Current Search: Machinal (x)
Pages
-
-
Title
-
Learning Internal State Memory Representations from Observation.
-
Creator
-
Wong, Josiah, Gonzalez, Avelino, Liu, Fei, Wu, Annie, Ontanon, Santiago, Wiegand, Rudolf, University of Central Florida
-
Abstract / Description
-
Learning from Observation (LfO) is a machine learning paradigm that mimics how people learn in daily life: learning how to do something simply by watching someone else do it. LfO has been used in various applications, from video game agent creation to driving a car, but it has always been limited by the inability of an observer to know what a performing entity chooses to remember as they act in an environment. Various methods have either ignored the effects of memory or otherwise made...
Show moreLearning from Observation (LfO) is a machine learning paradigm that mimics how people learn in daily life: learning how to do something simply by watching someone else do it. LfO has been used in various applications, from video game agent creation to driving a car, but it has always been limited by the inability of an observer to know what a performing entity chooses to remember as they act in an environment. Various methods have either ignored the effects of memory or otherwise made simplistic assumptions about its structure. In this dissertation, we propose a new method, Memory Composition Learning, that captures the influence of a performer's memory in an observed behavior through the creation of an auxiliary memory feature set that explicitly models the aspects of the environment with significance for future decisions, and which can be used with a machine learning technique to provide salient information from memory. It advances the state of the art by automatically learning the internal structure of memory instead of ignoring or predefining it. This research is difficult in that memory modeling is an unsupervised learning problem that we elect to solve solely from unobtrusive observation. This research is significant for LfO in that it will allow learning techniques that otherwise could not use information from memory to use a tailored set of learned memory features that capture salient influences from memory and enable decision-making based on these influences for more effective learning performance. To validate our hypothesis, we implemented a prototype for modeling observed memory influences with our approach and applied it to simulated vacuum cleaner and lawn mower domains. Our investigation revealed that MCL was able to automatically learn memory features that describe the influences on an observed actor's internal state, and which improved learning performance of observed behaviors.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007879, ucf:52755
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007879
-
-
Title
-
Predicting Students' Academic Performance with Decision Tree and Neural Network.
-
Creator
-
Feng, Junshuai, Jha, Sumit Kumar, Zhang, Wei, Zhang, Shaojie, University of Central Florida
-
Abstract / Description
-
Educational Data Mining (EDM) is a developing research field that involves many techniques to explore data relating to educational background. EDM can analyze and resolve educational data with computational methods to address educational questions. Similar to EDM, neural networks have been utilized in widespread and successful data mining applications. In this paper, synthetic datasets are employed since this paper aims to explore the methodologies such as decision tree classifiers and neural...
Show moreEducational Data Mining (EDM) is a developing research field that involves many techniques to explore data relating to educational background. EDM can analyze and resolve educational data with computational methods to address educational questions. Similar to EDM, neural networks have been utilized in widespread and successful data mining applications. In this paper, synthetic datasets are employed since this paper aims to explore the methodologies such as decision tree classifiers and neural networks to predict student performance in the context of EDM. Firstly, it introduces EDM and some relative works that have been accomplished previously in this field along with their datasets and computational results. Then, it demonstrates how the synthetic student dataset is generated, analyzes some input attributes from the dataset such as gender and high school GPA, and delivers with some visualization results to determine which classification methods approaches are the most efficient. After testing the data with decision tree classifiers and neural networks methodologies, it concludes the effectiveness of both approaches in terms of the model evaluation performance as well as discussing some of the most promising future work of this research.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007455, ucf:52680
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007455
-
-
Title
-
Enhancing Cognitive Algorithms for Optimal Performance of Adaptive Networks.
-
Creator
-
Lugo-Cordero, Hector, Guha, Ratan, Wu, Annie, Stanley, Kenneth, University of Central Florida
-
Abstract / Description
-
This research proposes to enhance some Evolutionary Algorithms in order to obtain optimal and adaptive network configurations. Due to the richness in technologies, low cost, and application usages, we consider Heterogeneous Wireless Mesh Networks. In particular, we evaluate the domains of Network Deployment, Smart Grids/Homes, and Intrusion Detection Systems. Having an adaptive network as one of the goals, we consider a robust noise tolerant methodology that can quickly react to changes in...
Show moreThis research proposes to enhance some Evolutionary Algorithms in order to obtain optimal and adaptive network configurations. Due to the richness in technologies, low cost, and application usages, we consider Heterogeneous Wireless Mesh Networks. In particular, we evaluate the domains of Network Deployment, Smart Grids/Homes, and Intrusion Detection Systems. Having an adaptive network as one of the goals, we consider a robust noise tolerant methodology that can quickly react to changes in the environment. Furthermore, the diversity of the performance objectives considered (e.g., power, coverage, anonymity, etc.) makes the objective function non-continuous and therefore not have a derivative. For these reasons, we enhance Particle Swarm Optimization (PSO) algorithm with elements that aid in exploring for better configurations to obtain optimal and sub-optimal configurations. According to results, the enhanced PSO promotes population diversity, leading to more unique optimal configurations for adapting to dynamic environments. The gradual complexification process demonstrated simpler optimal solutions than those obtained via trial and error without the enhancements.Configurations obtained by the modified PSO are further tuned in real-time upon environment changes. Such tuning occurs with a Fuzzy Logic Controller (FLC) which models human decision making by monitoring certain events in the algorithm. Example of such events include diversity and quality of solution in the environment. The FLC is able to adapt the enhanced PSO to changes in the environment, causing more exploration or exploitation as needed.By adding a Probabilistic Neural Network (PNN) classifier, the enhanced PSO is again used as a filter to aid in intrusion detection classification. This approach reduces miss classifications by consulting neighbors for classification in case of ambiguous samples. The performance of ambiguous votes via PSO filtering shows an improvement in classification, causing the simple classifier perform better the commonly used classifiers.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007046, ucf:52003
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007046
-
-
Title
-
Analysis of Remote Tripping Command Injection Attacks in Industrial Control Systems Through Statistical and Machine Learning Methods.
