are removed from the search process. The combination of GLS and FLS allowed us to design a graph partitioning algorithm that is both scalable and sensitive to the inherent modularity of real-world networks.
Show less - Date Issued
- 2017
- Identifier
- CFE0006903, ucf:51706
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006903
- Title
- Security of Autonomous Systems under Physical Attacks: With application to Self-Driving Cars.
- Creator
-
Dutta, Raj, Jin, Yier, Sundaram, Kalpathy, DeMara, Ronald, Zhang, Shaojie, Zhang, Teng, University of Central Florida
- Abstract / Description
-
The drive to achieve trustworthy autonomous cyber-physical systems (CPS), which can attain goals independently in the presence of significant uncertainties and for long periods of time without any human intervention, has always been enticing. Significant progress has been made in the avenues of both software and hardware for fulfilling these objectives. However, technological challenges still exist and particularly in terms of decision making under uncertainty. In an autonomous system,...
Show moreThe drive to achieve trustworthy autonomous cyber-physical systems (CPS), which can attain goals independently in the presence of significant uncertainties and for long periods of time without any human intervention, has always been enticing. Significant progress has been made in the avenues of both software and hardware for fulfilling these objectives. However, technological challenges still exist and particularly in terms of decision making under uncertainty. In an autonomous system, uncertainties can arise from the operating environment, adversarial attacks, and from within the system. As a result of these concerns, human-beings lack trust in these systems and hesitate to use them for day-to-day use.In this dissertation, we develop algorithms to enhance trust by mitigating physical attacks targeting the integrity and security of sensing units of autonomous CPS. The sensors of these systems are responsible for gathering data of the physical processes. Lack of measures for securing their information can enable malicious attackers to cause life-threatening situations. This serves as a motivation for developing attack resilient solutions.Among various security solutions, attention has been recently paid toward developing system-level countermeasures for CPS whose sensor measurements are corrupted by an attacker. Our methods are along this direction as we develop an active and multiple passive algorithm to detect the attack and minimize its effect on the internal state estimates of the system. In the active approach, we leverage a challenge authentication technique for detection of two types of attacks: The Denial of Service (DoS) and the delay injection on active sensors of the systems. Furthermore, we develop a recursive least square estimator for recovery of system from attacks. The majority of the dissertation focuses on designing passive approaches for sensor attacks. In the first method, we focus on a linear stochastic system with multiple sensors, where measurements are fused in a central unit to estimate the state of the CPS. By leveraging Bayesian interpretation of the Kalman filter and combining it with the Chi-Squared detector, we recursively estimate states within an error bound and detect the DoS and False Data Injection attacks. We also analyze the asymptotic performance of the estimator and provide conditions for resilience of the state estimate.Next, we propose a novel distributed estimator based on l1 norm optimization, which could recursively estimate states within an error bound without restricting the number of agents of the distributed system that can be compromised. We also extend this estimator to a vehicle platoon scenario which is subjected to sparse attacks. Furthermore, we analyze the resiliency and asymptotic properties of both the estimators. Finally, at the end of the dissertation, we make an initial effort to formally verify the control system of the autonomous CPS using the statistical model checking method. It is done to ensure that a real-time and resource constrained system such as a self-driving car, with controllers and security solutions, adheres to strict timing constrains.
Show less - Date Issued
- 2018
- Identifier
- CFE0007174, ucf:52253
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007174
- Title
- Stability and Control in Complex Networks of Dynamical Systems.
- Creator
-
Manaffam, Saeed, Vosoughi, Azadeh, Behal, Aman, Atia, George, Rahnavard, Nazanin, Javidi, Tara, Das, Tuhin, University of Central Florida
- Abstract / Description
-
Stability analysis of networked dynamical systems has been of interest in many disciplines such as biology and physics and chemistry with applications such as LASER cooling and plasma stability. These large networks are often modeled to have a completely random (Erd\"os-R\'enyi) or semi-random (Small-World) topologies. The former model is often used due to mathematical tractability while the latter has been shown to be a better model for most real life networks.The recent emergence of cyber...
