Current Search: Laser (x)
Pages
-
-
Title
-
THERMAL MANAGEMENT, BEAM CONTROL,AND PACKAGING DESIGNS FOR HIGH POWER DIODE LASER ARRAYS AND PUMP CAVITY DESIGNS FOR DIODE LASER ARRAY PUMPED ROD SHAPED LASERS.
-
Creator
-
Chung, Te-yuan, Bass, Michael, University of Central Florida
-
Abstract / Description
-
Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time....
Show moreSeveral novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000259, ucf:46222
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000259
-
-
Title
-
LASER INDUCED BREAKDOWN SPECTROSCOPY FOR DETECTION OF ORGANIC RESIDUES: IMPACT OF AMBIENT ATMOSPHERE AND LASER PARAMETERS.
-
Creator
-
Brown, Christopher, Richardson, Martin, University of Central Florida
-
Abstract / Description
-
Laser Induced Breakdown Spectroscopy (LIBS) is showing great potential as an atomic analytical technique. With its ability to rapidly analyze all forms of matter, with little-to-no sample preparation, LIBS has many advantages over conventional atomic emission spectroscopy techniques. With the maturation of the technologies that make LIBS possible, there has been a growing movement to implement LIBS in portable analyzers for field applications. In particular, LIBS has long been considered the...
Show moreLaser Induced Breakdown Spectroscopy (LIBS) is showing great potential as an atomic analytical technique. With its ability to rapidly analyze all forms of matter, with little-to-no sample preparation, LIBS has many advantages over conventional atomic emission spectroscopy techniques. With the maturation of the technologies that make LIBS possible, there has been a growing movement to implement LIBS in portable analyzers for field applications. In particular, LIBS has long been considered the front-runner in the drive for stand-off detection of trace deposits of explosives. Thus there is a need for a better understanding of the relevant processes that are responsible for the LIBS signature and their relationships to the different system parameters that are helping to improve LIBS as a sensing technology. This study explores the use of LIBS as a method to detect random trace amounts of specific organic materials deposited on organic or non-metallic surfaces. This requirement forces the limitation of single-shot signal analysis. This study is both experimental and theoretical, with a sizeable component addressing data analysis using principal components analysis to reduce the dimensionality of the data, and quadratic discriminant analysis to classify the data. In addition, the alternative approach of 'target factor analysis' was employed to improve detection of organic residues on organic substrates. Finally, a new method of characterizing the laser-induced plasma of organics, which should lead to improved data collection and analysis, is introduced. The comparison between modeled and experimental measurements of plasma temperatures and electronic density is discussed in order to improve the present models of low-temperature laser induced plasmas.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003708, ucf:48843
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003708
-
-
Title
-
Microstructure and Chemistry Evaluation of Direct Metal Laser Sintered 15-5 PH Stainless Steel.
-
Creator
-
Coffy, Kevin, Sohn, Yongho, Coffey, Kevin, Richardson, Martin, University of Central Florida
-
Abstract / Description
-
15-5PH stainless steel is an important alloy in the aerospace, chemical, and nuclear industries for its high strength and corrosion resistance at high temperature. Thus, this material is a good candidate for processing development in the direct metal laser sintering (DMLS) branch of additive manufacturing. The chemistry and microstructure of this alloy processed via DMLS was compared to its conventionally cast counterpart through various heat treatments as part of a characterization effort....
Show more15-5PH stainless steel is an important alloy in the aerospace, chemical, and nuclear industries for its high strength and corrosion resistance at high temperature. Thus, this material is a good candidate for processing development in the direct metal laser sintering (DMLS) branch of additive manufacturing. The chemistry and microstructure of this alloy processed via DMLS was compared to its conventionally cast counterpart through various heat treatments as part of a characterization effort. The investigation utilized optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffractometry (XRD), energy dispersive X-Ray spectroscopy (EDS) and glow discharge atomic emission spectrometry (GDS) techniques. DMLS processed samples contained a layered microstructure in which the prior austenite grain sizes were relatively smaller than the cast and annealed prior austenite grain size. The largest of the quantifiable DMLS prior austenite grains had an ASTM grain size of approximately 11.5-12 (6.7?m to 5.6?m, respectively) and the cast and annealed prior austenite grain size was approximately 7-7.5 (31.8?m to 26.7?m, respectively), giving insight to the elevated mechanical properties of the DMLS processed alloy. During investigation, significant amounts of retained austenite phase were found in the DMLS processed samples and quantified by XRD analysis. Causes of this phase included high nitrogen content, absorbed during nitrogen gas atomization of the DMLS metal powder and from the DMLS build chamber nitrogen atmosphere. Nitrogen content was quantified by GDS for three samples. DMLS powder produced by nitrogen gas atomization had a nitrogen content of 0.11 wt%. A DMLS processed sample contained 0.08 wt% nitrogen, and a conventionally cast and annealed sample contained only 0.019 wt% nitrogen. In iron based alloys, nitrogen is a significant austenite promoter and reduced the martensite start and finish temperatures, rendering the standard heat treatments for the alloy ineffective in producing full transformation to martensite. Process improvements are proposed along with suggested future research.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005317, ucf:50507
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005317
-
-
Title
-
PLASMA TEMPERATURE MEASUREMENTS IN THE CONTEXT OF SPECTRAL INTERFERENCE.
-
Creator
-
Seesahai, Brandon, Baudelet, Matthieu, University of Central Florida
-
Abstract / Description
-
The path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference...