-
Creator
-
Timm, Charles, Caulkins, Bruce, Wiegand, Rudolf, Lathrop, Scott, University of Central Florida
-
Abstract / Description
-
In the past decade, cyber operations have been increasingly utilized to further policy goals of state-sponsored actors to shift the balance of politics and power on a global scale. One of the ways this has been evidenced is through the exploitation of electric grids via cyber means. A remote tripping command injection attack is one of the types of attacks that could have devastating effects on the North American power grid. To better understand these attacks and create detection axioms to...
Show moreIn the past decade, cyber operations have been increasingly utilized to further policy goals of state-sponsored actors to shift the balance of politics and power on a global scale. One of the ways this has been evidenced is through the exploitation of electric grids via cyber means. A remote tripping command injection attack is one of the types of attacks that could have devastating effects on the North American power grid. To better understand these attacks and create detection axioms to both quickly identify and mitigate the effects of a remote tripping command injection attack, a dataset comprised of 128 variables (primarily synchrophasor measurements) was analyzed via statistical methods and machine learning algorithms in RStudio and WEKA software respectively. While statistical methods were not successful due to the non-linearity and complexity of the dataset, machine learning algorithms surpassed accuracy metrics established in previous research given a simplified dataset of the specified attack and normal operational data. This research allows future cybersecurity researchers to better understand remote tripping command injection attacks in comparison to normal operational conditions. Further, an incorporation of the analysis has the potential to increase detection and thus mitigate risk to the North American power grid in future work.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007257, ucf:52193
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007257
-
-
Title
-
REMOTE SENSING WITH COMPUTATIONAL INTELLIGENCE MODELLING FOR MONITORING THE ECOSYSTEM STATE AND HYDRAULIC PATTERN IN A CONSTRUCTED WETLAND.
-
Creator
-
Mohiuddin, Golam, Chang, Ni-bin, Lee, Woo Hyoung, Wanielista, Martin, University of Central Florida
-
Abstract / Description
-
Monitoring the heterogeneous aquatic environment such as the Stormwater Treatment Areas (STAs) located at the northeast of the Everglades is extremely important in understanding the land processes of the constructed wetland in its capacity to remove nutrient. Direct monitoring and measurements of ecosystem evolution and changing velocities at every single part of the STA are not always feasible. Integrated remote sensing, monitoring, and modeling technique can be a state-of-the-art tool to...
Show moreMonitoring the heterogeneous aquatic environment such as the Stormwater Treatment Areas (STAs) located at the northeast of the Everglades is extremely important in understanding the land processes of the constructed wetland in its capacity to remove nutrient. Direct monitoring and measurements of ecosystem evolution and changing velocities at every single part of the STA are not always feasible. Integrated remote sensing, monitoring, and modeling technique can be a state-of-the-art tool to estimate the spatial and temporal distributions of flow velocity regimes and ecological functioning in such dynamic aquatic environments. In this presentation, comparison between four computational intelligence models including Extreme Learning Machine (ELM), Genetic Programming (GP) and Artificial Neural Network (ANN) models were organized to holistically assess the flow velocity and direction as well as ecosystem states within a vegetative wetland area. First the local sensor network was established using Acoustic Doppler Velocimeter (ADV). Utilizing the local sensor data along with the help of external driving forces parameters, trained models of ELM, GP and ANN were developed, calibrated, validated, and compared to select the best computational capacity of velocity prediction over time. Besides, seasonal images collected by French satellite Pleiades have been analyzed to address the seasonality effect of plant species evolution and biomass changes in the constructed wetland. The key finding of this research is to characterize the interactions between geophysical and geochemical processes in this wetland system based on ground-based monitoring sensors and satellite images to discover insight of hydraulic residence time, plant species variation, and water quality and improve the overall understanding of possible nutrient removal in this constructed wetland.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005533, ucf:52864
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005533
-
-
Title
-
Approximate In-memory computing on RERAMs.
-
Creator
-
Khokhar, Salman Anwar, Heinrich, Mark, Leavens, Gary, Yuksel, Murat, Bagci, Ulas, Rahman, Talat, University of Central Florida
-
Abstract / Description
-
Computing systems have seen tremendous growth over the past few decades in their capabilities, efficiency, and deployment use cases. This growth has been driven by progress in lithography techniques, improvement in synthesis tools, architectures and power management. However, there is a growing disparity between computing power and the demands on modern computing systems. The standard Von-Neuman architecture has separate data storage and data processing locations. Therefore, it suffers from a...
Show moreComputing systems have seen tremendous growth over the past few decades in their capabilities, efficiency, and deployment use cases. This growth has been driven by progress in lithography techniques, improvement in synthesis tools, architectures and power management. However, there is a growing disparity between computing power and the demands on modern computing systems. The standard Von-Neuman architecture has separate data storage and data processing locations. Therefore, it suffers from a memory-processor communication bottleneck, which is commonly referredto as the 'memory wall'. The relatively slower progress in memory technology compared with processing units has continued to exacerbate the memory wall problem. As feature sizes in the CMOSlogic family reduce further, quantum tunneling effects are becoming more prominent. Simultaneously, chip transistor density is already so high that all transistors cannot be powered up at the same time without violating temperature constraints, a phenomenon characterized as dark-silicon. Coupled with this, there is also an increase in leakage currents with smaller feature sizes, resultingin a breakdown of 'Dennard's' scaling. All these challenges cannot be met without fundamental changes in current computing paradigms. One viable solution is in-memory computing, wherecomputing and storage are performed alongside each other. A number of emerging memory fabrics such as ReRAMS, STT-RAMs, and PCM RAMs are capable of performing logic in-memory.ReRAMs possess high storage density, have extremely low power consumption and a low cost of fabrication. These advantages are due to the simple nature of its basic constituting elements whichallow nano-scale fabrication. We use flow-based computing on ReRAM crossbars for computing that exploits natural sneak paths in those crossbars.Another concurrent development in computing is the maturation of domains that are error resilient while being highly data and power intensive. These include machine learning, pattern recognition,computer vision, image processing, and networking, etc. This shift in the nature of computing workloads has given weight to the idea of (")approximate computing("), in which device efficiency is improved by sacrificing tolerable amounts of accuracy in computation. We present a mathematically rigorous foundation for the synthesis of approximate logic and its mapping to ReRAM crossbars using search based and graphical methods.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007827, ucf:52817
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007827
-
-
Title
-
Reliability and Robustness Enhancement of Cooperative Vehicular Systems: A Bayesian Machine Learning Perspective.
