Current Search: Oxides (x)
Pages
-
-
Title
-
Mechanical Study on Edge-Oxidized Graphene Oxide (EOGO) Reinforced Concrete.
-
Creator
-
Khawaji, Mohammad, Nam, Boo Hyun, Chopra, Manoj, Zaurin, Ricardo, Kwok, Kawai, University of Central Florida
-
Abstract / Description
-
It is known that graphene oxide (GO) has superior mechanical properties and can enhance mechanical properties of cement composites. However, Hummer produced conventional GOs have been limited to small-scale specimens (e.g., cement paste and mortar) and applications to concrete have not been implemented due to their high cost and large volume of concrete. Edge-oxidized graphene oxide (EOGO) is a low-cost, carbon-based nanomaterial produced by a mechanochemical process with ball milling and a...
Show moreIt is known that graphene oxide (GO) has superior mechanical properties and can enhance mechanical properties of cement composites. However, Hummer produced conventional GOs have been limited to small-scale specimens (e.g., cement paste and mortar) and applications to concrete have not been implemented due to their high cost and large volume of concrete. Edge-oxidized graphene oxide (EOGO) is a low-cost, carbon-based nanomaterial produced by a mechanochemical process with ball milling and a non-toxic oxidizing agent. The low cost (less than $50/kg) of EOGO enables its use in bulk-scale concrete materials/structures, which is a prerequisite for the field implementation. In this study, EOGO was applied to macroscopic concrete to investigate mechanical and workability performance of EOGO reinforced concrete. Interestingly, it was observed that the addition of EOGO to normal concrete increases concrete slump, which opposes the conventional GO study on cement paste. To maximize the benefits of the improved workability, EOGO was then applied to fiber reinforced concretes (FRCs) to compensate their low workability. Two different types of fibers were used, including basalt and steel fibers. The results indicated that EOGO is not effective in basalt fiber reinforced concrete (BFRC) perhaps due to the high absorption of basalt fibers. However, adding EOGO to steel fiber reinforced concrete (SFRC) exhibited significant enhancement in workability and strength compared with control specimens. Subsequently, the effect of EOGO on flexural fatigue behavior of cement composite mixtures (cement mortar and concrete) was investigated. The flexural fatigue results show that adding EOGO to cement composites enhances flexural fatigue performance. Lastly, the impact of EOGO on pavement structure was investigated based on Mechanistic-Empirical Design Guide (MEPDG). The results show EOGO significantly extends service life and minimizes the required thickness of surface layer.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007826, ucf:52821
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007826
-
-
Title
-
EVALUATION OF OXIDIZED MEDIA FILTRATION PROCESSES FOR THE TREATMENT OF HYDROGEN SULFIDE IN GROUNDWATER.
-
Creator
-
Trupiano, Vito, Duranceau, Steven, University of Central Florida
-
Abstract / Description
-
This study evaluated alternative sulfide treatment processes for potable water systems that rely on groundwater supplies. Research for this study was conducted at the Imperial Lakes (IL) and Turner Road (TR) water treatment plants (WTPs) in Polk County, Florida. These WTPs are in the process of refurbishment and expansion, and will require the installation of a new groundwater well. The IL and TR WTPs both rely upon groundwater sources that contain total sulfide at concentrations ranging from...