Show moreStability analysis of networked dynamical systems has been of interest in many disciplines such as biology and physics and chemistry with applications such as LASER cooling and plasma stability. These large networks are often modeled to have a completely random (Erd\"os-R\'enyi) or semi-random (Small-World) topologies. The former model is often used due to mathematical tractability while the latter has been shown to be a better model for most real life networks.The recent emergence of cyber physical systems, and in particular the smart grid, has given rise to a number of engineering questions regarding the control and optimization of such networks. Some of the these questions are: \emph{How can the stability of a random network be characterized in probabilistic terms? Can the effects of network topology and system dynamics be separated? What does it take to control a large random network? Can decentralized (pinning) control be effective? If not, how large does the control network needs to be? How can decentralized or distributed controllers be designed? How the size of control network would scale with the size of networked system?}Motivated by these questions, we began by studying the probability of stability of synchronization in random networks of oscillators. We developed a stability condition separating the effects of topology and node dynamics and evaluated bounds on the probability of stability for both Erd\"os-R\'enyi (ER) and Small-World (SW) network topology models. We then turned our attention to the more realistic scenario where the dynamics of the nodes and couplings are mismatched. Utilizing the concept of $\varepsilon$-synchronization, we have studied the probability of synchronization and showed that the synchronization error, $\varepsilon$, can be arbitrarily reduced using linear controllers.We have also considered the decentralized approach of pinning control to ensure stability in such complex networks. In the pinning method, decentralized controllers are used to control a fraction of the nodes in the network. This is different from traditional decentralized approaches where all the nodes have their own controllers. While the problem of selecting the minimum number of pinning nodes is known to be NP-hard and grows exponentially with the number of nodes in the network we have devised a suboptimal algorithm to select the pinning nodes which converges linearly with network size. We have also analyzed the effectiveness of the pinning approach for the synchronization of oscillators in the networks with fast switching, where the network links disconnect and reconnect quickly relative to the node dynamics.To address the scaling problem in the design of distributed control networks, we have employed a random control network to stabilize a random plant network. Our results show that for an ER plant network, the control network needs to grow linearly with the size of the plant network.
Show less - Date Issued
- 2015
- Identifier
- CFE0005834, ucf:50902
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005834
- Title
- In-Plant and Distribution System Corrosion Control for Reverse Osmosis, Nanofiltration, and Anion Exchange Process Blends.
- Creator
-
Jeffery, Samantha, Duranceau, Steven, Randall, Andrew, Wang, Dingbao, University of Central Florida
- Abstract / Description
-
The integration of advanced technologies into existing water treatment facilities (WTFs) can improve and enhance water quality; however, these same modifications or improvements may adversely affect finished water provided to the consumer by public water systems (PWSs) that embrace these advanced technologies. Process modification or improvements may unintentionally impact compliance with the provisions of the United States Environmental Protection Agency's (USEPA's) Safe Drinking Water Act ...
Show moreThe integration of advanced technologies into existing water treatment facilities (WTFs) can improve and enhance water quality; however, these same modifications or improvements may adversely affect finished water provided to the consumer by public water systems (PWSs) that embrace these advanced technologies. Process modification or improvements may unintentionally impact compliance with the provisions of the United States Environmental Protection Agency's (USEPA's) Safe Drinking Water Act (SDWA). This is especially true with respect to corrosion control, since minor changes in water quality can affect metal release. Changes in metal release can have a direct impact on a water purveyor's compliance with the SDWA's Lead and Copper Rule (LCR). In 2010, the Town of Jupiter (Town) decommissioned its ageing lime softening (LS) plant and integrated a nanofiltration (NF) plant into their WTF. The removal of the LS process subsequently decreased the pH in the existing reverse osmosis (RO) clearwell, leaving only RO permeate and anion exchange (AX) effluent to blend. The Town believed that the RO-AX blend was corrosive in nature and that blending with