-
Creator
-
Nourkhiz Mahjoub, Hossein, Pourmohammadi Fallah, Yaser, Vosoughi, Azadeh, Yuksel, Murat, Atia, George, Eluru, Naveen, University of Central Florida
-
Abstract / Description
-
Autonomous vehicles are expected to greatly transform the transportation domain in the near future. Some even envision that the human drivers may be fully replaced by automated systems. It is plausible to assume that at least a significant part of the driving task will be done by automated systems in not a distant future. Although we are observing a rapid advance towards this goal, which gradually pushes the traditional human-based driving toward more advanced autonomy levels, the full...
Show moreAutonomous vehicles are expected to greatly transform the transportation domain in the near future. Some even envision that the human drivers may be fully replaced by automated systems. It is plausible to assume that at least a significant part of the driving task will be done by automated systems in not a distant future. Although we are observing a rapid advance towards this goal, which gradually pushes the traditional human-based driving toward more advanced autonomy levels, the full autonomy concept still has a long way before being completely fulfilled and realized due to numerous technical and societal challenges. During this long transition phase, blended driving scenarios, composed of agents with different levels of autonomy, seems to be inevitable. Therefore, it is critical to design appropriate driving systems with different levels of intelligence in order to benefit all participants. Vehicular safety systems and their more advanced successors, i.e., Cooperative Vehicular Systems (CVS), have originated from this perspective. These systems aim to enhance the overall quality and performance of the current driving situation by incorporating the most advanced available technologies, ranging from on-board sensors such as radars, LiDARs, and cameras to other promising solutions e.g. Vehicle-to-Everything (V2X) communications. However, it is still challenging to attain the ideal anticipated benefits out of the cooperative vehicular systems, due to the inherent issues and challenges of their different components, such as sensors' failures in severe weather conditions or the poor performance of V2X technologies under dense communication channel loads. In this research we aim to address some of these challenges from a Bayesian Machine- Learning perspective, by proposing several novel ideas and solutions which facilitate the realization of more robust, reliable, and agile cooperative vehicular systems. More precisely, we have a two-fold contribution here. In one aspect, we have investigated the notion of Model-Based Communications (MBC) and demonstrated its effectiveness for V2X communication performance enhancement. This improvement is achieved due to the more intelligent communication strategy of MBC in comparison with the current state-of-the-art V2X technologies. Essentially, MBC proposes a conceptual change in the nature of the disseminated and shared information over the communication channel compared to what is being disseminated in current technologies. In the MBC framework, instead of sharing the raw dynamic information among the network agents, each agent shares the parameters of a stochastic forecasting model which represents its current and future behavior and updates these parameters as needed. This model sharing strategy enables the receivers to precisely predict the future behaviors of the transmitter even when the update frequency is very low. On the other hand, we have also proposed receiver-side solutions in order to enhance the CVS performance and reliability and mitigate the issues caused by imperfect communication and detection processes. The core concept for these solutions is incorporating other informative elements in the system to compensate for the lack of information which is lost during the imperfect communication or detection phases. For proof of concept, we have designed an adaptive FCW framework which considers the driver's feedbacks to the CVS system. This adaptive framework mitigates the negative impact of imperfectly received or detected information on system performance, using the inherent information of these feedbacks and responses. The effectiveness and superiority of this adaptive framework over traditional design has been demonstrated in this research.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007845, ucf:52807
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007845
-
-
Title
-
Decision-making for Vehicle Path Planning.
-
Creator
-
Xu, Jun, Turgut, Damla, Zhang, Shaojie, Zhang, Wei, Hasan, Samiul, University of Central Florida
-
Abstract / Description
-
This dissertation presents novel algorithms for vehicle path planning in scenarios where the environment changes. In these dynamic scenarios the path of the vehicle needs to adapt to changes in the real world. In these scenarios, higher performance paths can be achieved if we are able to predict the future state of the world, by learning the way it evolves from historical data. We are relying on recent advances in the field of deep learning and reinforcement learning to learn appropriate...
Show moreThis dissertation presents novel algorithms for vehicle path planning in scenarios where the environment changes. In these dynamic scenarios the path of the vehicle needs to adapt to changes in the real world. In these scenarios, higher performance paths can be achieved if we are able to predict the future state of the world, by learning the way it evolves from historical data. We are relying on recent advances in the field of deep learning and reinforcement learning to learn appropriate world models and path planning behaviors.There are many different practical applications that map to this model. In this dissertation we propose algorithms for two applications that are very different in domain but share important formal similarities: the scheduling of taxi services in a large city and tracking wild animals with an unmanned aerial vehicle.The first application models a centralized taxi dispatch center in a big city. It is a multivariate optimization problem for taxi time scheduling and path planning. The first goal here is to balance the taxi service demand and supply ratio in the city. The second goal is to minimize passenger waiting time and taxi idle driving distance. We design different learning models that capture taxi demand and destination distribution patterns from historical taxi data. The predictions are evaluated with real-world taxi trip records. The predicted taxi demand and destination is used to build a taxi dispatch model. The taxi assignment and re-balance is optimized by solving a Mixed Integer Programming (MIP) problem.The second application concerns animal monitoring using an unmanned aerial vehicle (UAV) to search and track wild animals in a large geographic area. We propose two different path planing approaches for the UAV. The first one is based on the UAV controller solving Markov decision process (MDP). The second algorithms relies on the past recorded animal appearances. We designed a learning model that captures animal appearance patterns and predicts the distribution of future animal appearances. We compare the proposed path planning approaches with traditional methods and evaluated them in terms of collected value of information (VoI), message delay and percentage of events collected.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007557, ucf:52606
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007557
-
-
Title
-
Game-Theoretic Frameworks and Strategies for Defense Against Network Jamming and Collocation Attacks.