Show moreThis study evaluated alternative sulfide treatment processes for potable water systems that rely on groundwater supplies. Research for this study was conducted at the Imperial Lakes (IL) and Turner Road (TR) water treatment plants (WTPs) in Polk County, Florida. These WTPs are in the process of refurbishment and expansion, and will require the installation of a new groundwater well. The IL and TR WTPs both rely upon groundwater sources that contain total sulfide at concentrations ranging from 1.4 to 2.6 mg/L. Sulfide is a concern because if left untreated it can impact finished water quality, corrosivity, create undesirable taste and odor, and oxidize to form visible turbidity. For this reason, the raw water will require treatment per Florida Department of Environmental Protection (FDEP) "Sulfide Rule" 62-555.315(5)(a). This rule does not allow the use of conventional tray aeration (currently in use at the IL and TR WTPs) for wells that have significant total sulfide content (0.6 to 3.0 mg/L). This research was commissioned because the potential water treatment method identified in the Sulfide Rule (i.e. forced-draft aeration) would not adequately fit within the confines of the existing sites and would pose undue burden to neighboring residents. In addition, an effective sulfide treatment process was desired that offered a low profile, did not necessitate the need for additional complex chemical feed systems, minimized the extent of electrical infrastructure upgrades, and was inexpensive to construct and operate. To meet these goals, several alternative technologies were evaluated at the desktop and bench-scale; these included anion exchange, various oxidation methods, and alternative media filtration processes. From that effort, several processes were selected for evaluation at the pilot scale: bleach (NaOCl) oxidation preceding electromedia filtration; manganese (IV) oxide (MnO2) filtration continuously regenerated with bleach; and ferrate (Fe(VI)) oxidation. Electromedia and MnO2 filtration were shown to be effective for total sulfide treatment. Both processes reduced total sulfide content to below detection levels (< 0.1 mg/L) for groundwater supplies containing as much as 2.6 mg/L of total sulfide. The use of bleach oxidation ahead of media filtration also produced finished water with low turbidity (< 1.0 NTU) as compared to conventional tray aeration and chlorination processes (6-16 NTU, as observed in this study). It was determined that the media filtration approach (electromedia and MnO2) was effective for sulfide treatment and met the County's site objectives established at the outset of the project. Ferrate was also shown to reduce total sulfide content to below detection levels (< 0.1 mg/L) for groundwater supplies containing as much as 2.6 mg/L of total sulfide. An opinion of probable capital costs for installing a sulfide oxidation/filtration process at either the Imperial Lakes or Turner Road WTP was estimated to range from roughly $830,000 to $1,100,000. That equates to a $/kgal capital cost of $0.10 to $0.32 (at 8% for 20 years). An opinion of annual probable bleach chemical costs was estimated to range from $3,500 to $9,800 for the IL WTP and $3,500 to $5,800 for the TR WTP.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003370, ucf:48432
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003370
-
-
Title
-
SURFACTANT DRIVEN ASSEMBLY OF FREEZE-CASTED, POLYMER-DERIVED CERAMIC NANOPARTICLES ON GRAPEHENE OXIDE SHEETS FOR LITHIUM-ION BATTERY ANODES.
-
Creator
-
Khater, Ali Zein, Tetard, Laurene, Zhai, Lei, University of Central Florida
-
Abstract / Description
-
Traditional Lithium-Ion Batteries (LIBs) are a reliable and cost-efficient choice for energy storage. LIBs offer high energy density and low self-discharge. Recent developments in electric-based technologies push for replacing historically used Lead-Acid batteries with LIBs. However, LIBs do not yet meet the demands of modern technology. Silicon and graphene oxide (GO) have been identified as promising replacements to improve anode materials. Graphene oxide has a unique sheet-like structure...
Show moreTraditional Lithium-Ion Batteries (LIBs) are a reliable and cost-efficient choice for energy storage. LIBs offer high energy density and low self-discharge. Recent developments in electric-based technologies push for replacing historically used Lead-Acid batteries with LIBs. However, LIBs do not yet meet the demands of modern technology. Silicon and graphene oxide (GO) have been identified as promising replacements to improve anode materials. Graphene oxide has a unique sheet-like structure that provides a mechanically stable, light weight material for LIB anodes. Due to its structure, reduced graphene oxide (rGO) is efficiently conductive and resistive to environmental changes. On the other hand, silicon-based anode materials offer the highest theoretical energy density and a high Li-ion loading capacity of various elements [20]. Silicon-based anodes that have previously been studied demonstrated extreme volumetric expansion over long cycles due to lithiation. Polysiloxane may be an interesting alternative as it is a Si-based material that can retain the high Li-ion loading capacity of Si while lacking the unattractive volumetric expansions of Si. Polymer derived ceramic-decorated graphene oxide anodes have been suggested to increase loading capacity, thermal resistance, power density, and mechanical stability of LIBs. Coupled with mechanically stable graphene oxide, polymer derived ceramic nanoparticle decorated graphene oxide anodes are studied to establish their efficiencies under operating conditions.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000404, ucf:45765
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000404
-
-
Title
-
REMOVAL OF REFRACTORY TKN FROM AN EFFLUENT WASTEWATER USING SODIUM FERRATE.