Show moreThe path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference encountered in a LIBS spectrum because it blends possible ionic or atomic transitions that occur in plasma. To make use of the information or transitions not resolved in a LIBS spectrum, a plasma temperature method is developed. The basic theory of a LIBS plasma, broadening mechanisms, thermal equilibrium and distribution laws, and plasma temperature methods are discussed as background support for the plasma temperature method tested in this thesis. In summary, the plasma temperature method analyzes the Full Width at Half the Maximum (FWHM) of each spectral line for transitions provided from a database and uses them for temperature measurements. The first implementation of the temperature method was for simulated spectra and the results are compared to other conventional temperature measurement techniques. The temporal evolution of experimental spectra are also taken as a function of time to observe if the newly developed temperature technique can perform temporal measurements. Lastly, the temperature method is tested for a simulated, single element spectrum when considering interferences from all the elements provided in an atomic database. From stimulated and experimental spectra analysis to a global database consideration, the advantages and disadvantages of the temperature method are discussed.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFH2000140, ucf:46057
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000140
-
-
Title
-
FADE STATISTICS FOR A LASERCOM SYSTEM AND THE JOINT PDF OF A GAMMA-GAMMA DISTRIBUTED IRRADIANCE AND ITS TIME DERIVATIVE.
-
Creator
-
Stromqvist Vetelino, Frida, Young, Cynthia, University of Central Florida
-
Abstract / Description
-
The performance of lasercom systems operating in the atmosphere is reduced by optical turbulence, which causes irradiance fluctuations in the received signal. The result is a randomly fading signal. Fade statistics for lasercom systems are determined from the probability density function (PDF) of the irradiance fluctuations. The expected number of fades per second and their mean fade time require the joint PDF of the fluctuating irradiance and its time derivative. Theoretical integral...
Show moreThe performance of lasercom systems operating in the atmosphere is reduced by optical turbulence, which causes irradiance fluctuations in the received signal. The result is a randomly fading signal. Fade statistics for lasercom systems are determined from the probability density function (PDF) of the irradiance fluctuations. The expected number of fades per second and their mean fade time require the joint PDF of the fluctuating irradiance and its time derivative. Theoretical integral expressions, as well as closed form, analytical approximations, were developed for the joint PDF of a gamma-gamma distributed irradiance and its time derivative, and the corresponding expression for the expected number of fades per second. The new approximation for the conditional PDF of the time derivative of a gamma-gamma irradiance is a zero mean Gaussian distribution, with a complicated irradiance depending variance. Fade statistics obtained from experimental data were compared to theoretical predictions based on the lognormal and gamma-gamma distributions. A Gaussian beam wave was propagated through the atmosphere along a horizontal path, near ground, in the moderate-to-strong optical turbulence. To characterize the propagation path, a new method that infers atmospheric propagation parameters was developed. Scintillation theory combined with a numerical scheme was used to infer the structure constant, Cn2, the inner scale and the outer scale from the optical measurements. The inferred parameters were used in calculations for the theoretical PDFs. It was found that fade predictions made by the gamma-gamma and lognormal distributions provide an upper and lower bound, respectively, for the probability of fade and the number of fades per second for irradiance data collected in the moderate-to-strong fluctuation regime. Aperture averaging effects on the PDF of the irradiance fluctuations were investigated by comparing the irradiance distributions for the three receiver apertures at two different values of the structure parameter and, hence, different values of the coherence radius. For the moderate-to-strong fluctuation regime, the gamma-gamma distribution provides a good fit to the irradiance fluctuations collected by finite-sized apertures that are significantly smaller than the coherence radius. For apertures larger than or equal to the coherence radius, the irradiance fluctuations appear to be lognormally distributed.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001440, ucf:47069
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001440
-
-
Title
-
ULTRASHORT, HIGH POWER, AND ULTRALOW NOISE MODE-LOCKED OPTICAL PULSE GENERATION USING QUANTUM-DOT SEMICONDUCTOR LASERS.
-
Creator
-
Choi, Myoung-Taek, Delfyett, Peter, University of Central Florida
-
Abstract / Description
-
This dissertation explores various aspects and potential of optical pulse generation based on active, passive, and hybrid mode-locked quantum dot semiconductor lasers with target applications such as optical interconnect and high speed signal processing. Design guidelines are developed for the single mode operation with suppressed reflection from waveguide discontinuities. The device fabrication procedure is explained, followed by characteristics of FP laser, SOA, and monolithic two-section...
Show moreThis dissertation explores various aspects and potential of optical pulse generation based on active, passive, and hybrid mode-locked quantum dot semiconductor lasers with target applications such as optical interconnect and high speed signal processing. Design guidelines are developed for the single mode operation with suppressed reflection from waveguide discontinuities. The device fabrication procedure is explained, followed by characteristics of FP laser, SOA, and monolithic two-section devices. Short pulse generation from an external cavity mode-locked QD two-section diode laser is studied. High quality, sub-picosecond (960 fs), high peak power (1.2 W) pulse trains are obtained. The sign and magnitude of pulse chirp were measured for the first time. The role of the self-phase modulation and the linewidth enhancement factor in QD mode-locked lasers is addressed. The noise performance of two-section mode-locked lasers and a SOA-based ring laser was investigated. Significant reduction of the timing jitter under hybrid mode-locked operation was achieved owing to more than one order of magnitude reduction of the linewidth in QD gain media. Ultralow phase noise performance (integrated timing jitter of a few fs at a 10 GHz repetition rate) was demonstrated from an actively mode-locked unidirectional ring laser. These results show that quantum dot mode-locked lasers are strong competitors to conventional semiconductor lasers in noise performance. Finally we demonstrated an opto-electronic oscillator (OEO) and coupled opto-electronic oscillators (COEO) which have the potential for both high purity microwave and low noise optical pulse generation. The phase noise of the COEO is measured by the photonic delay line frequency discriminator method. Based on this study we discuss the prospects of the COEO as a low noise optical pulse source.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001410, ucf:47068
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001410
-
-
Title
-
HIGH-INTENSITY ULTRA-FAST LASER INTERACTION TECHNOLOGIES.