-
Creator
-
Hemida, Ahmed, Atia, George, Simaan, Marwan, Vosoughi, Azadeh, Sukthankar, Gita, Guirguis, Mina, University of Central Florida
-
Abstract / Description
-
Modern networks are becoming increasingly more complex, heterogeneous, and densely connected. While more diverse services are enabled to an ever-increasing number of users through ubiquitous networking and pervasive computing, several important challenges have emerged. For example, densely connected networks are prone to higher levels of interference, which makes them more vulnerable to jamming attacks. Also, the utilization of software-based protocols to perform routing, load balancing and...
Show moreModern networks are becoming increasingly more complex, heterogeneous, and densely connected. While more diverse services are enabled to an ever-increasing number of users through ubiquitous networking and pervasive computing, several important challenges have emerged. For example, densely connected networks are prone to higher levels of interference, which makes them more vulnerable to jamming attacks. Also, the utilization of software-based protocols to perform routing, load balancing and power management functions in Software-Defined Networks gives rise to more vulnerabilities that could be exploited by malicious users and adversaries. Moreover, the increased reliance on cloud computing services due to a growing demand for communication and computation resources poses formidable security challenges due to the shared nature and virtualization of cloud computing. In this thesis, we study two types of attacks: jamming attacks on wireless networks and side-channel attacks on cloud computing servers. The former attacks disrupt the natural network operation by exploiting the static topology and dynamic channel assignment in wireless networks, while the latter attacks seek to gain access to unauthorized data by co-residing with target virtual machines (VMs) on the same physical node in a cloud server. In both attacks, the adversary faces a static attack surface and achieves her illegitimate goal by exploiting a stationary aspect of the network functionality. Hence, this dissertation proposes and develops counter approaches to both attacks using moving target defense strategies. We study the strategic interactions between the adversary and the network administrator within a game-theoretic framework.First, in the context of jamming attacks, we present and analyze a game-theoretic formulation between the adversary and the network defender. In this problem, the attack surface is the network connectivity (the static topology) as the adversary jams a subset of nodes to increase the level of interference in the network. On the other side, the defender makes judicious adjustments of the transmission footprint of the various nodes, thereby continuously adapting the underlying network topology to reduce the impact of the attack. The defender's strategy is based on playing Nash equilibrium strategies securing a worst-case network utility. Moreover, scalable decomposition-based approaches are developed yielding a scalable defense strategy whose performance closely approaches that of the non-decomposed game for large-scale and dense networks. We study a class of games considering discrete as well as continuous power levels.In the second problem, we consider multi-tenant clouds, where a number of VMs are typically collocated on the same physical machine to optimize performance and power consumption and maximize profit. This increases the risk of a malicious virtual machine performing side-channel attacks and leaking sensitive information from neighboring VMs. The attack surface, in this case, is the static residency of VMs on a set of physical nodes, hence we develop a timed migration defense approach. Specifically, we analyze a timing game in which the cloud provider decides when to migrate a VM to a different physical machine to mitigate the risk of being compromised by a collocated malicious VM. The adversary decides the rate at which she launches new VMs to collocate with the victim VMs. Our formulation captures a data leakage model in which the cost incurred by the cloud provider depends on the duration of collocation with malicious VMs. It also captures costs incurred by the adversary in launching new VMs and by the defender in migrating VMs. We establish sufficient conditions for the existence of Nash equilibria for general cost functions, as well as for specific instantiations, and characterize the best response for both players. Furthermore, we extend our model to characterize its impact on the attacker's payoff when the cloud utilizes intrusion detection systems that detect side-channel attacks. Our theoretical findings are corroborated with extensive numerical results in various settings as well as a proof-of-concept implementation in a realistic cloud setting.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007468, ucf:52677
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007468
-
-
Title
-
An Engineering Analytics Based Framework for Computational Advertising Systems.
-
Creator
-
Chen, Mengmeng, Rabelo, Luis, Lee, Gene, Keathley, Heather, Rahal, Ahmad, University of Central Florida
-
Abstract / Description
-
Engineering analytics is a multifaceted landscape with a diversity of analytics tools which comes from emerging fields such as big data, machine learning, and traditional operations research. Industrial engineering is capable to optimize complex process and systems using engineering analytics elements and the traditional components such as total quality management. This dissertation has proven that industrial engineering using engineering analytics can optimize the emerging area of...
