Current Search: Laser (x)
Pages
-
-
Title
-
Design and Verification of a Multi-Terawatt Ti-Sapphire Femtosecond Laser System.
-
Creator
-
Roumayah, Patrick, Shah, Lawrence, Richardson, Martin, Amezcua Correa, Rodrigo, University of Central Florida
-
Abstract / Description
-
Ultrashort pulse lasers are well-established in the scientific community due to the wide range of applications facilitated by their extreme intensities and broad bandwidth capabilities. This thesis will primarily present the design for the Mobile Ultrafast High Energy Laser Facility (MU-HELF) for use in outdoor atmospheric propagation experiments under development at the Laser Plasma Laboratory at UCF. The system is a 100fs 500 mJ Ti-Sapphire Chirped-Pulse Amplification (CPA) laser, operating...
Show moreUltrashort pulse lasers are well-established in the scientific community due to the wide range of applications facilitated by their extreme intensities and broad bandwidth capabilities. This thesis will primarily present the design for the Mobile Ultrafast High Energy Laser Facility (MU-HELF) for use in outdoor atmospheric propagation experiments under development at the Laser Plasma Laboratory at UCF. The system is a 100fs 500 mJ Ti-Sapphire Chirped-Pulse Amplification (CPA) laser, operating at 10 Hz. Some background on the generation of very high intensity optical pulses is also presented, alongside an overview of the physics of filamentation. As part of the design of MU-HELF, this thesis focuses on a novel approach to manage the large amount of dispersion required to stretch the pulse for CPA utilizing a custom nonlinear chirped Volume Bragg Grating (VBG) as a pulse stretcher matched to a traditional Treacy compressor. As part of this thesis, the dispersion of the CPA system was thoroughly modeled to properly design the chirped VBG and fabricated VBGs were characterized using a scanning spectral interferometry technique. The work demonstrates the feasibility of using a compact monolithic pulse stretcher in terawatt class CPA lasers.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006651, ucf:51241
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006651
-
-
Title
-
The Consequences of a Reduced Superlattice Thickness on Quantum Cascade LASER Performance.
-
Creator
-
Figueiredo, Pedro, Lyakh, Arkadiy, Peale, Robert, Klemm, Richard, Fathpour, Sasan, University of Central Florida
-
Abstract / Description
-
Coherent infrared radiation sources are essential for the operability of a wide range of scientific, industrial, military and commercial systems. The importance of the mid-infrared spectral region cannot be understated. Numerous molecules have some vibrational band in this range, allowing for identification of species by means of absorption, emission or some other form of spectroscopy. As such, spectroscopy alone has numerous applications ranging from industrial process control to disease...
Show moreCoherent infrared radiation sources are essential for the operability of a wide range of scientific, industrial, military and commercial systems. The importance of the mid-infrared spectral region cannot be understated. Numerous molecules have some vibrational band in this range, allowing for identification of species by means of absorption, emission or some other form of spectroscopy. As such, spectroscopy alone has numerous applications ranging from industrial process control to disease diagnosis utilizing breath analysis. However, despite the discovery of the LASER in the 60s, to this day the amount of coherent sources in this range is limited. It is for this reason that the quantum cascade laser has gained such momentum over the past 23 years.Quantum Cascade LASERS (QCL) are semiconductor LASERS which are based on the principle of bandgap engineering. This incredible technique is a testament to the technological maturity of the semiconductor industry. It has been demonstrated that by having precise control of individual material composition (band gap control), thicknesses on the order of monolayers, and doping levels for each individual layer in a superlattice, we have unprecedented flexibility in designing a LASER or detector in the infrared. And although the technology has matured since it's discovery, there still remain fundamental limitations on device performance. In particular, active region overheating limits QCL performance in a high duty cycle mode of operation.In this dissertation, along with general discussion on the background of the QCL, we propose a solution of where by limiting the growth of the superlattice to a fraction of typical devices, we allow for reduction of the average superlattice temperature under full operational conditions. The consequences of this reduction are explored in theory, experiment and system level applications.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006592, ucf:51273
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006592
-
-
Title
-
Characterization of SLM-Manufactured Turbine Blade Microfeatures from Superalloy Powders.
-
Creator
-
Ealy, Brandon, Kapat, Jayanta, Ahmed, Kareem, Vasu Sumathi, Subith, University of Central Florida
-
Abstract / Description
-
The limits of gas turbine technology are heavily influenced by materials and manufacturing capabilities. Inconel remains the material of choice for most hot gas path (HGP) components in gas turbines, however recent increases in turbine inlet temperature (TIT) are associated with the development of advanced convective cooling methods and ceramic thermal barrier coatings. Increasing cycle efficiency and cycle specific work are the primary drivers for increasing TIT. Lately, incremental...