-
Creator
-
Bernath, Robert, Richardson, Martin, University of Central Florida
-
Abstract / Description
-
To our knowledge this is the first comprehensive study of laser-induced effects generated at intermediate distances using self-channeled femtosecond laser pulses. Studies performed were made both experimentally and theoretically with the use of novel modeling techniques. Peak laser pulse powers above 3 GW allow beam propagation without divergence for up to several kilometers. In this regime, experiments were performed at 30 meters from the laser system in a custom propagation and target range...
Show moreTo our knowledge this is the first comprehensive study of laser-induced effects generated at intermediate distances using self-channeled femtosecond laser pulses. Studies performed were made both experimentally and theoretically with the use of novel modeling techniques. Peak laser pulse powers above 3 GW allow beam propagation without divergence for up to several kilometers. In this regime, experiments were performed at 30 meters from the laser system in a custom propagation and target range, utilizing the Laser Plasma Laboratory's Terawatt laser system. Experiments included investigations of laser ablation; electromagnetic pulsed (EMP) radiation generation over the 1-18 GHz region; shockwave formation in air and solid media; optical coupling of channeled pulses into transparent media; and, conservation of energy in these interactions. The use of bursts of femtosecond pulses was found to increase the ablation rate significantly over single-pulse ablation in both air and vacuum. EMP generation from near-field focused and distance-propagated pulses was investigated. Field strengths upwards of 400 V/m/λ for vacuum focusing and 25 V/m/λ for self-channeled pulses were observed. The total field strengths over 1-18 GHz measured at distance surpassed 12 kV/m. Shockwaves generated in transparent media at 30 meters were observed as a function of time. It was found that the interaction conditions control the formation and propagation of the shock fronts into the medium. Due to the processes involved in self-channeling, significant fractions of the laser pulse were coupled into the target materials, resulting in internal optical and exit-surface damage. Basic estimations on the conservation of energy in the interaction are presented. The results of the experiments are supported by hydrodynamic plasma physics code and acoustic modeling.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001902, ucf:47497
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001902
-
-
Title
-
SPECTROSCOPIC STUDIES OF LASER PLASMAS FOR EUV SOURCES.
-
Creator
-
George, Simi, Richardson, Martin, University of Central Florida
-
Abstract / Description
-
With the availability of high reflectivity multilayer mirrors and zone plate lenses, the EUV region (5nm - 40nm) of the electromagnetic spectrum is currently being explored for applications of nanoscale printing and imaging. Advances made in this area have consequences for many areas of science. Research for producing a compact, bright EUV source for laboratory use has gained momentum in recent years. For this study, EUV radiation is produced by irradiating target materials using a focused...
Show moreWith the availability of high reflectivity multilayer mirrors and zone plate lenses, the EUV region (5nm - 40nm) of the electromagnetic spectrum is currently being explored for applications of nanoscale printing and imaging. Advances made in this area have consequences for many areas of science. Research for producing a compact, bright EUV source for laboratory use has gained momentum in recent years. For this study, EUV radiation is produced by irradiating target materials using a focused laser beam. Focused laser beam ionizes the target to create a hot, dense, pulsed plasma source, where emission is a result of the relaxation of excited levels. Spectroscopy is used as the main diagnostic to obtain the spectral signature of the plasma. Spectral characteristics are used to deduce the physical state of plasma, thus enabling the tuning of laser irradiance conditions to maximize the needed emission bandwidth. Various target materials are studied, as well as different target geometries, with spectroscopy below 200 nm on pulsed micro-plasmas being a particularly daunting task. Total range spectroscopy from 1 nm to greater than 1 micron is completed for tin-doped spherical droplet plasma source. Reliable plasma diagnostics require both accurate measurements and solid theoretical support in order to interpret the experimental results. Using existing 1D-hydrocode, temperature and density characteristics of the expanding plasma is simulated for any set of experimental conditions. Existing atomic codes written for calculating one-electron radial wavefunctions with LS-coupling scheme via Hartree-Fock method is used in order to gain details of the ion stages, populations, transitions, etc, contributing to the spectral data.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001972, ucf:47433
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001972
-
-
Title
-
MICRO-OPTIC-SPECTRAL-SPATIAL-ELEMENTS (MOSSE).
-
Creator
-
Mehta, Alok, Johnson, Eric, University of Central Florida
-
Abstract / Description
-
Over a wide range of applications, optical systems have utilized conventional optics in order to provide the ability to engineer the properties of incident infra-red fields in terms of the transmitted field spectral, spatial, amplitude, phase, and polarization characteristics. These micro/nano-optical elements that provide specific optical functionality can be categorized into subcategories of refractive, diffractive, multi-layer thin film dichroics, 3-D photonic crystals, and polarization...
Show moreOver a wide range of applications, optical systems have utilized conventional optics in order to provide the ability to engineer the properties of incident infra-red fields in terms of the transmitted field spectral, spatial, amplitude, phase, and polarization characteristics. These micro/nano-optical elements that provide specific optical functionality can be categorized into subcategories of refractive, diffractive, multi-layer thin film dichroics, 3-D photonic crystals, and polarization gratings. The feasibility of fabrication, functionality, and level of integration which these elements can be used in an optical system differentiate which elements are more compatible with certain systems than others. With enabling technologies emerging allowing for a wider range of options when it comes to lithographic nano/micro-patterning, dielectric growth, and transfer etching capabilities, optical elements that combine functionalities of conventional optical elements can be realized. Within this one class of optical elements, it is possible to design and fabricate components capable of tailoring the spectral, spatial, amplitude, phase, and polarization characteristics of desired fields at different locations within an optical system. Optical transmission filters, polarization converting elements, and spectrally selective reflecting components have been investigated over the course of this dissertation and have been coined MOSSE,' which is an acronym for micro-optic-spectral-spatial-elements. Each component is developed and fabricated on a wafer scale where the thin film deposition, lithographic exposure, and transfer etching stages are decoupled from each other and performed in a sequential format. This facilitates the ability to spatially vary the optical characteristics of the different MOSSE structures across the surface of the wafer itself.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001962, ucf:47457
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001962
-
-
Title
-
HYBRID PHOTONIC SIGNAL PROCESSING.