Show moreEngineering analytics is a multifaceted landscape with a diversity of analytics tools which comes from emerging fields such as big data, machine learning, and traditional operations research. Industrial engineering is capable to optimize complex process and systems using engineering analytics elements and the traditional components such as total quality management. This dissertation has proven that industrial engineering using engineering analytics can optimize the emerging area of Computational Advertising. The key was to know the different fields very well and do the right selection. However, people first need to understand and be experts in the flow of the complex application of Computational Advertising and based on the characteristics of each step map the right field of Engineering analytics and traditional Industrial Engineering. Then build the apparatus and apply it to the respective problem in question.This dissertation consists of four research papers addressing the development of a framework to tame the complexity of computational advertising and improve its usage efficiency from an advertiser's viewpoint. This new framework and its respective systems architecture combine the use of support vector machines, Recurrent Neural Networks, Deep Learning Neural Networks, traditional neural networks, Game Theory/Auction Theory with Generative adversarial networks, and Web Engineering to optimize the computational advertising bidding process and achieve a higher rate of return. The system is validated with an actual case study with commercial providers such as Google AdWords and an advertiser's budget of several million dollars.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007319, ucf:52118
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007319
-
-
Title
-
A Methodology for Data-Driven Decision-Making in Last Mile Delivery Operations.
-
Creator
-
Gutierrez Franco, Edgar, Rabelo, Luis, Karwowski, Waldemar, Zheng, Qipeng, Sarmiento, Alfonso, University of Central Florida
-
Abstract / Description
-
Across all industries, from manufacturing to services, decision-makers must deal day to day with the outcomes from past and current decisions that affect their business. Last-mile delivery is the term used in supply chain management to describe the movement of goods from a hub to final destinations. This research proposes a methodology that supports decision making for the execution of last-mile delivery operations in a supply chain. This methodology offers diverse, hybrid, and complementary...
Show moreAcross all industries, from manufacturing to services, decision-makers must deal day to day with the outcomes from past and current decisions that affect their business. Last-mile delivery is the term used in supply chain management to describe the movement of goods from a hub to final destinations. This research proposes a methodology that supports decision making for the execution of last-mile delivery operations in a supply chain. This methodology offers diverse, hybrid, and complementary techniques (e.g., optimization, simulation, machine learning, and geographic information systems) to understand last-mile delivery operations through data-driven decision-making. The hybrid modeling might create better warning systems and support the delivery stage in a supply chain. The methodology proposes self-learning procedures to iteratively test and adjust the gaps between the expected and real performance. This methodology supports the process of making effective decisions promptly, optimization, simulation, and machine learning models are used to support execution processes and adjust plans according to changes in conditions, circumstances, and critical factors. This research is applied in two case studies. The first one is in maritime logistics, which discusses the decision process to find the type of vessels and routes to deliver petroleum from ships to villages. The second is in city logistics, where a network of stakeholders during the city distribution process is analyzed, showing the potential benefits of this methodology, especially in metropolitan areas. Potential applications of this system will leverage growing technological trends (e.g., machine learning in supply chain management and logistics, internet of things). The main research impact is the design and implementation of a methodology, which can support real-time decisions and adjust last-mile operations depending on the circumstances. The methodology allows taking decisions under conditions of stakeholder behavior patterns like vehicle drivers, customers, locations, and traffic. As the main benefit is the possibility to predict future scenarios and plan strategies for the most likely situations in last-mile delivery. This will help determine and support the accurate calculation of performance indicators. The research brings a unified methodology, where different solution approaches can be used in a synchronized form, which allows researches and other interested people to see the connection between techniques. With this research, it was possible to bring advanced technologies in routing practices and algorithms to decrease operating cost and leverage the use of offline and online information, thanks to connected sensors to support decisions.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007645, ucf:52505
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007645
-
-
Title
-
A Study of Localization and Latency Reduction for Action Recognition.
-
Creator
-
Masood, Syed, Tappen, Marshall, Foroosh, Hassan, Stanley, Kenneth, Sukthankar, Rahul, University of Central Florida
-
Abstract / Description
-
The success of recognizing periodic actions in single-person-simple-background datasets, such as Weizmann and KTH, has created a need for more complex datasets to push the performance of action recognition systems. In this work, we create a new synthetic action dataset and use it to highlight weaknesses in current recognition systems. Experiments show that introducing background complexity to action video sequences causes a significant degradation in recognition performance. Moreover, this...
Show moreThe success of recognizing periodic actions in single-person-simple-background datasets, such as Weizmann and KTH, has created a need for more complex datasets to push the performance of action recognition systems. In this work, we create a new synthetic action dataset and use it to highlight weaknesses in current recognition systems. Experiments show that introducing background complexity to action video sequences causes a significant degradation in recognition performance. Moreover, this degradation cannot be fixed by fine-tuning system parameters or by selecting better feature points. Instead, we show that the problem lies in the spatio-temporal cuboid volume extracted from the interest point locations. Having identified the problem, we show how improved results can be achieved by simple modifications to the cuboids.For the above method however, one requires near-perfect localization of the action within a video sequence. To achieve this objective, we present a two stage weakly supervised probabilistic model for simultaneous localization and recognition of actions in videos. Different from previous approaches, our method is novel in that it (1) eliminates the need for manual annotations for the training procedure and (2) does not require any human detection or tracking in the classification stage. The first stage of our framework is a probabilistic action localization model which extracts the most promising sub-windows in a video sequence where an action can take place. We use a non-linear classifier in the second stage of our framework for the final classification task. We show the effectiveness of our proposed model on two well known real-world datasets: UCF Sports and UCF11 datasets.Another application of the weakly supervised probablistic model proposed above is in the gaming environment. An important aspect in designing interactive, action-based interfaces is reliably recognizing actions with minimal latency. High latency causes the system's feedback to lag behind and thus significantly degrade the interactivity of the user experience. With slight modification to the weakly supervised probablistic model we proposed for action localization, we show how it can be used for reducing latency when recognizing actions in Human Computer Interaction (HCI) environments. This latency-aware learning formulation trains a logistic regression-based classifier that automatically determines distinctive canonical poses from the data and uses these to robustly recognize actions in the presence of ambiguous poses. We introduce a novel (publicly released) dataset for the purpose of our experiments. Comparisons of our method against both a Bag of Words and a Conditional Random Field (CRF) classifier show improved recognition performance for both pre-segmented and online classification tasks.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004575, ucf:49210
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004575
-
-
Title
-
Life Long Learning in Sparse Learning Environments.