NF permeate would alleviate their concern. Consequently, a portion of the NF permeate stream was to be split between the existing RO-AX clearwell and a newly constructed NF primary clearwell. The Town requested that the University of Central Florida (UCF) conduct research evaluating how to mitigate negative impacts that may result from changing water quality, should the Town place its AX into ready-reserve. The research presented in this document was focused on the evaluation of corrosion control alternatives for the Town, and was segmented into two major components: 1.The first component of the research studied internal corrosion within the existing RO clearwell and appurtenances of the Town's WTF, should the Town place the AX process on standby. Research related to WTF in-plant corrosion control focused on blending NF and RO permeate, forming a new intermediate blend, and pH-adjusting the resulting mixture to reduce corrosion in the RO clearwell. 2.The second component was implemented with respect to the Town's potable water distribution system. The distribution system corrosion control research evaluated various phosphate-based corrosion inhibitors to determine their effectiveness in reducing mild steel, lead and copper release in order to maintain the Town's continual compliance with the LCR.The primary objective of the in-plant corrosion control research was to determine the appropriate ratio of RO to NF permeate and the pH necessary to reduce corrosion in the RO clearwell. In this research, the Langelier saturation index (LSI) was the corrosion index used to evaluate the stability of RO:NF blends. Results indicated that a pH-adjusted blend consisting of 70% RO and 30% NF permeate at 8.8-8.9 pH units would produce an LSI of +0.1, theoretically protecting the RO clearwell from corrosion.The primary objective of the distribution system corrosion control component of the research was to identify a corrosion control inhibitor that would further reduce lead and copper metal release observed in the Town's distribution system to below their respective action limits (ALs) as defined in the LCR. Six alternative inhibitors composed of various orthophosphate and polyphosphate (ortho:poly) ratios were evaluated sequentially using a corrosion control test apparatus. The apparatus was designed to house mild steel, lead and copper coupons used for weight loss analysis, as well as mild steel, lead solder and copper electrodes used for linear polarization analysis. One side of the apparatus, referred to as the (")control condition,(") was fed potable water that did not contain the corrosion inhibitor, while the other side of the corrosion apparatus, termed the (")test condition,(") was fed potable water that had been dosed with a corrosion inhibitor. Corrosion rate measurements were taken twice per weekday, and water quality was measured twice per week. Inhibitor evaluations were conducted over a span of 55 to 56 days, varying with each inhibitor. Coupons and electrodes were pre-corroded to simulate existing distribution system conditions. Water flow to the apparatus was controlled with an on/off timer to represent variations in the system and homes. Inhibitor comparisons were made based on their effectiveness at reducing lead and copper release after chemical addition. Based on the results obtained from the assessment of corrosion inhibitors for distribution system corrosion control, it appears that Inhibitors 1 and 3 were more successful in reducing lead corrosion rates, and each of these inhibitors reduced copper corrosion rates. Also, it is recommended that consideration be given to use of a redundant single-loop duplicate test apparatus in lieu of a double rack corrosion control test apparatus in experiments where pre-corrosion phases are implemented. This recommendation is offered because statistically, the control versus test double loop may not provide relevance in data analysis. The use of the Wilcoxon signed ranks test comparing the initial pre-corroding phase to the inhibitor effectiveness phase has proven to be a more useful analytical method for corrosion studies.
Show less - Date Issued
- 2013
- Identifier
- CFE0005008, ucf:50001
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005008
- Title
- Improvement of Data-Intensive Applications Running on Cloud Computing Clusters.
- Creator
-
Ibrahim, Ibrahim, Bassiouni, Mostafa, Lin, Mingjie, Zhou, Qun, Ewetz, Rickard, Garibay, Ivan, University of Central Florida
- Abstract / Description
-
MapReduce, designed by Google, is widely used as the most popular distributed programmingmodel in cloud environments. Hadoop, an open-source implementation of MapReduce, is a data management framework on large cluster of commodity machines to handle data-intensive applications. Many famous enterprises including Facebook, Twitter, and Adobehave been using Hadoop for their data-intensive processing needs. Task stragglers in MapReduce jobs dramatically impede job execution on massive datasets in...