Show moreThe limits of gas turbine technology are heavily influenced by materials and manufacturing capabilities. Inconel remains the material of choice for most hot gas path (HGP) components in gas turbines, however recent increases in turbine inlet temperature (TIT) are associated with the development of advanced convective cooling methods and ceramic thermal barrier coatings. Increasing cycle efficiency and cycle specific work are the primary drivers for increasing TIT. Lately, incremental performance gains responsible for increasing the allowable TIT have been made mainly through innovations in cooling technology, specifically convective cooling schemes. An emerging manufacturing technology may further facilitate the increase of allowable maximum TIT, thereby impacting cycle efficiencies. Laser Additive Manufacturing (LAM) is a promising manufacturing technology that uses lasers to selectively melt powders of metal in a layer-by-layer process to directly manufacture components, paving the way to produce designs that are not possible with conventional casting methods. This study investigates manufacturing qualities seen in LAM methods and its ability to successfully produce complex microfeatures in a mock turbine blade leading edge. Various cooling features are incorporated in design, consisting of internal impingement cooling, internal lattice structures, and external showerhead cooling. The internal structure is designed as a lattice of intersecting cylinders in order to mimic that of a porous material. Through a non-destructive approach, the presented design is analyzed against the departure of the design by utilizing X-ray computed tomography (CT). Employing this non-destructive testing (NDT) method, a more thorough analysis of the quality of manufacture is established by revealing the internal structures of the porous region and internal impingement array. Variance distribution between the design and manufactured test article are carried out for both internal impingement and external transpiration hole diameters from CT data. Flow testing is performed to characterize the uniformity of porous regions and flow behavior across the entire article for various pressure ratios. Discharge coefficients of internal impingement arrays and porous structures are quantified. A numerical model of fluid flow through the exact CAD geometry is analyzed over the range of experimental flowrates. By comparison of experimental and numerical data, performance discrepancies associated with manufacturing quality are observed. Simplifying assumptions to the domain are evaluated to compare predictions of CFD using the exact geometry. This study yields quantitative data on the build quality of the LAM process, providing more insight as to whether it is a viable option for manufacture of micro-features in current turbine blade production.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006452, ucf:51428
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006452
-
-
Title
-
Pulsed Tm-Fiber Laser for Mid-IR Generation.
-
Creator
-
Kadwani, Pankaj, Richardson, Martin, Abouraddy, Ayman, Schulzgen, Axel, Peale, Robert, University of Central Florida
-
Abstract / Description
-
Thulium fiber lasers have attracted interest based on their long emission wavelength and large bandwidth (~1.8 (-) 2.1 (&)#181;m) relative to more established ytterbium and erbium fiber lasers. In addition, Tm:fiber lasers offer the potential for high efficiencies (~60 %) and high output power levels both in cw as well as pulsed regimes. These attributes are useful particularly in applications such as remote sensing, materials processing and mid-infrared generation. This dissertation...
Show moreThulium fiber lasers have attracted interest based on their long emission wavelength and large bandwidth (~1.8 (-) 2.1 (&)#181;m) relative to more established ytterbium and erbium fiber lasers. In addition, Tm:fiber lasers offer the potential for high efficiencies (~60 %) and high output power levels both in cw as well as pulsed regimes. These attributes are useful particularly in applications such as remote sensing, materials processing and mid-infrared generation. This dissertation describes the development of novel nanosecond pulsed thulium fiber laser systems with record high peak power levels in order to pump nonlinear mid-infrared generation. The peak power scaling in thulium fiber lasers requires new fiber designs with ultra large mode field area (MFA). Two different classes of prototype thulium doped photonic crystal fibers (PCF) were investigated for high peak power generation. The first prototype is a flexible-PCF with 50 ?m core diameter, and the second is a rod-type PCF with 80 ?m diameter core. A robust single stage master oscillator power amplifier (MOPA) source based on flexible-PCF was developed. This source provided narrow linewidth, tunable wavelength, variable pulse duration, high peak power, and high energy nanosecond pulses. The PCF-rod was implemented as a second stage power amplifier. This system generated a record level of ~1 MW peak power output with 6.4 ns pulse-duration at 1 kHz repetition rate. This thulium doped PCF based MOPA system is a state of the art laser source providing high quality nanosecond pulses. The single stage MOPA system was successfully implemented to pump a zinc germanium phosphide (ZGP) crystal in an optical parametric oscillator (OPO) cavity to generate 3 - 5 (&)#181;m wavelengths. The MOPA source was also used to demonstrate backside machining in silicon wafer. The PCF based laser system demonstrated an order of magnitude increase in the peak power achievable in nanosecond thulium doped fiber laser systems, and further scaling appears possible. Further increases in the peak power will enable additional capabilities for mid-IR generation and associated applications.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005100, ucf:50739
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005100
-
-
Title
-
Metrology of Volume Chirped Bragg Gratings Recorded in Photo-Thermo-Refractive Glass for Ultrashort Pulse Stretching and Compressing.
-
Creator
-
Lantigua, Christopher, Glebov, Leonid, Zeldovich, Boris, Schulzgen, Axel, University of Central Florida
-
Abstract / Description
-
Chirped Bragg gratings (CBGs) recorded in photo-thermo-refractive (PTR) glass provide a very efficient and robust way to stretch and compress ultra-short laser pulses. These gratings offer the ability to stretch pulses from hundreds of femtoseconds, to the order of 1 ns and then re-compress them. However, in order to achieve pulse stretching of this magnitude, 100 mm thick CBGs are needed. Using these CBGs to both stretch, and re-compress the pulse thus requires propagation through 200 mm of...
Show moreChirped Bragg gratings (CBGs) recorded in photo-thermo-refractive (PTR) glass provide a very efficient and robust way to stretch and compress ultra-short laser pulses. These gratings offer the ability to stretch pulses from hundreds of femtoseconds, to the order of 1 ns and then re-compress them. However, in order to achieve pulse stretching of this magnitude, 100 mm thick CBGs are needed. Using these CBGs to both stretch, and re-compress the pulse thus requires propagation through 200 mm of optical glass. This therefore demands perfect control of the glass homogeneity, as well as the holographic recording process of the CBG. In this thesis, we present a study of the CBG parameters that lead to distortions in the quality of diffracted beams. We first present the challenges associated with measuring the quality of these beams and we show that such measurements are not easily achieved using commercial systems that rely on the ISO standard M2 method. Thus, we introduce a new metric of beam quality, which we have coined S2, that is a combination of both the M2 and power in the bucket metrics. Subsequently, we investigate the influence of the CBG parameters on the quality of diffracted beams. In particular, we examine the impact of small optical heterogeneities known as striae, as well as the impact of the optically and thermally induced distortions in the grating. We then use this data to improve the fabrication and characterization of 100 mm long CBGs.Finally, we characterize the performance of CBGs recorded in PTR for stretching and compression of femtosecond pulses using a custom autocorrelation system. We present data on high quality 100 mm long CBGs and an analysis on the correlation between beam quality and the final pulse duration after stretching and re-compressing the pulse.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004876, ucf:49680
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004876
-
-
Title
-
Dynamic feedback pulse shaping for high power chirped pulse amplification system.