-
Creator
-
Lettie, Lucia, Reinhart, Debra, University of Central Florida
-
Abstract / Description
-
This research addresses refractory forms of nitrogen that, even with advanced biological nitrification-denitrification systems are not removed completely from domestic wastewater. TKN (Total Kjeldahl Nitrogen), ammonia plus organic nitrogen, is one of the forms to measure the levels of nitrogen present in effluent wastewaters. Ferrate, a strong oxidant, was used for the treatment of these nitrogen forms with the objective of producing nitrogen compounds that can be removed by subsequent...
Show moreThis research addresses refractory forms of nitrogen that, even with advanced biological nitrification-denitrification systems are not removed completely from domestic wastewater. TKN (Total Kjeldahl Nitrogen), ammonia plus organic nitrogen, is one of the forms to measure the levels of nitrogen present in effluent wastewaters. Ferrate, a strong oxidant, was used for the treatment of these nitrogen forms with the objective of producing nitrogen compounds that can be removed by subsequent biological processes. Bench-scale experiments were performed on effluent samples taken prior to chlorination from an Orlando, FL wastewater treatment facility, using a biological nutrient removal process. The samples were treated with doses of ferrate ranging from 1 to 50 mg/L as FeO42 under unbuffered conditions. TKN removal as high as 70% and COD removal greater than 55% was observed. The TSS production after ferrate treatment was in a range of 12 to 200 mg/L for doses between 10 and 50 mg/L FeO4-2. After an optimum dose of ferrate was determined, three bench-scale reactors were operated under anoxic conditions for 10 to 12 days, two as duplicates containing the treated effluent and one as a control with untreated sample. Two different doses of ferrate were used as optimum dose for these experiments, 10 and 25 mg/L as FeO4-2. The purpose of these reactors was to determine the potential for biological removal of remaining nitrogen after ferrate oxidation of refractory nitrogen. Treated and raw samples were analyzed for Total Kjeldahl Nitrogen (TKN) (filtered and unfiltered), chemical oxygen demand (COD) (filtered and unfiltered), total suspended solids (TSS), nitrate (NO3-N), nitrite (NO2-N), and heterotrophic plate count (HPC). As a result, more than 70% of the soluble TKN was removed by chemical and biological oxidation for a sample treated with a dose of 25 mg/L FeO4-2, and less than 50% when treated with 10 mg/L FeO4-2. For the control samples run parallel to the ferrate treated samples, a maximum of 48% of soluble TKN and a minimum of 12% was removed. A three-log increase was observed in heterotrophic bacteria numbers for both doses during the operation of the reactors. Sodium ferrate was found to be an effective oxidant that can enhance the biodegradability of recalcitrant TKN present in municipal wastewaters. As mentioned before this research was develop using batch reactor units at bench-scale, therefore it is recommended to follow the investigation of the biodegradability of recalcitrant TKN of a ferrate treated sample under continuous flow conditions so that results can be extrapolated to a full-scale treatment facility.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001247, ucf:46936
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001247
-
-
Title
-
DENSITY-FUNCTIONAL THEORY APPLIED TO PROBLEMS IN CATALYSIS AND ELECTROCHEMISTRY.