-
Creator
-
Reeder, John, Georgiopoulos, Michael, Gonzalez, Avelino, Sukthankar, Gita, Anagnostopoulos, Georgios, University of Central Florida
-
Abstract / Description
-
Life long learning is a machine learning technique that deals with learning sequential tasks over time. It seeks to transfer knowledge from previous learning tasks to new learning tasks in order to increase generalization performance and learning speed. Real-time learning environments in which many agents are participating may provide learning opportunities but they are spread out in time and space outside of the geographical scope of a single learning agent. This research seeks to provide an...
Show moreLife long learning is a machine learning technique that deals with learning sequential tasks over time. It seeks to transfer knowledge from previous learning tasks to new learning tasks in order to increase generalization performance and learning speed. Real-time learning environments in which many agents are participating may provide learning opportunities but they are spread out in time and space outside of the geographical scope of a single learning agent. This research seeks to provide an algorithm and framework for life long learning among a network of agents in a sparse real-time learning environment. This work will utilize the robust knowledge representation of neural networks, and make use of both functional and representational knowledge transfer to accomplish this task. A new generative life long learning algorithm utilizing cascade correlation and reverberating pseudo-rehearsal and incorporating a method for merging divergent life long learning paths will be implemented.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004917, ucf:49601
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004917
-
-
Title
-
Human Action Localization and Recognition in Unconstrained Videos.
-
Creator
-
Boyraz, Hakan, Tappen, Marshall, Foroosh, Hassan, Lin, Mingjie, Zhang, Shaojie, Sukthankar, Rahul, University of Central Florida
-
Abstract / Description
-
As imaging systems become ubiquitous, the ability to recognize human actions is becoming increasingly important. Just as in the object detection and recognition literature, action recognition can be roughly divided into classification tasks, where the goal is to classify a video according to the action depicted in the video, and detection tasks, where the goal is to detect and localize a human performing a particular action. A growing literature is demonstrating the benefits of localizing...
Show moreAs imaging systems become ubiquitous, the ability to recognize human actions is becoming increasingly important. Just as in the object detection and recognition literature, action recognition can be roughly divided into classification tasks, where the goal is to classify a video according to the action depicted in the video, and detection tasks, where the goal is to detect and localize a human performing a particular action. A growing literature is demonstrating the benefits of localizing discriminative sub-regions of images and videos when performing recognition tasks. In this thesis, we address the action detection and recognition problems. Action detection in video is a particularly difficult problem because actions must not only be recognized correctly, but must also be localized in the 3D spatio-temporal volume. We introduce a technique that transforms the 3D localization problem into a series of 2D detection tasks. This is accomplished by dividing the video into overlapping segments, then representing each segment with a 2D video projection. The advantage of the 2D projection is that it makes it convenient to apply the best techniques from object detection to the action detection problem. We also introduce a novel, straightforward method for searching the 2D projections to localize actions, termed Two-Point Subwindow Search (TPSS). Finally, we show how to connect the local detections in time using a chaining algorithm to identify the entire extent of the action. Our experiments show that video projection outperforms the latest results on action detection in a direct comparison.Second, we present a probabilistic model learning to identify discriminative regions in videos from weakly-supervised data where each video clip is only assigned a label describing what action is present in the frame or clip. While our first system requires every action to be manually outlined in every frame of the video, this second system only requires that the video be given a single high-level tag. From this data, the system is able to identify discriminative regions that correspond well to the regions containing the actual actions. Our experiments on both the MSR Action Dataset II and UCF Sports Dataset show that the localizations produced by this weakly supervised system are comparable in quality to localizations produced by systems that require each frame to be manually annotated. This system is able to detect actions in both 1) non-temporally segmented action videos and 2) recognition tasks where a single label is assigned to the clip. We also demonstrate the action recognition performance of our method on two complex datasets, i.e. HMDB and UCF101. Third, we extend our weakly-supervised framework by replacing the recognition stage with a two-stage neural network and apply dropout for preventing overfitting of the parameters on the training data. Dropout technique has been recently introduced to prevent overfitting of the parameters in deep neural networks and it has been applied successfully to object recognition problem. To our knowledge, this is the first system using dropout for action recognition problem. We demonstrate that using dropout improves the action recognition accuracies on HMDB and UCF101 datasets.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004977, ucf:49562
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004977
-
-
Title
-
PLUNGERS AND PRODUCTIVITY: A STUDENT ARTIST'S SURVIVAL GUIDE TO MULTI-TASKING.
-
Creator
-
Wansa, Amanda, Chicurel, Steven, University of Central Florida
-
Abstract / Description
-
To be a fully functioning theatre practitioner, the developing student artist becomes equipped with a practical skill set that is ordinarily cultivated through formal training and study. Typically, organized study leads him/her to focus on a specific facet of the business: acting, directing, design, etc. However, students often develop a vast array of talents and skills within the profession and find themselves standing at a crossroads between what "kind" of artist to be; what singular aspect...
Show moreTo be a fully functioning theatre practitioner, the developing student artist becomes equipped with a practical skill set that is ordinarily cultivated through formal training and study. Typically, organized study leads him/her to focus on a specific facet of the business: acting, directing, design, etc. However, students often develop a vast array of talents and skills within the profession and find themselves standing at a crossroads between what "kind" of artist to be; what singular aspect of the arts on which to focus. Why not do it all? For those students who "do it all", there is an additional challenge: the artist who is a student immersed in daytime study and nighttime production obligations has to wear two caps. One is that of the learner and one is that of the employee, the producer, and perhaps even the teacher. When are these caps traded or are they both worn through all processes? This thesis will reveal my creative and practical processes from two productions at the University of Central Florida for which I played on- and offstage roles: I worked as a Sound Designer and featured actor in Sophie Treadwell's Machinal; I was the Vocal Director for Urinetown: The Musical, and also played Penelope Pennywise, a leading role. I will describe the challenges and successes of each project by examining the following evidence: my personal process with each piece, demonstrated through reflection and examples from the work; interviews with those involved in the productions as well as outside reviews and feedback; and research of each play. Research will include production history, intent of authors, and aspects that informed my work both onstage and off. Did multi-tasking sacrifice the quality of my work for any of my delegated tasks? Did I enjoy more success in my progress in time management, the ability to solve problems, and collaboration process with fellow artists, or in the actual on-stage products? What aspects of my training in my graduate program added to the quality of my work on these productions? Does being a multi-tasking artist help or hurt one's career in theatre?