-
Creator
-
Nguyen, Dat, Delfyett, Peter, Rahman, Talat, Richardson, Martin, Schulzgen, Axel, Li, Guifang, University of Central Florida
-
Abstract / Description
-
The topic of this proposal is the development of high peak power laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated parabolic...
Show moreThe topic of this proposal is the development of high peak power laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated parabolic pulse shaping approaches. The experimental research addresses the topic of parabolic pulse generation in two distinct ways. First, pulse shaping technique involving a time domain approach is presented, that results in stretched pulses with parabolic profiles with temporal duration of 15 ns. After pulse is shaped into a parabolic intensity profile, the pulse is compressed with DCF fiber spool by 100 times to 80 ps duration at FWHM. A different approach of pulse shaping in frequency domain is performed, in which a spectral processor based on Liquid Crystal on Silicon technology is used. The pulse is stretched to 1.5 ns before intensity mask is applied, resulting in a parabolic intensity profile. Due to frequency to time mapping, its temporal profile is also parabolic. After pulse shaping, the pulse is compressed with a bulk compressor, and subsequently analyzed with a Frequency Resolved Optical Gating (FROG). The spectral content of the compressed pulse is feedback to the spectral processor and used to adjust the spectral phase mask applied on the pulse. The resultant pulse after pulse shaping with feedback mechanism is a Fourier transform, sub-picosecond ultrashort pulse with 5 times increase in peak power.The appendices in this dissertation provide additional material used for the realization of the main research focus of the dissertation. Specification and characterization of major components of equipment and devices used in the experiment are present. The description of Matlab algorithms that was used to calculate required signals for pulse shaping are shown. A brief description of the Labview code used to control the spectral processor will also be illustrated.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004899, ucf:49642
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004899
-
-
Title
-
Semiconductor Laser Based on Thermoelectrophotonics.
-
Creator
-
Liu, Xiaohang, Deppe, Dennis, Vanstryland, Eric, Dogariu, Aristide, Bass, Michael, University of Central Florida
-
Abstract / Description
-
This dissertation presents to our knowledge the first demonstration of a quantum well (QW) laser monolithically integrated with internal optical pump based on a light emitting diode (LED). The LED with high efficiency is operated in a thermoelectrophotonic (TEP) regime for which it can absorb both its own emitted light and heat. The LED optical pump can reduce internal optical loss in the QW laser, and enables monolithically integrated TEP heat pumps to the semiconductor laser. The design,...
Show moreThis dissertation presents to our knowledge the first demonstration of a quantum well (QW) laser monolithically integrated with internal optical pump based on a light emitting diode (LED). The LED with high efficiency is operated in a thermoelectrophotonic (TEP) regime for which it can absorb both its own emitted light and heat. The LED optical pump can reduce internal optical loss in the QW laser, and enables monolithically integrated TEP heat pumps to the semiconductor laser. The design, growth and fabrication processes of the laser chip are discussed, and its experimental data is presented. In order to further increase the TEP laser efficiency the development of QDs as the active region for TEP edge emitting laser (EEL) is studied. The usage of QD as TEP laser's active region is significant in terms of its low threshold current density, low internal optical loss and high reliability, which are mainly due to low transparency in QD laser. The crystal growth of self-organized QDs in molecular beam epitaxial (MBE) system and characterization of QDs are mentioned. The design, growth, processing and fabrication of a QD laser structure are detailed. The characteristics of laser devices with different cavity length are reported. QD active regions with different amount of material are grown to improve the active region performance. Theoretical calculations based on material parameters and semiconductor physics indicate that with proper design, the combination of high efficiency LED in TEP regime with a QD laser can result in the integrated laser chip power conversion efficiency exceeding unity.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005369, ucf:50477
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005369
-
-
Title
-
Self-heating control of edge emitting and vertical cavity surface emitting lasers.
-
Creator
-
Zhang, Yu, Deppe, Dennis, Fathpour, Sasan, Likamwa, Patrick, Wu, Thomas, University of Central Florida
-
Abstract / Description
-
Self-heating leads to temperature rise of laser diode and limits the output power, efficiency and modulation bandwidth due to increased loss and decreased differential gain. The main heat sources in laser diode during continuous wave operation are Joule heating and free carrier absorption loss. To control device self-heating, the epi structure needs to be designed with low electrical resistance and low absorption loss, while the heat flux must spread out of the device efficiently. This...
Show moreSelf-heating leads to temperature rise of laser diode and limits the output power, efficiency and modulation bandwidth due to increased loss and decreased differential gain. The main heat sources in laser diode during continuous wave operation are Joule heating and free carrier absorption loss. To control device self-heating, the epi structure needs to be designed with low electrical resistance and low absorption loss, while the heat flux must spread out of the device efficiently. This dissertation presents the control of self-heating of both edge emitting laser diodes and vertical cavity surface emitting lasers (VCSELs). For the 980nm high power edge emitting laser, asymmetric waveguide is used for low free carrier absorption loss. The waveguide and cladding materials are optimized for high injection efficiency. BeO heatsink is applied to spread the heat efficiently. Injection efficiency of 71% and internal loss of 0.3 cm-1 have been achieved. A total output power of 9.3 W is measured from 0.5cm long device at 14.5A injection current. To further reduce the internal loss, the development of 980nm quantum dot active region is studied. Threshold current density as low as 59A/cm2 is reached. For the VCSELs, oxide-free structure is used to solve the self-heating problem of oxide VCSELs. Removing the oxide layer and using AlAs in the DBRs leads to record low thermal resistance. Optimization of the DBRs leads to low resistance and low free carrier absorption. Power conversion efficiency higher than 50% is achieved. To further reduce device voltage and heat generation, the development of intracavity contacts devices is introduced.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005749, ucf:50076
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005749
-
-
Title
-
Injection-Locked Vertical Cavity Surface Emitting Lasers (VCSELs) for Optical Arbitrary Waveform Generation.