-
Creator
-
Kumar, Santosh, Schelling, Patrick, University of Central Florida
-
Abstract / Description
-
We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces below one monolayer coverage using density-functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at stoichiometric ceria (111) surface. In contrast to experiment results, we do not find a...
Show moreWe study the structure and energetics of water molecules adsorbed at ceria (111) surfaces below one monolayer coverage using density-functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at stoichiometric ceria (111) surface. In contrast to experiment results, we do not find a strong coverage dependence of the adsorption energy. For the case of reduced surface, our results show that it may not be energetically favorable for water to oxidize oxygen vacancy site at the surface. Instead, oxygen vacancies tend to result in water more strongly binding to the surface. The result of this attractive water-vacancy interaction is that the apparent concentration of oxygen vacancies at the surface is enhanced in the presence of water. Finally, we discuss this problem with reference to recent experimental and theoretical studies of vacancy clustering at the (111) ceria surface. We also describe the simulation results for the structure and dynamics of liquid water using the SIESTA electronic structure approach. We find that the structure of water depends strongly on the particular basis set used. Applying a systematic approach to varying the basis set, we find that the basis set which results in good agreement with experimental binding energies for isolated water dimers also provides a reasonable description of the radial distribution functions of liquid water. We show that the structure of liquid water varies in a systematic fashion with the choice of basis set. Comparable to many other first-principle studies of liquid water using gradient-corrected density functionals, the liquid is found to be somewhat overstructured. The possibility of further improvements through a better choice of the basis set is discussed. We find that while improvements are likely to be possible, application to large-scale systems will require use of a computational algorithm whose computational cost scales linearly with system size. Finally, we study the molecular and atomic adsorption of oxygen on the gold nano-clusters. We show multiple stable and metastable structures for atomically and molecularly adsorbed oxygen to the gold cluster. We plan to predict the reaction pathway and calculate activation energy barrier for desorption of molecular oxygen from the atomically adsorbed gold cluster which is very important for any catalytic reaction occurring using gold nanoparticles.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001211, ucf:46938
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001211
-
-
Title
-
THE BIOCHEMICAL REACTIONS OF DRY STATE DNA.
-
Creator
-
Marrone, April, Ballantyne, John, University of Central Florida
-
Abstract / Description
-
The biochemistry of dry state DNA is of interest to the fields of forensics, ancient DNA, and DNA storage. The exact chemical nature of the degradation of the DNA molecule in the dry state has not been studied prior. If determined what chemical changes the DNA molecule undergoes, to what degree and in what time frame then protocols can be implemented to bypass the impact of this damage or to repair it when necessary. It is suspected that similar reactions occur to the dry state DNA molecule...
Show moreThe biochemistry of dry state DNA is of interest to the fields of forensics, ancient DNA, and DNA storage. The exact chemical nature of the degradation of the DNA molecule in the dry state has not been studied prior. If determined what chemical changes the DNA molecule undergoes, to what degree and in what time frame then protocols can be implemented to bypass the impact of this damage or to repair it when necessary. It is suspected that similar reactions occur to the dry state DNA molecule as does to the hydrated molecule. It cannot be assumed, however that these types of chemical processes occur to the same extent and at the same rates. In general the generic process of hydrolysis encompasses two important reactions, that of deamination and of base loss from the 2'-deoxyribose backbone. Base loss is believed to ultimately lead to chain scission. It is also suspect that reactive oxygen species (ROS) have an important role in the chemistry associated with DNA. Species such as hydroxyl radicals (OH) and singlet oxygen (1O2) can lead to strand scissions and chemically modified bases. Throughout this project various techniques were used to determine damage to DNA and its molecular constituents under conditions leading to hydrolytic and oxidative