Show moreMapReduce, designed by Google, is widely used as the most popular distributed programmingmodel in cloud environments. Hadoop, an open-source implementation of MapReduce, is a data management framework on large cluster of commodity machines to handle data-intensive applications. Many famous enterprises including Facebook, Twitter, and Adobehave been using Hadoop for their data-intensive processing needs. Task stragglers in MapReduce jobs dramatically impede job execution on massive datasets in cloud computing systems. This impedance is due to the uneven distribution of input data and computation load among cluster nodes, heterogeneous data nodes, data skew in reduce phase, resource contention situations, and network configurations. All these reasons may cause delay failure and the violation of job completion time. One of the key issues that can significantly affect the performance of cloud computing is the computation load balancing among cluster nodes. Replica placement in Hadoop distributed file system plays a significant role in data availability and the balanced utilization of clusters. In the current replica placement policy (RPP) of Hadoop distributed file system (HDFS), the replicas of data blocks cannot be evenly distributed across cluster's nodes. The current HDFS must rely on a load balancing utility for balancing the distribution of replicas, which results in extra overhead for time and resources. This dissertation addresses data load balancing problem and presents an innovative replica placement policy for HDFS. It can perfectly balance the data load among cluster's nodes. The heterogeneity of cluster nodes exacerbates the issue of computational load balancing; therefore, another replica placement algorithm has been proposed in this dissertation for heterogeneous cluster environments. The timing of identifying the straggler map task is very important for straggler mitigation in data-intensive cloud computing. To mitigate the straggler map task, Present progress and Feedback based Speculative Execution (PFSE) algorithm has been proposed in this dissertation. PFSE is a new straggler identification scheme to identify the straggler map tasks based on the feedback information received from completed tasks beside the progress of the current running task. Straggler reduce task aggravates the violation of MapReduce job completion time. Straggler reduce task is typically the result of bad data partitioning during the reduce phase. The Hash partitioner employed by Hadoop may cause intermediate data skew, which results in straggler reduce task. In this dissertation a new partitioning scheme, named Balanced Data Clusters Partitioner (BDCP), is proposed to mitigate straggler reduce tasks. BDCP is based on sampling of input data and feedback information about the current processing task. BDCP can assist in straggler mitigation during the reduce phase and minimize the job completion time in MapReduce jobs. The results of extensive experiments corroborate that the algorithms and policies proposed in this dissertation can improve the performance of data-intensive applications running on cloud platforms.
Show less - Date Issued
- 2019
- Identifier
- CFE0007818, ucf:52804
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007818
- Title
- AN INTERACTIVE DISTRIBUTED SIMULATION FRAMEWORK WITH APPLICATION TO WIRELESS NETWORKS AND INTRUSION DETECTION.
- Creator
-
Kachirski, Oleg, Guha, Ratan, University of Central Florida
- Abstract / Description
-
In this dissertation, we describe the portable, open-source distributed simulation framework (WINDS) targeting simulations of wireless network infrastructures that we have developed. We present the simulation framework which uses modular architecture and apply the framework to studies of mobility pattern effects, routing and intrusion detection mechanisms in simulations of large-scale wireless ad hoc, infrastructure, and totally mobile networks. The distributed simulations within the...
Show moreIn this dissertation, we describe the portable, open-source distributed simulation framework (WINDS) targeting simulations of wireless network infrastructures that we have developed. We present the simulation framework which uses modular architecture and apply the framework to studies of mobility pattern effects, routing and intrusion detection mechanisms in simulations of large-scale wireless ad hoc, infrastructure, and totally mobile networks. The distributed simulations within the framework execute seamlessly and transparently to the user on a symmetric multiprocessor cluster computer or a network of computers with no modifications to the code or user objects. A visual graphical interface precisely depicts simulation object states and interactions throughout the simulation execution, giving the user full control over the simulation in real time. The network configuration is detected by the framework, and communication latency is taken into consideration when dynamically adjusting the simulation clock, allowing the simulation to run on a heterogeneous computing system. The simulation framework is easily extensible to multi-cluster systems and computing grids. An entire simulation system can be constructed in a short time, utilizing user-created and supplied simulation components, including mobile nodes, base stations, routing algorithms, traffic patterns and other objects. These objects are automatically compiled and loaded by the simulation system, and are available for dynamic simulation injection at runtime. Using our distributed simulation framework, we have studied modern intrusion detection systems (IDS) and assessed applicability of existing intrusion detection techniques to wireless networks. We have developed a mobile agent-based IDS targeting mobile wireless networks, and introduced load-balancing optimizations aimed at limited-resource systems to improve intrusion detection performance. Packet-based monitoring agents of our IDS employ a CASE-based reasoner engine that performs fast lookups of network packets in the existing SNORT-based intrusion rule-set. Experiments were performed using the intrusion data from MIT Lincoln Laboratories studies, and executed on a cluster computer utilizing our distributed simulation system.