-
Creator
-
Bhooplapur, Sharad, Delfyett, Peter, Li, Guifang, Christodoulides, Demetrios, Malocha, Donald, University of Central Florida
-
Abstract / Description
-
Complex optical pulse shapes are typically generated from ultrashort laser pulses by manipulating the optical spectrum of the input pulses. This generates complex but periodic time-domain waveforms. Optical Arbitrary Waveform Generation (OAWG) builds on the techniques of ultrashort pulse?shaping, with the goal of making non?periodic, truly arbitrary optical waveforms. Some applications of OAWG are coherently controlling chemical reactions on a femtosecond time scale, improving the performance...
Show moreComplex optical pulse shapes are typically generated from ultrashort laser pulses by manipulating the optical spectrum of the input pulses. This generates complex but periodic time-domain waveforms. Optical Arbitrary Waveform Generation (OAWG) builds on the techniques of ultrashort pulse?shaping, with the goal of making non?periodic, truly arbitrary optical waveforms. Some applications of OAWG are coherently controlling chemical reactions on a femtosecond time scale, improving the performance of LADAR systems, high?capacity optical telecommunications and ultra wideband signals processing.In this work, an array of Vertical Cavity Surface Emitting Lasers (VCSELs) are used as modulators, by injection-locking each VCSEL to an individual combline from an optical frequency comb source. Injection-locking ensures that the VCSELs' emission is phase coherent with the input combline, and modulating its current modulates mainly the output optical phase. The multi-GHz modulation bandwidth of VCSELs updates the output optical pulse shape on a pulse-to-pulse time scale, which is an important step towards true OAWG. In comparison, it is about a million times faster than the liquid-crystal modulator arrays typically used for pulse shaping! Novel components and subsystems of Optical Arbitrary Waveform Generation (OAWG) are developed and demonstrated in this work. They include:1.Modulators An array of VCSELs is packaged and characterized for use as a modulator for rapid?update pulse?shaping at GHz rates. The amplitude and phase modulation characteristics of an injection?locked VCSEL are simultaneously measured at GHz modulation rates.2.Optical Frequency Comb SourcesAn actively mode?locked semiconductor laser was assembled, with a 12.5 GHz repetition rate, ~ 200 individually resolvable comblines directly out of the laser, and high frequency stability. In addition, optical frequency comb sources are generated by modulation of a single frequency laser.3.High-resolution optical spectral demultiplexersThe demultiplexers are implemented using bulk optics, and are used to spatially resolve individual optical comblines onto the modulator array. 4.Optical waveform measurement techniques Several techniques are used to measure generated waveforms, especially for spectral phase measurements, including multi-heterodyne phase retrieval. In addition, an architecture for discriminating between ultrashort encoded optical pulses with record high sensitivity is demonstrated.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005466, ucf:50402
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005466
-
-
Title
-
True linearized intensity modulation for photonic analog to digital conversion using an injection-locked mode-locked laser.
-
Creator
-
Sarailou, Edris, Delfyett, Peter, Likamwa, Patrick, Fathpour, Sasan, Malocha, Donald, University of Central Florida
-
Abstract / Description
-
A true linearized interferometric intensity modulator for pulsed light has been proposed and experimentally presented in this thesis. This has been achieved by introducing a mode-locked laser into one of the arms of a Mach-Zehnder interferometer and injection-locking it to the input light (which is pulsed and periodic). By modulating the injection-locked laser, and combining its output light with the light from the other arm of interferometer in quadrature, one can achieve true linearized...
Show moreA true linearized interferometric intensity modulator for pulsed light has been proposed and experimentally presented in this thesis. This has been achieved by introducing a mode-locked laser into one of the arms of a Mach-Zehnder interferometer and injection-locking it to the input light (which is pulsed and periodic). By modulating the injection-locked laser, and combining its output light with the light from the other arm of interferometer in quadrature, one can achieve true linearized intensity modulator. This linearity comes from the arcsine phase response of the injection-locked mode-locked laser (as suggested by steady-state solution of Adler's equation) when it is being modulated. Mode-locked lasers are fabricated using a novel AlGaInAs-InP material system. By using the BCB for planarization and minimizing the metal pad size and directly modulating the laser, we have achieved very effective fundamental hybrid mode-locking at the repetition rate of ~ 23 GHz. This laser also provided the short pulses of 860 fs and 280 fs timing jitter integrated from 1 Hz- 100 MHz.The linearized intensity modulator has been built by using two identical two-section mode-locked lasers with the same length, one as the slave laser in one of the arms of the Mach-Zehnder interferometer injection-locked to the other one as the master which is the input light to the modulator. A low V? of 8.5 mV is achieved from this modulator. Also the current of the gain section or the voltage of the saturable absorber section of the slave laser has been used to apply the modulation signal. A spur free dynamic range of 70 dB.Hz2/3 is achieved when modulating the modulator through the saturable absorber. Modulating the saturable absorber provides a reduced third-order intermodulation tone with respect to modulating the gain. This is simply because of the unwanted amplitude modulation created when modulating the gain section current.Finally an improved design is proposed and demonstrated to improve the modulator performance. This is achieved by introducing a third section to the laser. Using the impurity free vacancy disordering technique the photoluminescence peak of this section is blue-shifted selectively and therefore there would not be any absorption in that passive section. By applying the modulation signal to this passive section rather than applying it to the gain section or saturable absorber section, the amplitude and phase modulation could be decoupled. The experimental results have presented here and an almost six-fold reduction in V? and 5 dB improvement in spur free dynamic range have been achieved. The proposed and demonstrated configuration as an analog optical link has the potential to increase the performance and resolution of photonic analog-to-digital converters.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005707, ucf:50118
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005707
-
-
Title
-
Development of laser spectroscopy for elemental and molecular analysis.