-
Creator
-
Ghauri, Farzan, Riza, Nabeel, University of Central Florida
-
Abstract / Description
-
This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space-...
Show moreThis thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space--fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001983, ucf:47423
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001983
-
-
Title
-
EFFECT OF LASER IRIDOPLASTY ON PULSATILE OCULAR BLOOD FLOW IN PRIMARY ANGLE-CLOSURE GLAUCOMA AND PRIMARY ANGLE-CLOSURE SUSPECTS.
-
Creator
-
Hill, Mathieu, Saleh, Suha, University of Central Florida
-
Abstract / Description
-
Angle-closure glaucoma is a leading cause of blindness in the United States and around the world. New research has indicated that intraocular pressure is not the only risk factor associated with glaucomatous optic neuropathy. In recent years, a vascular deregulation in ocular blood flow has been considered a possible risk factor in glaucoma. A laser peripheral iridoplasty is a standard treatment option in non-pupillary block angle-closure glaucoma. The present study employed a secondary...
Show moreAngle-closure glaucoma is a leading cause of blindness in the United States and around the world. New research has indicated that intraocular pressure is not the only risk factor associated with glaucomatous optic neuropathy. In recent years, a vascular deregulation in ocular blood flow has been considered a possible risk factor in glaucoma. A laser peripheral iridoplasty is a standard treatment option in non-pupillary block angle-closure glaucoma. The present study employed a secondary retrospective design and utilized patient's data from an ophthalmologist's practice. The purpose of this study was to examine the effect of laser peripheral iridoplasty on pulsatile ocular blood flow in primary angle-closure glaucoma and primary angle-closure suspects. A sample of 30 eyes from 17 patients was analyzed for this study. A significant increase in pulsatile ocular blood flow was found among primary angle-closure suspects. Additional data analysis was performed through SPSS software to examine the effect on these variables by age, sex and medical history as a total sample and in each group. Primary angle-closure suspects who were 51-60 years old showed a significant increase in intraocular pressure after laser treatment, however, primary angle-closure glaucoma patients who were 71-80 years old showed a significant decrease in intraocular pressure. Furthermore, a significant increase in pulsatile ocular blood flow was found in female subjects among primary angle-closure suspects, supporting the need for gender medicine research. Lastly, the pulsatile ocular blood flow increased significantly among primary angle-closure suspects who were also suffering from cardiovascular disease. Among primary angle-closure glaucoma patients who were suffering from both cardiovascular disease and diabetes mellitus, a significant decrease in intraocular pressure was observed.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFH0004874, ucf:45427
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004874
-
-
Title
-
SILICON CARBIDE AND AGILE OPTICS BASED SENSORS FOR POWER PLANT GAS TURBINES, LASER BEAM ANALYSIS AND BIOMEDICINE.
-
Creator
-
Sheikh, Mumtaz, Riza, Nabeel, University of Central Florida
-
Abstract / Description
-
Proposed are novel sensors for extreme environment power plants, laser beam analysis and biomedicine. A hybrid wireless-wired extreme environment temperature sensor using a thick single-crystal Silicon Carbide (SiC) chip embedded inside a sintered SiC probe design is investigated and experimentally demonstrated. The sensor probe employs the SiC chip as a Fabry-Perot (FP) interferometer to measure the change in refractive index and thickness of SiC with temperature. A novel temperature sensing...
Show moreProposed are novel sensors for extreme environment power plants, laser beam analysis and biomedicine. A hybrid wireless-wired extreme environment temperature sensor using a thick single-crystal Silicon Carbide (SiC) chip embedded inside a sintered SiC probe design is investigated and experimentally demonstrated. The sensor probe employs the SiC chip as a Fabry-Perot (FP) interferometer to measure the change in refractive index and thickness of SiC with temperature. A novel temperature sensing method that combines wavelength-tuned signal processing for coarse measurements and classical FP etalon peak shift for fine measurements is proposed and demonstrated. This method gives direct unambiguous temperature measurements with a high temperature resolution over a wide temperature range. An alternative method using blackbody radiation from a SiC chip in a two-color pyrometer configuration for coarse temperature measurement and classical FP laser interferometry via the same chip for fine temperature measurement is also proposed and demonstrated. The sensor design is successfully deployed in an industrial test rig environment with gas temperatures exceeding 1200 C. This sensor is proposed as an alternate to all-electrical thermocouples that are susceptible to severe reliability and lifetime issues in such extreme environments. A few components non-contact thickness measurement system for optical quality semi-transparent samples such as Silicon (Si) and 6H SiC optical chips such as the one used in the design of this sensor is proposed and demonstrated. The proposed system is self-calibrating and ensures a true thickness measurement by taking into account material dispersion in the wavelength band of operation. For the first time, a 100% repeatable all-digital electronically-controlled pinhole laser beam profiling system using a Texas Instruments (TI) Digital Micro-mirror Device (DMD) commonly used in projectors is experimentally demonstrated using a unique liquid crystal image generation system with non-invasive qualities. Also proposed and demonstrated is the first motion-free electronically-controlled beam propagation analyzer system using a TI DMD and a variable focus liquid lens. The system can be used to find all the parameters of a laser beam including minimum waist size, minimum waist location and the beam propagation parameter M2. Given the all-digital nature of DMD-based profiling and all-analog motion-free nature of the Electronically Controlled Variable Focus Lens (ECVFL) beam focus control, the proposed analyzer versus prior-art promises better repeatability, speed and reliability. For the first time, Three Dimensional (3-D) imaging is demonstrated using an electronically controlled Liquid Crystal (LC) optical lens to accomplish a no-moving parts depth section scanning in a modified commercial 3-D confocal microscope. The proposed microscopy system within aberration limits has the potential to eliminate the sample or objective motion-caused mechanical forces that can distort the original sample structure and lead to imaging errors. A signal processing method for realizing high resolution three dimensional (3-D) optical imaging using diffraction limited low resolution optical signals is also proposed.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002922, ucf:47995
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002922
-
-
Title
-
LASER ENHANCED DOPING FOR SILICON CARBIDE WHITE LIGHTEMITTING DIODES.