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002579, ucf:48283
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002579
-
-
Title
-
BIOSIGNAL PROCESSING CHALLENGES IN EMOTION RECOGNITIONFOR ADAPTIVE LEARNING.
-
Creator
-
Vartak, Aniket, Mikhael, Wasfy, University of Central Florida
-
Abstract / Description
-
User-centered computer based learning is an emerging field of interdisciplinary research. Research in diverse areas such as psychology, computer science, neuroscience and signal processing is making contributions the promise to take this field to the next level. Learning systems built using contributions from these fields could be used in actual training and education instead of just laboratory proof-of-concept. One of the important advances in this research is the detection and assessment of...
Show moreUser-centered computer based learning is an emerging field of interdisciplinary research. Research in diverse areas such as psychology, computer science, neuroscience and signal processing is making contributions the promise to take this field to the next level. Learning systems built using contributions from these fields could be used in actual training and education instead of just laboratory proof-of-concept. One of the important advances in this research is the detection and assessment of the cognitive and emotional state of the learner using such systems. This capability moves development beyond the use of traditional user performance metrics to include system intelligence measures that are based on current neuroscience theories. These advances are of paramount importance in the success and wide spread use of learning systems that are automated and intelligent. Emotion is considered an important aspect of how learning occurs, and yet estimating it and making adaptive adjustments are not part of most learning systems. In this research we focus on one specific aspect of constructing an adaptive and intelligent learning system, that is, estimation of the emotion of the learner as he/she is using the automated training system. The challenge starts with the definition of the emotion and the utility of it in human life. The next challenge is to measure the co-varying factors of the emotions in a non-invasive way, and find consistent features from these measures that are valid across wide population. In this research we use four physiological sensors that are non-invasive, and establish a methodology of utilizing the data from these sensors using different signal processing tools. A validated set of visual stimuli used worldwide in the research of emotion and attention, called International Affective Picture System (IAPS), is used. A dataset is collected from the sensors in an experiment designed to elicit emotions from these validated visual stimuli. We describe a novel wavelet method to calculate hemispheric asymmetry metric using electroencephalography data. This method is tested against typically used power spectral density method. We show overall improvement in accuracy in classifying specific emotions using the novel method. We also show distinctions between different discrete emotions from the autonomic nervous system activity using electrocardiography, electrodermal activity and pupil diameter changes. Findings from different features from these sensors are used to give guidelines to use each of the individual sensors in the adaptive learning environment.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003301, ucf:48503
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003301
-
-
Title
-
FEATURE PRUNING FOR ACTION RECOGNITION IN COMPLEX ENVIRONMENT.
-
Creator
-
Nagaraja, Adarsh, Tappen, Marshall, University of Central Florida
-
Abstract / Description
-
A significant number of action recognition research efforts use spatio-temporal interest point detectors for feature extraction. Although the extracted features provide useful information for recognizing actions, a significant number of them contain irrelevant motion and background clutter. In many cases, the extracted features are included as is in the classification pipeline, and sophisticated noise removal techniques are subsequently used to alleviate their effect on classification. We...
Show moreA significant number of action recognition research efforts use spatio-temporal interest point detectors for feature extraction. Although the extracted features provide useful information for recognizing actions, a significant number of them contain irrelevant motion and background clutter. In many cases, the extracted features are included as is in the classification pipeline, and sophisticated noise removal techniques are subsequently used to alleviate their effect on classification. We introduce a new action database, created from the Weizmann database, that reveals a significant weakness in systems based on popular cuboid descriptors. Experiments show that introducing complex backgrounds, stationary or dynamic, into the video causes a significant degradation in recognition performance. Moreover, this degradation cannot be fixed by fine-tuning the system or selecting better interest points. Instead, we show that the problem lies at the descriptor level and must be addressed by modifying descriptors.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003882, ucf:48721
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003882
-
-
Title
-
An Unsupervised Consensus Control Chart Pattern Recognition Framework.
-
Creator
-
Haghtalab, Siavash, Xanthopoulos, Petros, Pazour, Jennifer, Rabelo, Luis, University of Central Florida
-
Abstract / Description
-
Early identification and detection of abnormal time series patterns is vital for a number of manufacturing.Slide shifts and alterations of time series patterns might be indicative of some anomalyin the production process, such as machinery malfunction. Usually due to the continuous flow of data monitoring of manufacturing processes requires automated Control Chart Pattern Recognition(CCPR) algorithms. The majority of CCPR literature consists of supervised classification algorithms. Less...
Show moreEarly identification and detection of abnormal time series patterns is vital for a number of manufacturing.Slide shifts and alterations of time series patterns might be indicative of some anomalyin the production process, such as machinery malfunction. Usually due to the continuous flow of data monitoring of manufacturing processes requires automated Control Chart Pattern Recognition(CCPR) algorithms. The majority of CCPR literature consists of supervised classification algorithms. Less studies consider unsupervised versions of the problem. Despite the profound advantageof unsupervised methodology for less manual data labeling their use is limited due to thefact that their performance is not robust enough for practical purposes. In this study we propose the use of a consensus clustering framework. Computational results show robust behavior compared to individual clustering algorithms.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005178, ucf:50670
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005178
-
-
Title
-
Improved Multi-Task Learning Based on Local Rademacher Analysis.