damage. Novel techniques used in this study include ion-pairing chromatography and denaturing HPLC (DHPLC) to measure glycosidic bond cleavage and strand breaks. The extent to which the macromolecule haemoglobin (Hb) can lead to oxidative damage of DNA in dried blood stains by acting as a Fenton chemistry catalyst was evaluated. Additionally the enzymatic activity of the extracellular nuclease from Alteromonas espejiana, BAL 31 was studied as it pertains to the degradation of single-stranded short homopolymeric oligonucleotides. This study serves as the basis for future, more in depth experimentation into the more specific nature of dry state DNA biochemistry. It was found that to a large extent the same degradation reactions (base hydrolysis, base modifications, and strand breaks) do occur in the dry state as in the hydrated state when heat and UV radiation are used as energy sources. Reaction rates indicate that base hydrolysis and deamination occur much more slowly, yet have the same energies of activation in both states. Single strand breaks of dry state duplex DNA occur with a half life of 24 ± 2 days and appears to occur in a mechanistic manner which could be of interest when attempting to repair such damage. In addition, base loss alone does not correlate with the extent of single strand breaks detected. Thermodynamic data can lead to the conclusion that DNA degradation in both dry and hydrated states is not a spontaneous process. It is also concluded that though the Hb molecule undergoes oxidative changes over time, these changes do not impact its ability to become a more aggressive Fenton reagent. However, the presence of Hb in the vicinity of DNA does create the opportunity for OH induced damage to the deoxyribose sugar, and most likely the DNA bases themselves. This study also reveals that the general purpose BAL 31 nuclease commonly used in molecular genetics exhibits a hithertofore non-characterized degree of substrate specificity with respect to single-stranded DNA oligomers. Specifically, BAL 31 nuclease activity was found to be affected by the presence of guanine in ssDNA oligomers.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002547, ucf:47663
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002547
-
-
Title
-
USE OF CERIUM OXIDE NANOPARTICLES FOR PROTECTION AGAINSTRADIATION-INDUCED CELL DEATH.
-
Creator
-
Colon, Jimmie, Kolattukudy, Pappachan, University of Central Florida
-
Abstract / Description
-
The ability of engineered cerium oxide nanoparticles to confer radioprotection was examined. Rat astrocytes were treated with cerium oxide nanoparticles to a final concentration of 10 nanomolar, irradiated with a single 10 Gy dose of ionizing radiation and cell death was evaluated by propidium iodine uptake at 24 and 48 hours after radiation insult. Treatment of rat astrocytes with nanoceria resulted in an approximate 3-fold decrease in radiation induced death. These results suggest that the...
Show moreThe ability of engineered cerium oxide nanoparticles to confer radioprotection was examined. Rat astrocytes were treated with cerium oxide nanoparticles to a final concentration of 10 nanomolar, irradiated with a single 10 Gy dose of ionizing radiation and cell death was evaluated by propidium iodine uptake at 24 and 48 hours after radiation insult. Treatment of rat astrocytes with nanoceria resulted in an approximate 3-fold decrease in radiation induced death. These results suggest that the nanoceria are conferring protection from radiation induced cell death. Further experiments with human cells were conducted. Human normal and tumor cells (MCF-7 and CRL8798) were treated with the same dosage of cerium oxide nanoparticles, irradiated and evaluated for cell survival. Treatment of normal cells (MCF-7) conferred nearly 99% protection from radiation-induced cell death while the same concentration of nanoceria showed almost no protection in tumor cells (CRL8798). TUNEL analysis results of similarly treated cells demonstrated that nanoceria reduced radiation-induced cell death by 3-fold in normal breast cells but not in MCF-7 tumor cell lines when cultured under the same conditions. We concluded that cerium oxide nanoparticles confer radioprotection in a normal human breast line (CRL 8798) but not in a human breast tumor line (MCF-7). It is hoped that the outcome of this study will guide future endeavors toward a better elucidation of the molecular pathways involved in the protection of cells with nanoceria against radiation-induced cell death, as well as the minimization of the bystander effect in radiation therapy.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001048, ucf:46823
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001048
-
-
Title
-
CHEMICAL AND BIOLOGICAL TREATMENT OF MATURE LANDFILLLEACHATE.