-
Creator
-
Bet, Sachin, Kar, Aravinda, University of Central Florida
-
Abstract / Description
-
This work establishes a solid foundation for the use of indirect band gap semiconductors for light emitting application and presents the work on development of white light emitting diodes (LEDs) in silicon carbide (SiC). Novel laser doping has been utilized to fabricate white light emitting diodes in 6H-SiC (n-type N) and 4H-SiC (p-type Al) wafers. The emission of different colors to ultimately generate white light is tailored on the basis of donor acceptor pair (DAP) recombination mechanism...
Show moreThis work establishes a solid foundation for the use of indirect band gap semiconductors for light emitting application and presents the work on development of white light emitting diodes (LEDs) in silicon carbide (SiC). Novel laser doping has been utilized to fabricate white light emitting diodes in 6H-SiC (n-type N) and 4H-SiC (p-type Al) wafers. The emission of different colors to ultimately generate white light is tailored on the basis of donor acceptor pair (DAP) recombination mechanism for luminescence. A Q-switched Nd:YAG pulse laser (1064 nm wavelength) was used to carry out the doping experiments. The p and n regions of the white SiC LED were fabricated by laser doping an n-type 6H-SiC and p-type 4H-SiC wafer substrates with respective dopants. Cr, B and Al were used as p-type dopants (acceptors) while N and Se were used as n-type dopants (donors). Deep and shallow donor and acceptor impurity level states formed by these dopants tailor the color properties for pure white light emission. The electromagnetic field of lasers and non-equilibrium doping conditions enable laser doping of SiC with increased dopant diffusivity and enhanced solid solubility. A thermal model is utilized to determine the laser doping parameters for temperature distribution at various depths of the wafer and a diffusion model is presented including the effects of Fick's diffusion, laser electromagnetic field and thermal stresses due to localized laser heating on the mass flux of dopant atoms. The dopant diffusivity is calculated as a function of temperature at different depths of the wafer based on measured dopant concentration profile. The maximum diffusivities achieved in this study are 4.6110-10 cm2/s at 2898 K and 6.9210-12 cm2/s at 3046 K for Cr in 6H-SiC and 4H-SiC respectively. Secondary ion mass spectrometric (SIMS) analysis showed the concentration profile of Cr in SiC having a penetration depth ranging from 80 nm in p-type 4H-SiC to 1.5 m in n-type 6H-SiC substrates respectively. The SIMS data revealed enhanced solid solubility (2.291019 cm-3 in 6H-SiC and 1.421919 cm-3 in 4H-SiC) beyond the equilibrium limit (31017 cm-3 in 6H-SiC above 2500 C) for Cr in SiC. It also revealed similar effects for Al and N. The roughness, surface chemistry and crystalline integrity of the doped sample were examined by optical interferometer, energy dispersive X-ray spectrometry (EDS) and transmission electron microscopy (TEM) respectively. Inspite of the larger atomic size of Cr compared to Si and C, the non-equilibrium conditions during laser doping allow effective incorporation of dopant atoms into the SiC lattice without causing any damage to the surface or crystal lattice. Deep Level Transient Spectroscopy (DLTS) confirmed the deep level acceptor state of Cr with activation energies of Ev+0.80 eV in 4H-SiC and Ev+0.45 eV in 6H-SiC. The Hall Effect measurements showed the hole concentration to be 1.981019 cm-3 which is almost twice the average Cr concentration (11019 cm-3) obtained from the SIMS data. These data confirmed that almost all of the Cr atoms were completely activated to the double acceptor state by the laser doping process without requiring any subsequent annealing step. Electroluminescence studies showed blue (460-498 nm), blue-green (500-520 nm) green (521-575 nm), and orange (650-690 nm) wavelengths due to radiative recombination transitions between donor-acceptors pairs of N-Al, N-B, N-Cr and Cr-Al respectively, while a prominent violet (408 nm) wavelength was observed due to transitions from the nitrogen level to the valence band level. The red (698-738 nm) luminescence was mainly due to metastable mid-bandgap states, however under high injection current it was due to the quantum mechanical phenomenon pertaining to band broadening and overlapping. This RGB combination produced a broadband white light spectrum extending from 380 to 900 nm. The color space tri-stimulus values for 4H-SiC doped with Cr and N were X = 0.3322, Y = 0.3320 and Z = 0.3358 as per 1931 CIE (International Commission on Illumination) corresponding to a color rendering index of 96.56 and the color temperature of 5510 K. And for 6H-SiC n-type doped with Cr and Al, the color space tri-stimulus values are X = 0.3322, Y = 0.3320 and Z = 0.3358. The CCT was 5338 K, which is very close to the incandescent lamp (or black body) and lies between bright midday sun (5200 K) and average daylight (5500 K) while CRI was 98.32. Similar white LED's were also fabricated using Cr, Al, Se as one set of dopants and B, Al, N as another.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002362, ucf:47808
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002362
-
-
Title
-
ULTRASHORT LASER PULSE INTERACTION WITH PHOTO-THERMO-REFRACTIVE GLASS.
-
Creator
-
Siiman, Leo, Glebov, Leonid, University of Central Florida
-
Abstract / Description
-
Photo-thermo-refractive (PTR) glass is an ideal photosensitive material for recording phase volume holograms. It is a homogeneous multi-component silicate glass that demonstrates all the advantages of optical glass: thermal stability, high laser damage threshold, and a wide transparency range. Moreover the ability to record phase patterns (i.e. spatial refractive index variations) into PTR glass has resulted in the fabrication of volume holograms with diffraction efficiency greater than 99%....