Show less - Date Issued
- 2005
- Identifier
- CFE0000642, ucf:46545
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000642
- Title
- Assessment of a Surface Water Supply for Source and Treated Distribution System Quality.
- Creator
-
Rodriguez, Angela, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, University of Central Florida
- Abstract / Description
-
This study focused on providing a source to tap assessment of surface water systems with respect to (i) the use of alternative biomonitoring tools, (ii) disinfection byproduct (DBP) formation and control, and (iii) corrosion control. In the first study component, two water systems were microbiologically evaluated using adenosine triphosphate (ATP) bioluminescence technology. It was determined that microbial ATP was useful as a surrogate for biomonitoring within a surface water system when...
Show moreThis study focused on providing a source to tap assessment of surface water systems with respect to (i) the use of alternative biomonitoring tools, (ii) disinfection byproduct (DBP) formation and control, and (iii) corrosion control. In the first study component, two water systems were microbiologically evaluated using adenosine triphosphate (ATP) bioluminescence technology. It was determined that microbial ATP was useful as a surrogate for biomonitoring within a surface water system when paired with traditional methods. Although microbial activity differed between distribution systems that used either chloramine or chlorine disinfectant, in both cases flowrate and season affected microbial ATP values. In the second study component, total trihalomethanes (TTHM) and haloacetic acids (HAA5) DBP formation and disinfectant stability was investigated using a novel DBP control process. The method relied on a combination of sulfate, ultraviolet light irradiation, pH, and aeration unit operations. Results indicate respective decreases in 7-day TTHM and HAA5 formation potentials of 36% - 57% and 20% - 47% for the surface waters investigated. In the third component of this work, a corrosion study assessed the effect of disinfectant chemical transitions on the corrosion rates of common distribution system metals. When a chlorine based disinfection system transitioned between chlorine and chloramine, mild steel corrosion increased by 0.45 mils per year (mpy) under chloramine and returned to baseline corrosion rates under chlorine. However, when a chloramine based disinfection system transitioned between chloramine and chlorine, mild steel corrosion increased in tandem with total chlorine levels. Unlike the chlorine system, the mild steel corrosion rates did not return to baseline under chloramine after exposure to 5 mg/L of total chlorine. Surface water systems should consider the use of ATP as a surrogate for biomonitoring, consider the novel treatment process for DBP formation control, and consider corrosion control in disinfectant decision-making activities.
Show less - Date Issued
- 2019
- Identifier
- CFE0007901, ucf:52751
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007901
- Title
- THE EFFECTS OF PHOSPHATE AND SILICATE INHIBITORS ON SURFACE ROUGHNESS AND COPPER RELEASE IN WATER DISTRIBUTION SYSTEMS.
- Creator
-
MacNevin, David, Taylor, James, University of Central Florida
- Abstract / Description
-
The effects of corrosion inhibitors on water quality and the distribution system were studied. This dissertation investigates the effect of inhibitors on iron surface roughness, copper surface roughness, and copper release. Corrosion inhibitors included blended poly/ortho phosphate, sodium orthophosphate, zinc orthophosphate, and sodium silicate. These inhibitors were added to a blend of surface water, groundwater, and desalinated brackish water. Surface roughness of galvanized iron, unlined...