-
Creator
-
Liu, Yuan, Richardson, Martin, Vanstryland, Eric, Bass, Michael, Sigman, Michael, University of Central Florida
-
Abstract / Description
-
Laser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy are still growing analytical and sensing spectroscopic techniques. They significantly reduce the time and labor cost in analysis with simplified instrumentation, and lead to minimal or no sample damage. In this dissertation, fundamental studies to improve LIBS analytical performance were performed and its fusion with Raman into one single sensor was explored.On the fundamental side, Thomson scattering was reported for the...
Show moreLaser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy are still growing analytical and sensing spectroscopic techniques. They significantly reduce the time and labor cost in analysis with simplified instrumentation, and lead to minimal or no sample damage. In this dissertation, fundamental studies to improve LIBS analytical performance were performed and its fusion with Raman into one single sensor was explored.On the fundamental side, Thomson scattering was reported for the first time to simultaneously measure the electron density and temperature of laser plasmas from a solid aluminum target at atmospheric pressure. Comparison between electron and excitation temperatures brought insights into the verification of local thermodynamic equilibrium condition in laser plasmas.To enhance LIBS emission, Microwave-Assisted LIBS (MA-LIBS) was developed and characterized. In MA-LIBS, a microwave field extends the emission lifetime of the plasma and stronger time integrated signal is obtained. Experimental results showed sensitivity improvement (more than 20-fold) and extension of the analytical range (down to a few tens of ppm) for the detection of copper traces in soil samples. Finally, laser spectroscopy systems that can perform both LIBS and Raman analysis were developed. Such systems provide two types of complimentary information (-) elemental composition from LIBS and structural information from Raman. Two novel approaches were reported for the first time for LIBS-Raman sensor fusion: (i) an Ultra-Violet system which combines Resonant Raman signal enhancement and high ablation efficiency from UV radiation, and (ii) a Ti:Sapphire laser based NIR system which reduces the fluorescence interference in Raman and takes advantage of femtosecond ablation for LIBS.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005105, ucf:50729
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005105
-
-
Title
-
SPRAY COOLING FOR LAND, SEA, AIR AND SPACE BASED APPLICATIONS,A FLUID MANAGEMENT SYSTEM FOR MULTIPLE NOZZLE SPRAY COOLING AND A GUIDE TO HIGH HEAT FLUX HEATER DESIGN.
-
Creator
-
Glassman, Brian, Chow, Louis, University of Central Florida
-
Abstract / Description
-
This thesis is divided into four distinct chapters all linked by the topic of spray cooling. Chapter one gives a detailed categorization of future and current spray cooling applications, and reviews the major advantages and disadvantages that spray cooling has over other high heat flux cooling techniques. Chapter two outlines the developmental goals of spray cooling, which are to increase the output of a current system and to enable new technologies to be technically feasible. Furthermore,...
Show moreThis thesis is divided into four distinct chapters all linked by the topic of spray cooling. Chapter one gives a detailed categorization of future and current spray cooling applications, and reviews the major advantages and disadvantages that spray cooling has over other high heat flux cooling techniques. Chapter two outlines the developmental goals of spray cooling, which are to increase the output of a current system and to enable new technologies to be technically feasible. Furthermore, this chapter outlines in detail the impact that land, air, sea, and space environments have on the cooling system and what technologies could be enabled in each environment with the aid of spray cooling. In particular, the heat exchanger, condenser and radiator are analyzed in their corresponding environments. Chapter three presents an experimental investigation of a fluid management system for a large area multiple nozzle spray cooler. A fluid management or suction system was used to control the liquid film layer thickness needed for effective heat transfer. An array of sixteen pressure atomized spray nozzles along with an imbedded fluid suction system was constructed. Two surfaces were spray tested one being a clear grooved Plexiglas plate used for visualization and the other being a bottom heated grooved 4.5 x 4.5 cm2 copper plate used to determine the heat flux. The suction system utilized an array of thin copper tubes to extract excess liquid from the cooled surface. Pure water was ejected from two spray nozzle configurations at flow rates of 0.7 L/min to 1 L/min per nozzle. It was found that the fluid management system provided fluid removal efficiencies of 98% with a 4-nozzle array, and 90% with the full 16-nozzle array for the downward spraying orientation. The corresponding heat fluxes for the 16 nozzle configuration were found with and without the aid of the fluid management system. It was found that the fluid management system increased heat fluxes on the average of 30 W/cm2 at similar values of superheat. Unfortunately, the effectiveness of this array at removing heat at full levels of suction is approximately 50% & 40% of a single nozzle at respective 10aC & 15aC values of superheat. The heat transfer data more closely resembled convective pooling boiling. Thus, it was concluded that the poor heat transfer was due to flooding occurring which made the heat transfer mechanism mainly forced convective boiling and not spray cooling. Finally, Chapter four gives a detailed guide for the design and construction of a high heat flux heater for experimental uses where accurate measurements of surface temperatures and heat fluxes are extremely important. The heater designs presented allow for different testing applications; however, an emphasis is placed on heaters designed for use with spray cooling.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000473, ucf:46351
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000473
-
-
Title
-
ALL-SEMICONDUCTOR HIGH POWER MODE-LOCKED LASER SYSTEM.