Show morePhoto-thermo-refractive (PTR) glass is an ideal photosensitive material for recording phase volume holograms. It is a homogeneous multi-component silicate glass that demonstrates all the advantages of optical glass: thermal stability, high laser damage threshold, and a wide transparency range. Moreover the ability to record phase patterns (i.e. spatial refractive index variations) into PTR glass has resulted in the fabrication of volume holograms with diffraction efficiency greater than 99%. The conventional method of recording a hologram in PTR glass relies on exposure to continuous-wave ultraviolet laser radiation. In this dissertation the interaction between infrared ultrashort laser pulses and PTR glass is studied. It is shown that photosensitivity in PTR glass can be extended from the UV region to longer wavelengths (near-infrared) by exposure to ultrashort laser pulses. It is found that there exists a focusing geometry and laser pulse intensity interval for which photoionization and refractive index change in PTR glass after thermal development occur without laser-induced optical damage. Photoionization of PTR glass by IR ultrashort laser pulses is explained in terms of strong electric field ionization. This phenomenon is used to fabricate phase optical elements in PTR glass. The interaction between ultrashort laser pulses and volume holograms in PTR glass is studied in two laser intensity regimes. At intensities below ~10^12 W/cm^2 properties such as diffraction efficiency, angular divergence, selectivity, and pulse front tilt are shown to agree with the theory of linear diffraction for broad spectral width lasers. A volume grating pair arrangement is shown to correct the laser pulse distortions arising from pulse front tilt and angular divergence. At higher intensities of irradiation, nonlinear generation and diffraction of third harmonic is observed for three types of interactions: sum-frequency generation, front-surface THG generation, and THG due to phase-matching with a grating formed by modulation of the nonlinear refractive index of PTR glass.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002349, ucf:47804
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002349
-
-
Title
-
DEVELOPMENT AND APPLICATION STUDY OF NANOSCALE THIN FILM MATERIALS AND POLYMER NANOCOMPOSITES.
-
Creator
-
Chen, Hui, Huo, Qun, University of Central Florida
-
Abstract / Description
-
This dissertation demonstrated that the manipulation of substances at the molecular or nanometer level can lead to the discovery and development of new materials with interesting properties and important applications. Chapter 1 describes the development of a nanoscale molecular thin film material for corrosion protection. By using a self-assembled monolayer film with a thickness of only about 1 nanometer as a linkage, a covalent bonding was achieved between a polyurethane top coating and an...
Show moreThis dissertation demonstrated that the manipulation of substances at the molecular or nanometer level can lead to the discovery and development of new materials with interesting properties and important applications. Chapter 1 describes the development of a nanoscale molecular thin film material for corrosion protection. By using a self-assembled monolayer film with a thickness of only about 1 nanometer as a linkage, a covalent bonding was achieved between a polyurethane top coating and an aluminum alloy substrate. This covalent bonding between polymer top coating and the aluminum alloy substrate significantly improved the corrosion resistance of the substrate. Chapter 2 and Chapter 3 describe the development of a gold nanoparticle-polymer composite material in different forms with a number of applications. Gold nanoparticles are among one of the most extensively studied nanomaterials. When the size of gold is shrunk to the nanometer scale, many interesting and new physical properties start to appear from gold nanoparticles. The optical properties of gold nanoparticles, particularly the surface plasmon resonance absorption, have been investigated in this dissertation for the development of multifunctional nanocomposite materials. Chapter 2 presents the preparation of a gold nanoparticle/poly(methyl methacrylate) (PMMA) nanocomposite film and the application of such films for microstructure fabrication using a direct laser writing technique. Gold nanoparticles are excellent photon-thermal energy converters due to their large absorption cross section at the surface plasmon resonance region. Upon laser irradiation of the nanocomposite film, the thermal energy converted from the absorbed photon energy by gold nanopaticles induced a complete decomposition of PMMA, leading to the formation of various microstructures on the nanocomposite films. Chapter 3 reports the further development of a nanoparticle/polymer composite nanofiber material fabricated through an electrospinning process. The matrix of the nanofiber is made of two polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH). Three methods were developed to incorporate gold nanoparticles into the polymer matrix. The composite nanofiber materials developed in this study demonstrate multifunctional properties, including good electrical conductivity, photothermal response, and surface-enhanced IR absorption. This material may be used for many important applications including catalysis, chemical and biological sensors, and scaffold materials for tissue engineering. In Chapter 4, another most important nanomaterial, carbon naotubes (CNTs), were introduced as fillers to prepare polymer nanocomposites. A dispersion method for multi-walled carbon nanotubes (MWCNTs) using a conjugated conducting polymer, poly(3-hexylthiophene) (P3HT) as the third component and trifluoroacetic acid (TFA) as a co-solvent was developed. Due to the excellent dispersion of carbon nanotubes in PMMA and enhanced conductivity of the nanocomposites by the conjugated conducting polymers, the prepared composite materials has an extremely low percolation threshold of less than 0.006 wt% of MWCNT content. The potential use of MWCNT/conducting polymer composites for energy storage applications such as suppercapacitors was further investigated by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and charging-discharging cycles. Compared to pure carbon nanotubes, the nanocomposite materials have significantly improved properties and are promising for supercapacitor applications.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002265, ucf:47825
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002265
-
-
Title
-
NONDESTRUCTIVE TESTING METHODS AIDED VIA NUMERICAL COMPUTATION MODELS FOR VARIOUS CRITICAL AEROSPACE AND POWER GENERATION SYSTEMS.