Show moreThe effects of corrosion inhibitors on water quality and the distribution system were studied. This dissertation investigates the effect of inhibitors on iron surface roughness, copper surface roughness, and copper release. Corrosion inhibitors included blended poly/ortho phosphate, sodium orthophosphate, zinc orthophosphate, and sodium silicate. These inhibitors were added to a blend of surface water, groundwater, and desalinated brackish water. Surface roughness of galvanized iron, unlined cast iron, lined cast iron, and polyvinyl chloride was measured using pipe coupons exposed for three months. Roughness of each pipe coupon was measured with an optical surface profiler before and after exposure to inhibitors. For most materials, inhibitor did not have a significant effect on surface roughness; instead, the most significant factor determining the final surface roughness was the initial surface roughness. Coupons with low initial surface roughness tended to have an increase in surface roughness during exposure, and vice versa, implying that surface roughness tended to regress towards an average or equilibrium value. For unlined cast iron, increased alkalinity and increased temperature tended to correspond with increases in surface roughness. Unlined cast iron coupons receiving phosphate inhibitors were more likely to have a significant change in surface roughness, suggesting that phosphate inhibitors affect stability of iron pipe scales. Similar roughness data collected with new copper coupons showed that elevated orthophosphate, alkalinity, and temperature were all factors associated with increased copper surface roughness. The greatest increases in surface roughness were observed with copper coupons receiving phosphate inhibitors. Smaller increases were observed with copper coupons receiving silicate inhibitor or no inhibitor. With phosphate inhibitors, elevated temperature and alkalinity were associated with larger increases in surface roughness and blue-green copper (II) scales.. Otherwise a compact, dull red copper (I) scale was observed. These data suggest that phosphate inhibitor addition corresponds with changes in surface morphology, and surface composition, including the oxidation state of copper solids. The effects of corrosion inhibitors on copper surface chemistry and cuprosolvency were investigated. Most copper scales had X-ray photoelectron spectroscopy binding energies consistent with a mixture of Cu2O, CuO, Cu(OH)2, and other copper (II) salts. Orthophosphate and silica were detected on copper surfaces exposed to each inhibitor. All phosphate and silicate inhibitors reduced copper release relative to the no inhibitor treatments, keeping total copper below the 1.3 mg/L MCLG for all water quality blends. All three kinds of phosphate inhibitors, when added at 1 mg/L as P, corresponded with a 60% reduction in copper release relative to the no inhibitor control. On average, this percent reduction was consistent across varying water quality conditions in all four phases. Similarly when silicate inhibitor was added at 6 mg/L as SiO2, this corresponded with a 25-40% reduction in copper release relative to the no inhibitor control. Hence, on average, for the given inhibitors and doses, phosphate inhibitors provided more predictable control of copper release across changing water quality conditions. A plot of cupric ion concentration versus orthophosphate concentration showed a decrease in copper release consistent with mechanistic control by either cupric phosphate solubility or a diffusion limiting phosphate film. Thermodynamic models were developed to identify feasible controlling solids. For the no inhibitor treatment, Cu(OH)2 provided the closest prediction of copper release. With phosphate inhibitors both Cu(OH)2 and Cu(PO4)·2H2O models provided plausible predictions. Similarly, with silicate inhibitor, the Cu(OH)2 and CuSiO3·H2O models provided plausible predictions.
Show less - Date Issued
- 2008
- Identifier
- CFE0002001, ucf:47621
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002001
- Title
- A framework for interoperability on the United States electric grid infrastructure.
- Creator
-
Laval, Stuart, Rabelo, Luis, Zheng, Qipeng, Xanthopoulos, Petros, Ajayi, Richard, University of Central Florida
- Abstract / Description
-
Historically, the United States (US) electric grid has been a stable one-way power delivery infrastructure that supplies centrally-generated electricity to its predictably consuming demand. However, the US electric grid is now undergoing a huge transformation from a simple and static system to a complex and dynamic network, which is starting to interconnect intermittent distributed energy resources (DERs), portable electric vehicles (EVs), and load-altering home automation devices, that...
Show moreHistorically, the United States (US) electric grid has been a stable one-way power delivery infrastructure that supplies centrally-generated electricity to its predictably consuming demand. However, the US electric grid is now undergoing a huge transformation from a simple and static system to a complex and dynamic network, which is starting to interconnect intermittent distributed energy resources (DERs), portable electric vehicles (EVs), and load-altering home automation devices, that create bidirectional power flow or stochastic load behavior. In order for this grid of the future to effectively embrace the high penetration of these disruptive and fast-responding digital technologies without compromising its safety, reliability, and affordability, plug-and-play interoperability within the field area network must be enabled between operational technology (OT), information technology (IT), and telecommunication assets in order to seamlessly and securely integrate into the electric utility's operations and planning systems in a modular, flexible, and scalable fashion. This research proposes a potential approach to simplifying the translation and contextualization of operational data on the electric grid without being routed to the utility datacenter for a control decision. This methodology integrates modern software technology from other industries, along with utility industry-standard semantic models, to overcome information siloes and enable interoperability. By leveraging industrial engineering tools, a framework is also developed to help devise a reference architecture and use-case application process that is applied and validated at a US electric utility.