-
Creator
-
Kim, Kyungbum, Delfyett, Peter, University of Central Florida
-
Abstract / Description
-
The objective of this dissertation is to generate high power ultrashort optical pulses from an all-semiconductor mode-locked laser system. The limitations of semiconductor optical amplifier in high energy, ultrashort pulse amplification are reviewed. A method to overcome the fundamental limit of small stored energy inside semiconductor optical amplifier called "eXtreme Chirped Pulse Amplification (X-CPA)" is proposed and studied theoretically and experimentally. The key benefits of the...
Show moreThe objective of this dissertation is to generate high power ultrashort optical pulses from an all-semiconductor mode-locked laser system. The limitations of semiconductor optical amplifier in high energy, ultrashort pulse amplification are reviewed. A method to overcome the fundamental limit of small stored energy inside semiconductor optical amplifier called "eXtreme Chirped Pulse Amplification (X-CPA)" is proposed and studied theoretically and experimentally. The key benefits of the concept of X-CPA are addressed. Based on theoretical and experimental study, an all-semiconductor mode-locked X-CPA system consisting of a mode-locked master oscillator, an optical pulse pre-stretcher, a semiconductor optical amplifier (SOA) pulse picker, an extreme pulse stretcher/compressor, cascaded optical amplifiers, and a bulk grating compressor is successfully demonstrated and generates >kW record peak power. A potential candidate for generating high average power from an X-CPA system, novel grating coupled surface emitting semiconductor laser (GCSEL) devices, are studied experimentally. The first demonstration of mode-locking with GCSELs and associated amplification characteristics of grating coupled surface emitting SOAs will be presented. In an effort to go beyond the record setting results of the X-CPA system, a passive optical cavity amplification technique in conjunction with the X-CPA system is constructed, and studied experimentally and theoretically.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001069, ucf:46767
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001069
-
-
Title
-
DEVELOPMENT OF A COMPACT BROADBAND OPTICAL PARAMETRIC OSCILLATOR FOR ULTRA-SENSITIVE MOLECULAR DETECTION.
-
Creator
-
Crystal, Sean O, Vodopyanov, Konstantin L., University of Central Florida
-
Abstract / Description
-
Every gas molecule has a unique absorption spectrum that can be captured using optical spectroscopy to identify an unknown sample's composition. Frequency combs systems can provide an extremely broad mid-infrared spectrum that is very useful for molecular detection. A degenerate optical parametric oscillator (OPO) was built to generate the down-converted and shifted frequency comb spectrum. This system utilizes an ultra-short pulse 1.56�m pump laser and a never before used orientation...
Show moreEvery gas molecule has a unique absorption spectrum that can be captured using optical spectroscopy to identify an unknown sample's composition. Frequency combs systems can provide an extremely broad mid-infrared spectrum that is very useful for molecular detection. A degenerate optical parametric oscillator (OPO) was built to generate the down-converted and shifted frequency comb spectrum. This system utilizes an ultra-short pulse 1.56�m pump laser and a never before used orientation patterned gallium-phosphide crystal. Periodically polled lithium niobate (PPLN), Gallium Arsenide (GaAs) and Gallium Phosphide are all crystals used to accomplish this task. GaP, in comparison to PPLN, has (i) a larger nonlinear coefficient, (ii) much deeper infrared transparency, and (iii) smaller group dispersion � to allow for achieving broad spectral coverage. GaP also has a larger band gap than GaAs; therefore it can still be pumped with a standard telecom C-band laser. An octave-wide spanning frequency comb system was achieved and the characterization of the system is presented. This system is specifically designed to be compact and portable for initial experimental testing in the applications of medical breath analysis and combustion gas investigation.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFH2000274, ucf:45837
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000274
-
-
Title
-
THE EFFECTS OF ELECTRODE GEOMETRY ON CURRENT PULSE CAUSED BY ELECTRICAL DISCHARGE OVER AN ULTRA-FAST LASER FILAMENT.
-
Creator
-
Bubelnik, Matthew, Siders, Craig, University of Central Florida
-
Abstract / Description
-
The time-resolved electrical conductivity of a short-pulse generated plasma filament in air was studied. Close-coupled metal electrodes were used to discharge the stored energy of a high-voltage capacitor and the resulting microsecond-scale electrical discharge was measured using fast current sensors. Significant differences in the time dependence of the current were seen with the two electrode geometries used. Using sharp-tipped electrodes additional peaks in the time-resolved conductivity...
Show moreThe time-resolved electrical conductivity of a short-pulse generated plasma filament in air was studied. Close-coupled metal electrodes were used to discharge the stored energy of a high-voltage capacitor and the resulting microsecond-scale electrical discharge was measured using fast current sensors. Significant differences in the time dependence of the current were seen with the two electrode geometries used. Using sharp-tipped electrodes additional peaks in the time-resolved conductivity were seen, relative to the single peak seen with spherical electrodes. We attribute these additional features to secondary electron collisional ionization brought about by field enhancement at the tips. Additional discrepancies in the currents measured leaving the high-voltage electrode and that returning to ground were also observed. Implications for potential laser-induced discharge applications will be discussed.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000447, ucf:46378
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000447
-
-
Title
-
RADIATION STUDIES OF THE TIN-DOPED MICROSCOPIC DROPLET LASER PLASMA LIGHT SOURCE SPECIFIC TO EUV LITHOGRAPHY.