-
Creator
-
Warren, Peter, Ghosh, Ranajay, Raghavan, Seetha, Gou, Jihua, University of Central Florida
-
Abstract / Description
-
A current critical necessity for all industries which utilize various equipment that operates in hightemperature and extreme environments, is the ability to collect and analyze data via non destructivetesting (NDT) methods. Operational conditions and material health must be constantly monitoredif components are to be implemented precisely to increase the overall performance and efficiencyof the process. Currently in both aerospace and power generation systems there are many methodsthat are...
Show moreA current critical necessity for all industries which utilize various equipment that operates in hightemperature and extreme environments, is the ability to collect and analyze data via non destructivetesting (NDT) methods. Operational conditions and material health must be constantly monitoredif components are to be implemented precisely to increase the overall performance and efficiencyof the process. Currently in both aerospace and power generation systems there are many methodsthat are being employed to gather several necessary properties and parameters of a given system.This work will focus primarly on two of these NDT methods, with the ultimate goal of contributingto not only the method itself, but also the role of numerical computation to increase the resolutionof a given technique. Numerical computation can attribute knowledge onto the governing mechanicsof these NDT methods, many of which are currently being utilized in industry. An increase inthe accuracy of the data gathered from NDT methods will ultimately lead to an increase in operationalefficiency of a given system.The first method to be analyzed is a non destructive emmision technique widely referred to asaccoustic ultrasonic thermography. This work will investigate the mechanism of heat generationin acoustic thermography using a combination of numerical computational analysis and physicalexperimentation. Many of the challenges typical of this type of system are addressed in this work.The principal challenges among them are crack detection threshold, signature quality and the effectof defect interactions. Experiments and finite element based numerical simulations are employed,in order to evaluate the proposed method, as well as draw conclusions on the viability for futureextension and integration with other digital technologies for health monitoring. A method to determinethe magnitude of the different sources of heat generation during an acoustic excitation isalso achieved in this work. Defects formed through industrial operation as well as defects formedthrough artificial manufacturing methods were analyzed and compared.The second method is a photoluminescence piezospectroscopic (PLPS) for composite materials.The composite studied in this work has one host material which does not illuminate or have photoluminescenceproperties, the second material provides the luminescence properties, as well asadditional overall strength to the composite material. Understanding load transfer between the reinforcementsand matrix materials that constitute these composites hold the key to elucidating theirmechanical properties and consequent behavior in operation. Finite element simulations of loadingeffects on representative embedded alumina particles in a matrix were investigated and comparedwith experimental results. The alumina particles were doped with chromium in order to achieveluminscence capability, and therefore take advantage of the piezospectrscopic measurement technique.Mechanical loading effects on alumina nanoparticle composites can be captured with Photostimulated luminescent spectroscopy, where spectral shifts from the particles are monitored withload. The resulting piezospectroscopic (PS) coefficients are then used to calculate load transferbetween the matrix and particle. The results from the simulation and experiments are shown tobe in general agreement of increase in load transferred with increasing particle volume fractiondue to contact stresses that are dominant at these higher volume fractions. Results from this workpresent a combination of analytical and experimental insight into the effect of particle volume fractionon load transfer in ceramic composites that can serve to determine properties and eventuallyoptimize various parameters such as particle shape, size and dispersion that govern the design ofthese composites prior to manufacture and testing.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007262, ucf:52203
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007262
-
-
Title
-
Non-Hermitian Optics.
-
Creator
-
Ulhassan, Absar, Christodoulides, Demetrios, Khajavikhan, Mercedeh, Likamwa, Patrick, Kaup, David, University of Central Florida
-
Abstract / Description
-
From the viewpoint of quantum mechanics, a system must always be Hermitian since all its corresponding eigenvalues must be real. In contrast, the eigenvalues of open systems-unrestrained because of either decay or amplification-can be in general complex. Not so long ago, a certain class of non-Hermitian Hamiltonians was discovered that could have a completely real eigenvalue spectrum. This special class of Hamiltonians was found to respect the property of commutation with the parity-time (PT)...
Show moreFrom the viewpoint of quantum mechanics, a system must always be Hermitian since all its corresponding eigenvalues must be real. In contrast, the eigenvalues of open systems-unrestrained because of either decay or amplification-can be in general complex. Not so long ago, a certain class of non-Hermitian Hamiltonians was discovered that could have a completely real eigenvalue spectrum. This special class of Hamiltonians was found to respect the property of commutation with the parity-time (PT) operator. Translated into optics, this implies a balance between regions exhibiting gain and loss. Traditionally, loss has been perceived as a foe in optics and something that needs to be avoided at all costs. As we will show, when used in conjunction with gain, the presence of loss can lead to a host of counterintuitive outcomes in such non-Hermitian configurations that would have been otherwise unattainable in standard arrangements. We will study PT symmetric phase transitions in various optical settings that include semiconductor microrings and coupled fiber cavities, and show how they can allow mode-selectivity in lasers. One of the key outcomes of this effort was the realization of higher order degeneracies in a three-cavity laser configuration that can exhibit orders-of-magnitude larger sensitivity to external perturbations. We will also consider systems that display nonlinear effects such as gain saturation, thus allowing novel phase transitions. Some interesting properties associated with degeneracies in non-Hermitian settings will be investigated as well. Such degeneracies, called exceptional points (EPs), are much more drastic compared to standard degeneracies of eigenvalues because the corresponding eigenvectors also coalesce, which in turn reduces the dimensionality of the phase space. We will show that dynamic parameter contours enclosing or close to EPs can lead to a robust chiral mode conversion process (-) something that can be potentially used to realize omni-polarizing optical devices.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007259, ucf:52182
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007259
-
-
Title
-
Improved system for fabrication and characterization of nanophotonic devices by multi-photon lithography.
-
Creator
-
Sharma, Rashi, Kuebler, Stephen, Zou, Shengli, Huo, Qun, Beazley, Melanie, Phanstiel, Otto, University of Central Florida
-
Abstract / Description
-
A new system for multi-photon lithography (MPL) was developed and used to fabricate three-dimensional (3D) structures with higher aspect ratio, better resolution, improved fidelity, and reduced structural distortion relative to a conventional implementation of MPL.A set of curved waveguides (Rbend = 19 (&)#181;m, and 38 (&)#181;m) and straight waveguides (length = 50 (&)#181;m, Rbend = ?) were fabricated in an epoxide photopolymer and optically characterized using light having a wavelength in...