Show less - Date Issued
- 2015
- Identifier
- CFE0005647, ucf:50193
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005647
- Title
- Integrating Spray Aeration and Granular Activated Carbon for Disinfection By-Product Control in a Potable Water System.
- Creator
-
Rodriguez, Angela, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, University of Central Florida
- Abstract / Description
-
Public water systems add disinfectants in water treatment to inactivate microbial pathogens. Chlorine, when used as a disinfectant, reacts with natural organic matter in the water to form trihalomethane (THM) and haloacetic acid (HAA5) disinfection by-products (DBPs), which are suspected carcinogens. The Safe Drinking Water Act's Disinfectant and Disinfection By-Product (D/DBP) Rules were promulgated by the U.S. Environmental Protection Agency to regulate the amount of DBPs in water systems....
Show morePublic water systems add disinfectants in water treatment to inactivate microbial pathogens. Chlorine, when used as a disinfectant, reacts with natural organic matter in the water to form trihalomethane (THM) and haloacetic acid (HAA5) disinfection by-products (DBPs), which are suspected carcinogens. The Safe Drinking Water Act's Disinfectant and Disinfection By-Product (D/DBP) Rules were promulgated by the U.S. Environmental Protection Agency to regulate the amount of DBPs in water systems. Regulatory compliance is based on maximum contaminant levels (MCL), measured as a locational running annual average (LRAA), for total THM (TTHM) and HAA5 of 80 (&)#181;g/L and 60 (&)#181;g/L, respectively. Regulated DBPs, if consumed in excess of EPA's MCL standard over many years, may increase chronic health risks. In order to comply with the D/DBP Rules, the County of Maui Department of Water Supply (DWS) adopted two DBP control technologies. A GridBee(&)#174; spray-aeration process was place into DWS's Lower Kula water system's Brooks ground storage tank in February of 2013. In March of 2015 the second DBP control technology, granular activated carbon (GAC), was integrated into DWS's Pi'iholo surface water treatment plant. To investigate the integration effectiveness of GAC and spray-aeration into a water system for DBP control, DBP data was gathered from the system between August of 2011 and August 2016, and analyzed relative to cost and performance.Prior to the spray aeration and GAC integration, it was found that TTHM levels at the LRAA compliance site ranged between 58.5 (&)#181;g/L and 125 (&)#181;g/L (at times exceeding the MCL). Additionally, HAA5 levels at the LRAA compliance site ranged between 21.2 and 52.0 (&)#181;g/L. The concerted efforts of the GAC and GridBee(&)#174; system was found to reduce LRAA TTHM and HAA5 concentrations to 38.5 (&)#181;g/L and 20.5 (&)#181;g/L, respectively, in the Lower Kula system. Hypothesis testing utilizing t-Tests confirmed that TTHMs levels were controlled by the spray aeration system and the GAC was responsible for controlling HAA5 formation. Although TTHM levels were reduced by 58 percent, and HAA5 levels by 48 percent, the estimated cumulative annual operation and maintenance (O(&)M) cost of the two systems was $1,036,000. In light of the cost analysis, total organic carbon (TOC)-based models for predicting LRAA TTHM and HAA5 levels were developed as equation (i) and (ii), respectively:(i) TTHM (&)#181;g/L = (32.5 x (TOC ppm)) + 5.59, (ii) HAA5 (&)#181;g/L = (8.37 x (TOC ppm)) + 12.4.The TTHM model yielded an R2 of 0.93, and the HAA5 model had an R2 of 0.52. F-Tests comparing predicted LRAA TTHM and HAA5 levels to actual LRAA TTHM and HAA5 levels determined no statistically-significant difference. With the knowledge of how the GAC and spray aerator controlled DBPs in the water system, a cost-effective and practical treatment operating parameter was developed. The parameter, Pi'iholo water plant filter effluent TOC content, can serve as an indicator that operators would use to alter DBP treatment process flow set points to achieve cost-effective treatment. Furthermore, the significant annual cost contribution by the GAC, coupled with HAA5 levels below DWS's MCLG, led to the recommendation of variable frequency drive (VFD) pumps for the GAC system. The addition of VFD pumps should reduce the frequency of carbon change outs while preserving adequate HAA5 control in the system.
Show less - Date Issued
- 2016
- Identifier
- CFE0006841, ucf:52881
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006841