-
Creator
-
Koay, Chiew-Seng, Richardson, Martin, University of Central Florida
-
Abstract / Description
-
Extreme ultraviolet lithography(EUVL) is being developed worldwide as the next generation technology to be inserted in ~ 2009 for the mass production of IC chips with feature sizes
Show moreExtreme ultraviolet lithography(EUVL) is being developed worldwide as the next generation technology to be inserted in ~ 2009 for the mass production of IC chips with feature sizes <35 nm. One major challenge to its implementation is the development of a 13.5 nm EUV source of radiation that meets the requirements of current roadmap designs of the source of illumination in commercial EUVL scanners. The light source must be debris-free, in a free-space environment with the imaging EUV optics that must provide sufficient, narrow spectral band EUV power to print 100 wafers/hr. To meet this need, extensive studies on emission from a laser plasma source utilizing tin-doped droplet target was conducted. Presented in this work, are the many optical techniques such as spectroscopy, radiometry, and imaging, that were employed to characterize and optimize emission from the laser plasma source State of the art EUV spectrographs were employed to observe the source's spectrum under various laser irradiation conditions. Comparing the experimental spectra to those from theory, has allowed the determination of the Sn ion stages responsible for emitting into the useful EUV bandwidth. Experimental results were compared to spectral simulations obtained using Collisional-Radiative Equilibrium (CRE) model, as well. Moreover, extensive measurements surveying source emission from 2 nm to 30 nm, which is the region of the electromagnetic spectrum defined as EUV, was accomplished. Absolutely calibrated metrology was employed with the Flying Circus instrument from which the source's conversion efficiency (CE)--from laser to the useful EUV energy--was characterized under various laser irradiation conditions. Hydrodynamic simulations of the plasma expansion together with the CRE model predicted the condition at which optimum conversion could be attained. The condition was demonstrated experimentally, with the highest CE to be slightly above 2%, which is the highest value among all EUV source contenders. In addition to laser intensity, the CE was found to depend on the laser wavelength. For better understanding, this observation is compared to results from simulations. Through a novel approach in imaging, the size of the plasma was characterized by recording images of the plasma within a narrow band, around 13.5 nm. The size, approximately 100 ìm, is safely within the etendue limit set by the optical elements in the EUV scanner. Finally, the notion of irradiating the target with multiple laser beams was explored for the possibility of improving the source's conversion efficiency.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0000938, ucf:46733
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000938
-
-
Title
-
DIGITAL CONTROLLER IMPLEMENTATION FOR DISTURBANCE REJECTION IN THE OPTICAL COUPLING OF A MOBILE EXPERIMENTAL LASER TRACKING SYSTEM.
-
Creator
-
Rhodes, Matthew, Richie, Samuel, University of Central Florida
-
Abstract / Description
-
Laser tracking systems are an important aspect of the NASA space program, in particular for conducting research in relation to satellites and space port launch vehicles. Often, launches are conducted at remote sites which require all of the test equipment, including the laser tracking systems, to be portable. Portable systems are more susceptible to environmental disturbances which affect the overall tracking resolution, and consequently, the resolution of any other experimental data being...
Show moreLaser tracking systems are an important aspect of the NASA space program, in particular for conducting research in relation to satellites and space port launch vehicles. Often, launches are conducted at remote sites which require all of the test equipment, including the laser tracking systems, to be portable. Portable systems are more susceptible to environmental disturbances which affect the overall tracking resolution, and consequently, the resolution of any other experimental data being collected at any given time. This research characterizes the optical coupling between two systems in a Mobile Experimental Laser Tracking system and evaluates several control solutions to minimize disturbances within this coupling. A simulation of the optical path was developed in an extensible manner such that different control systems could be easily implemented. For an initial test, several PID controllers were utilized in parallel in order to control mirrors in the optical coupling. Despite many limiting factors of the hardware, a simple proportional control performed to expectations. Although a system implementation was never field tested, the simulation results provide the necessary insight to develop the system further. Recommendations were made for future system modifications which would allow an even higher tracking resolution.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001168, ucf:46873
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001168
-
-
Title
-
THERMAL MODELING AND LASER BEAM SHAPING FOR MICROVIAS DRILLING IN HIGH DENSITY PACKAGING.
-
Creator
-
Zhang, Chong, Kar, Aravinda, University of Central Florida
-
Abstract / Description
-
Laser drilling of microvias for organic packaging applications is studied in present research. Thermal model is essential to understand the laser-materials interactions and to control laser drilling of blind micro holes through polymeric dielectrics in multilayer electronic substrates. In order to understand the profile of the drilling front irradiated with different laser beam profiles, a transient heat conduction model including vaporization parameters is constructed. The absorption length...