-
Creator
-
Batarseh, Eyad, Reinhart, Debra, University of Central Florida
-
Abstract / Description
-
This dissertation is about treatment of the nonbiodegradable organic content of landfill leachate by chemical oxidation combined with biological treatment. It is divided into three parts. In the first part, ferrate was compared to Fenton's reagent for the purpose of removing non-biodegradable organic compounds from mature leachate. Oxidation conditions (time, pH, and dose) were optimized to yield maximum organic removal using two leachate samples from 20 and 12-year old solid waste cells....
Show moreThis dissertation is about treatment of the nonbiodegradable organic content of landfill leachate by chemical oxidation combined with biological treatment. It is divided into three parts. In the first part, ferrate was compared to Fenton's reagent for the purpose of removing non-biodegradable organic compounds from mature leachate. Oxidation conditions (time, pH, and dose) were optimized to yield maximum organic removal using two leachate samples from 20 and 12-year old solid waste cells. Results from this research demonstrated that ferrate and Fenton's reagent had similar optimum pH ranges (3-5), but different organic removal capacities, ranging from 54 to 79 % of initial leachate organic contents. An advantage of ferrate was that it was relatively effective over a wide pH range (Fenton's reagent lost its reactivity outside optimum pH range). Advantages associated with Fenton's reagent include a higher organic removal capacity, production of more oxidized organic compounds (measured as chemical oxygen demand/dissolved organic carbon), and production of more biodegradable byproducts (measured as 5-day biochemical oxygen demand/chemical oxygen demand). Finally, both treatments were found to oxidize larger molecules (>1000 dalton) and produce smaller molecules, as indicated by an increase in smaller molecule contribution to organic carbon. In part two, effects of Fenton's reagent treatment on biodegradability of three landfill leachates collected from a Florida landfill were evaluated using biochemical oxygen demand (BOD), biochemical methane potential (BMP), and tertamethylammonium hydroxide (TMAH) thermochemolysis gas chromatography/mass spectrometry (GC/MS). The hypothesis was that Fenton's reagent will remove refractory compounds that inhibit biodegradation and will produce smaller, more biodegradable organic molecules which will result in an increase in BOD and BMP values. Both BOD and BMP results demonstrated that Fenton's reagent treatment did not convert mature leachate to biodegradable leachate, as indicated by a low BOD5 expressed as C /dissolved organic carbon (DOC) ratio of almost 0.15 in treated samples and a low net methane production / theoretical methane potential (less than 0.15). Ultimate BOD only slightly increased. However the first-order BOD reaction rate increased by more than five fold, suggesting that Fenton's reagent removed refractory and inhibitory compounds. BMP results demonstrated that the ratio of CO2/CH4 produced during anaerobic biodegradation did not increase in treated leachate (compared to untreated), indicating that small biodegradable organic acids produced by oxidation were removed by coagulation promoted by Fenton's reagent. Finally, the TMAH thermochemolysis results showed that several of the refractory and inhibitory compounds were detected fewer times in treated samples and that carboxylic acids did not appear in treated samples. In the third part of this dissertation the application of flushing/Fenton's reagent oxidation to produce sustainable solid waste cells was evaluated. A treatment similar to pump and treat process utilizing Fenton's reagent on-site treated leachate combined with in-situ aeration was proposed. Treated leachate would be recycled to the landfill cell flushes releasable nonbiodegradable carbon from the cell and oxidizes it externally. This technique was demonstrated to have treatment cost and time benefits over other alternatives for producing completely stable solid waste cells such as anaerobic flushing and biological and/or mechanical pretreatment of solid waste (used in the EU).
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001276, ucf:46912
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001276
-
-
Title
-
A LABORATORY SCALE ASSESSMENT OF THE EFFECT OF CHLORINE DIOXIDE PRE-OXIDATION ON DISINFECTION BY-PRODUCT FORMATION FOR TWO SURFACE WATER SUPPLIES.