Show moreA new system for multi-photon lithography (MPL) was developed and used to fabricate three-dimensional (3D) structures with higher aspect ratio, better resolution, improved fidelity, and reduced structural distortion relative to a conventional implementation of MPL.A set of curved waveguides (Rbend = 19 (&)#181;m, and 38 (&)#181;m) and straight waveguides (length = 50 (&)#181;m, Rbend = ?) were fabricated in an epoxide photopolymer and optically characterized using light having a wavelength in vacuum of ?0 = 2.94 (&)#181;m. The optical performance of the waveguides was compared to novel spatially-variant photonic crystals (SVPCs) previously studied in the group. The waveguides were found to guide light with 90% lower efficiency, due to mode leakage. The study provides further evidence that SVPCs operate not through total internal reflection, but rather through self-collimation, as designed.3D uniform-lattice photonic crystals (ULPCs) were fabricated by MPL using a commercial acrylate photopolymer. The ULPCs were optically characterized at ?0 = 1.55 (&)#181;m. A laser beam with adjustable bandwidth was used to measure the self-collimation in the ULPCs. For the low bandwidth beam, vertically polarized light was self-collimated, whereas horizontally polarized light diverged. The transmission efficiency of the ULPCs was also measured as a function of fill factor. The ULPC having a fill factor of 48% exhibited 80% transmission.An etching process was also developed for non-destructively removing Au/Pd coatings that must be deposited onto structures to image them by scanning electron microscopy. The structural and optical integrity of the samples was found to be maintained despite etching. The sputter-coated sample sustained no structural damage when exposed to the ?0 = 1.55 (&)#181;m. However, the metal coating resulted in diminished transmission efficiency due to the high reflection of the 1.55 (&)#181;m beam by the metal coating.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007767, ucf:52380
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007767
-
-
Title
-
Room Temperature Operation of Quantum Cascade Lasers Monolithically Integrated Onto a Lattice-Mismatched Substrate.
-
Creator
-
Go, Rowel, Lyakh, Arkadiy, Delfyett, Peter, Likamwa, Patrick, Wu, Shintson, University of Central Florida
-
Abstract / Description
-
The experimental results of a 40-stage indium phosphide (InP) based quantum cascade laser (QCL) grown on a lattice-mismatched gallium arsenide (GaAs) substrate with metamorphic buffer (M-buffer) will be discussed. The QCL's strain-balanced active region was composed of Al0.78In0.22As/In0.73Ga0.27As and an 8 (&)#181;m-thick all-InP waveguide. Since the M-buffer was insulating, the wafer was processed into ridge-waveguide chips with lateral current injection scheme. Laser chips with high...
Show moreThe experimental results of a 40-stage indium phosphide (InP) based quantum cascade laser (QCL) grown on a lattice-mismatched gallium arsenide (GaAs) substrate with metamorphic buffer (M-buffer) will be discussed. The QCL's strain-balanced active region was composed of Al0.78In0.22As/In0.73Ga0.27As and an 8 (&)#181;m-thick all-InP waveguide. Since the M-buffer was insulating, the wafer was processed into ridge-waveguide chips with lateral current injection scheme. Laser chips with high reflection (HR) coating delivered total peak power in excess of 200 mW at cryogenic temperature (78 K), and lasing was observed up to 230 K. Partial HR coating was then utilized on the front facet to extend lasing range up to 303 K. After 200 minutes of preliminary reliability testing at maximum power, no sign of performance degradation was observed. Initial results of InP-based QCL on germanium-coated silicon substrate with M-buffer will also be covered in this work.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007568, ucf:52564
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007568
-
-
Title
-
Quantitative Line Assignment in Optical Emission Spectroscopy.
-
Creator
-
Chappell, Jessica, Baudelet, Matthieu, Hernandez, Florencio, Campiglia, Andres, Ni, Liqiang, Sigman, Michael, University of Central Florida
-
Abstract / Description
-
Quantitative elemental analysis using Optical Emission Spectroscopy (OES) starts with a high level of confidence in spectral line assignment from reference databases. Spectral interferences caused by instrumental and line broadening decrease the resolution of OES spectra creating uncertainty in the elemental profile of a sample for the first time. An approach has been developed to quantify spectral interferences for individual line assignment in OES. The algorithm calculates a statistical...
Show moreQuantitative elemental analysis using Optical Emission Spectroscopy (OES) starts with a high level of confidence in spectral line assignment from reference databases. Spectral interferences caused by instrumental and line broadening decrease the resolution of OES spectra creating uncertainty in the elemental profile of a sample for the first time. An approach has been developed to quantify spectral interferences for individual line assignment in OES. The algorithm calculates a statistical interference factor (SIF) that combines a physical understanding of plasma emission with a Bayesian analysis of the OES spectrum. It can be used on a single optical spectrum and still address individual lines. Contrary to current methods, quantification of the uncertainty in elemental profiles of OES, leads to more accurate results, higher reliability and validation of the method. The SIF algorithm was evaluated for Laser-Induced Breakdown Spectroscopy (LIBS) on samples with increasing complexity: from silicon to nickel spiked alumina to NIST standards (600 glass series and nickel-chromium alloy). The influence of the user's knowledge of the sample composition was studied and showed that for the majority of spectral lines this information is not changing the line assignment for simple compositions. Nonetheless, the amount of interference could change with this information, as expected. Variance of the SIF results for NIST glass standard was evaluated by the chi-square hypothesis test of variance showing that the results of the SIF algorithm are very reproducible.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007564, ucf:52575
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007564
Pages