Show moreLaser drilling of microvias for organic packaging applications is studied in present research. Thermal model is essential to understand the laser-materials interactions and to control laser drilling of blind micro holes through polymeric dielectrics in multilayer electronic substrates. In order to understand the profile of the drilling front irradiated with different laser beam profiles, a transient heat conduction model including vaporization parameters is constructed. The absorption length in the dielectric is also considered in this model. Therefore, the volumetric heating source criteria are applied in the model and the equations are solved analytically. The microvia drilling speed, temperature distribution in the dielectric and the thickness of the residue along the microvia walls and at the bottom of the microvia are studied for different laser irradiation conditions. An overheated metastable state of material is found to exist inside the workpiece. The overheating parameters are calculated for various laser drilling parameters and are used to predict the onset of thermal damage and to minimize the residue. As soon as a small cavity is formed during the drilling process, the concave curvature of the drilling front acts as a concave lens that diverges the incident laser beam. This self-defocusing effect can greatly reduce the drilling speed. This effect makes the refractive index of the substrate at different wavelengths an important parameter for laser drilling. A numerical thermal model is built to study the effect of self-defocusing for laser microvias drilling in multilayer electronic substrates with Nd:YAG and CO2 lasers.. The laser ablation thresholds was calculated with this model for the CO2 and Nd:YAG lasers respectively. Due to the expulsion of materials because of high internal pressures in the case of Nd:YAG laser microvia drilling, the ablation threshold may be far below the calculated value. A particular laser beam shape, such as pitch fork, was found to drill better holes than the Gaussian beam in terms of residue and tapering angle. Laser beam shaping technique is used to produce the desired pitchfork beam. Laser beam shaping allows redistribution of laser power and phase across the cross-section of the beam for drilling perfectly cylindrical holes. An optical system, which is comprised of three lenses, is designed to transform a Gaussian beam into a pitchfork beam. The first two lenses are the phase elements through which a Gaussian laser beam is transformed into a super Gaussian beam. The ray tracing technique of geometrical optics is used to design these phase elements. The third lens is the transform element which produces a pitchfork profile at the focal plane due to the diffraction effect. A pinhole scanning power meter is used to measure the laser beam profile at the focal plane to verify the existence of the pitchfork beam. To account for diffraction effect, the above mentioned laser beam shaping system was optimized by iterative method using Adaptive Additive algorithm. Fresnel diffraction is used in the iterative calculation. The optimization was target to reduce the energy contained in the first order diffraction ring and to increase the depth of focus for the system. Two diffractive optical elements were designed. The result of the optimization was found dependent on the relation between the diameter of the designed beam shape and the airy disk diameter. If the diameter of the designed beam is larger, the optimization can generate better result. Drilling experiment is performed with a Q-switched CO2 laser at wavelength of 9.3 μm. Comparison among the drilling results from Gaussian beam, Bessel beam and Pitchfork beam shows that the pitchfork beam can produce microvias with less tapering angle and less residue at the bottom of the via. Laser parameters were evaluated experimentally to study their influences on the via quality. Laser drilling process was optimized based on the evaluation to give high quality of the via and high throughput rate. Nd:YAG laser at wavelengths of 1.06 μm and 532 nm were also used in this research to do microvias drilling. Experimental result is compared with the model. Experimental results show the formation of convex surfaces during laser irradiation. These surfaces eventually rupture and the material is removed explosively due to high internal pressures. Due to the short wavelength, high power, high efficiency and high repetition rate, these lasers exhibit large potentials for microvias drilling.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002363, ucf:47799
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002363
-
-
Title
-
Thermal and Waveguide Optimization of Broad Area Quantum Cascade Laser Performance.
-
Creator
-
Suttinger, Matthew, Lyakh, Arkadiy, Bass, Michael, Vodopyanov, Konstantin, University of Central Florida
-
Abstract / Description
-
Quantum Cascade Lasers are a novel source of coherent infrared light, unique in their tunability over the mid-infrared and terahertz range of frequencies. Advances in bandgap engineering and semiconductor processing techniques in recent years have led to the development of highly efficient quantum cascade lasers capable of room temperature operation. Recent work has demonstrated power scaling with broad area quantum cascade lasers by increasing active region width beyond the standard ~10 ?m....
Show moreQuantum Cascade Lasers are a novel source of coherent infrared light, unique in their tunability over the mid-infrared and terahertz range of frequencies. Advances in bandgap engineering and semiconductor processing techniques in recent years have led to the development of highly efficient quantum cascade lasers capable of room temperature operation. Recent work has demonstrated power scaling with broad area quantum cascade lasers by increasing active region width beyond the standard ~10 ?m. Taking into account thermal effects caused by driving a device with electrical power, an experimentally fitted model is developed to predict the optical power output in both pulsed and continuous operation with varying device geometry and minor changes to quantum cascade laser active region design. The effects of the characteristic temperatures of threshold current density and slope efficiency, active region geometry, and doping, on output power are studied in the model. The model is then used to refine the active region design for increased power out in continuous operation for a broad area design. Upon testing the new design, new thermal effects on rollover current density are observed. The model is then refined to reflect the new findings and more accurately predict output power characteristics.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0007296, ucf:52174
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007296
-
-
Title
-
A study of organo-phosphorous simulants thermal destruction using shock tube/laser diagnostics techniques and chemical kinetics modeling.
-
Creator
-
Neupane, Sneha, Vasu Sumathi, Subith, Kassab, Alain, Chow, Louis, Peale, Robert, University of Central Florida
-
Abstract / Description
-
High-fidelity chemical kinetic models are critical in predictive modeling during design and optimization of next generation energy systems. Shock tube provides an ideal tool to investigate high-temperature chemical kinetics. Non-intrusive laser absorption diagnostics provide in-situ measurements of quantitative, time-resolved species concentration data in this complex chemically reacting system. In this work, shock tube and laser absorption spectroscopy were utilized to measure species...
Show moreHigh-fidelity chemical kinetic models are critical in predictive modeling during design and optimization of next generation energy systems. Shock tube provides an ideal tool to investigate high-temperature chemical kinetics. Non-intrusive laser absorption diagnostics provide in-situ measurements of quantitative, time-resolved species concentration data in this complex chemically reacting system. In this work, shock tube and laser absorption spectroscopy were utilized to measure species concentration time-histories during pyrolysis and oxidation of organo-phosphorous compounds (OPCs). The experiments data obtained were used as benchmark to develop an improved kinetic model of OPCs combustion. Interest in combustion chemistry of OPCs is associated to their use as fire suppressants and as chemical weapons. Pyrolysis and oxidation of OPCs were carried out behind reflected shock wave and laser absorption spectroscopy utilizing quantum cascade laser at mid-IR wavelength region was used to measure time resolved intermediate CO concentration produced during the process. Utilizing the experiments data, an improved chemical kinetic model for combustion of an OPC (-) Triethyl Phosphate (TEP) was developed. Various steps taken to develop the improved model include: calculation of thermochemical properties; updating hydrocarbon kinetics; calculation of reaction rates and addition of alternative TEP decomposition pathways. The prediction of TEP combustion, in terms intermediate CO concentration yield during its pyrolysis and oxidation, made by the improved model is in much better agreement with the experiments. Such an accurate kinetic model is critical in predicting the effectiveness of OPCs as flame retardants when used as dopants in hydrocarbon fuels; and in devising counter weapon of mass destruction strategies to destroy chemical weapons.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007691, ucf:52444
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007691
Pages