-
Creator
-
Yousefi, Niloofar, Mollaghasemi, Mansooreh, Rabelo, Luis, Zheng, Qipeng, Anagnostopoulos, Georgios, Xanthopoulos, Petros, Georgiopoulos, Michael, University of Central Florida
-
Abstract / Description
-
Considering a single prediction task at a time is the most commonly paradigm in machine learning practice. This methodology, however, ignores the potentially relevant information that might be available in other related tasks in the same domain. This becomes even more critical where facing the lack of a sufficient amount of data in a prediction task of an individual subject may lead to deteriorated generalization performance. In such cases, learning multiple related tasks together might offer...
Show moreConsidering a single prediction task at a time is the most commonly paradigm in machine learning practice. This methodology, however, ignores the potentially relevant information that might be available in other related tasks in the same domain. This becomes even more critical where facing the lack of a sufficient amount of data in a prediction task of an individual subject may lead to deteriorated generalization performance. In such cases, learning multiple related tasks together might offer a better performance by allowing tasks to leverage information from each other. Multi-Task Learning (MTL) is a machine learning framework, which learns multiple related tasks simultaneously to overcome data scarcity limitations of Single Task Learning (STL), and therefore, it results in an improved performance. Although MTL has been actively investigated by the machine learning community, there are only a few studies examining the theoretical justification of this learning framework. The focus of previous studies is on providing learning guarantees in the form of generalization error bounds. The study of generalization bounds is considered as an important problem in machine learning, and, more specifically, in statistical learning theory. This importance is twofold: (1) generalization bounds provide an upper-tail confidence interval for the true risk of a learning algorithm the latter of which cannot be precisely calculated due to its dependency to some unknown distribution P from which the data are drawn, (2) this type of bounds can also be employed as model selection tools, which lead to identifying more accurate learning models. The generalization error bounds are typically expressed in terms of the empirical risk of the learning hypothesis along with a complexity measure of that hypothesis. Although different complexity measures can be used in deriving error bounds, Rademacher complexity has received considerable attention in recent years, due to its superiority to other complexity measures. In fact, Rademacher complexity can potentially lead to tighter error bounds compared to the ones obtained by other complexity measures. However, one shortcoming of the general notion of Rademacher complexity is that it provides a global complexity estimate of the learning hypothesis space, which does not take into consideration the fact that learning algorithms, by design, select functions belonging to a more favorable subset of this space and, therefore, they yield better performing models than the worst case. To overcome the limitation of global Rademacher complexity, a more nuanced notion of Rademacher complexity, the so-called local Rademacher complexity, has been considered, which leads to sharper learning bounds, and as such, compared to its global counterpart, guarantees faster convergence rates in terms of number of samples. Also, considering the fact that locally-derived bounds are expected to be tighter than globally-derived ones, they can motivate better (more accurate) model selection algorithms.While the previous MTL studies provide generalization bounds based on some other complexity measures, in this dissertation, we prove excess risk bounds for some popular kernel-based MTL hypothesis spaces based on the Local Rademacher Complexity (LRC) of those hypotheses. We show that these local bounds have faster convergence rates compared to the previous Global Rademacher Complexity (GRC)-based bounds. We then use our LRC-based MTL bounds to design a new kernel-based MTL model, which enjoys strong learning guarantees. Moreover, we develop an optimization algorithm to solve our new MTL formulation. Finally, we run simulations on experimental data that compare our MTL model to some classical Multi-Task Multiple Kernel Learning (MT-MKL) models designed based on the GRCs. Since the local Rademacher complexities are expected to be tighter than the global ones, our new model is also expected to exhibit better performance compared to the GRC-based models.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006827, ucf:51778
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006827
-
-
Title
-
Online, Supervised and Unsupervised Action Localization in Videos.
-
Creator
-
Soomro, Khurram, Shah, Mubarak, Heinrich, Mark, Hu, Haiyan, Bagci, Ulas, Yun, Hae-Bum, University of Central Florida
-
Abstract / Description
-
Action recognition classifies a given video among a set of action labels, whereas action localization determines the location of an action in addition to its class. The overall aim of this dissertation is action localization. Many of the existing action localization approaches exhaustively search (spatially and temporally) for an action in a video. However, as the search space increases with high resolution and longer duration videos, it becomes impractical to use such sliding window...
Show moreAction recognition classifies a given video among a set of action labels, whereas action localization determines the location of an action in addition to its class. The overall aim of this dissertation is action localization. Many of the existing action localization approaches exhaustively search (spatially and temporally) for an action in a video. However, as the search space increases with high resolution and longer duration videos, it becomes impractical to use such sliding window techniques. The first part of this dissertation presents an efficient approach for localizing actions by learning contextual relations between different video regions in training. In testing, we use the context information to estimate the probability of each supervoxel belonging to the foreground action and use Conditional Random Field (CRF) to localize actions. In the above method and typical approaches to this problem, localization is performed in an offline manner where all the video frames are processed together. This prevents timely localization and prediction of actions/interactions - an important consideration for many tasks including surveillance and human-machine interaction. Therefore, in the second part of this dissertation we propose an online approach to the challenging problem of localization and prediction of actions/interactions in videos. In this approach, we use human poses and superpixels in each frame to train discriminative appearance models and perform online prediction of actions/interactions with Structural SVM. Above two approaches rely on human supervision in the form of assigning action class labels to videos and annotating actor bounding boxes in each frame of training videos. Therefore, in the third part of this dissertation we address the problem of unsupervised action localization. Given unlabeled videos without annotations, this approach aims at: 1) Discovering action classes using a discriminative clustering approach, and 2) Localizing actions using a variant of Knapsack problem.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006917, ucf:51685
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006917
Pages