-
Creator
-
Rodriguez, Angela, Duranceau, Steven, University of Central Florida
-
Abstract / Description
-
Chemical disinfection is the cornerstone of safe drinking water. However, the use of chemical disinfection results in the unintentional formation of disinfection by-products (DBPs), an outcome of reactions between the disinfectant and natural organic matter (NOM) present in the native (raw) water. DBPs are suspected carcinogens, and as such, have been regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA). This document reports the results of a...
Show moreChemical disinfection is the cornerstone of safe drinking water. However, the use of chemical disinfection results in the unintentional formation of disinfection by-products (DBPs), an outcome of reactions between the disinfectant and natural organic matter (NOM) present in the native (raw) water. DBPs are suspected carcinogens, and as such, have been regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA). This document reports the results of a study that investigated the use of chlorine dioxide pre-oxidation for the reduction of DBP precursors, and subsequently, DBP formation potential (FP). To determine the effectiveness of the chlorine dioxide pre-oxidation process, two surface waters were studied: raw water from Lake Claire (Orlando, FL) and raw water from the East Maui Watershed (Makawao, HI). Lake Claire water contains approximately 11-12 mg/L of NOM and 35 mg/L as CaCO3 of alkalinity, while the Maui source water typically ranges between 7-8 mg/L of NOM with 2-10 mg/L as CaCO3 of alkalinity. Two chlorine dioxide doses were investigated (0.75 mg/L and 1.5 mg/L) and compared to a control to quantify the effectiveness of this advanced pre-treatment oxidation process. Water collected at each site was subject to the following treatment process: oxidation, coagulation, flocculation, sedimentation, ultrafiltration, and disinfection with free chlorine. Disinfection by-product formation potential (DBPFP) analysis showed that ClO2 pre-oxidation, in general, increased the 7-day DBPFP of the East Maui water, and decreased the 7-day DBPFP of the Lake Claire source water. For the Lake Claire water at the higher ClO2 dose, total trihalomethanes (TTHM) were decreased by 37 percent and the five regulated haloacetic acids (HAA5) by 23 percent. For the East Maui source water at the higher ClO2 dose, TTHM's were increased by 53 percent and HAA5's by 60 percent. Future research should determine the effect of alkalinity on DBPFP, which could be the reason why chlorine dioxide pre-oxidation caused one water source's DBPFP to decrease and the other to increase.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFH0004734, ucf:45393
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004734
-
-
Title
-
IN-SITU GAS PHASE CATALYTIC PROPERTIES OF METAL NANOPARTICLES.
-
Creator
-
Ono, Luis, Roldan Cuenya, Beatriz, University of Central Florida
-
Abstract / Description
-
Recent advances in surface science technology have opened new opportunities for atomic scale studies in the field of nanoparticle (NP) catalysis. The 2007 Nobel Prize of Chemistry awarded to Prof. G. Ertl, a pioneer in introducing surface science techniques to the field of heterogeneous catalysis, shows the importance of the field and revealed some of the fundamental processes of how chemical reactions take place at extended surfaces. However, after several decades of intense research,...
Show moreRecent advances in surface science technology have opened new opportunities for atomic scale studies in the field of nanoparticle (NP) catalysis. The 2007 Nobel Prize of Chemistry awarded to Prof. G. Ertl, a pioneer in introducing surface science techniques to the field of heterogeneous catalysis, shows the importance of the field and revealed some of the fundamental processes of how chemical reactions take place at extended surfaces. However, after several decades of intense research, fundamental understanding on the factors that dominate the activity, selectivity, and stability (life-time) of nanoscale catalysts are still not well understood. This dissertation aims to explore the basic processes taking place in NP catalyzed chemical reactions by systematically changing their size, shape, oxide support, and composition, one factor at a time. Low temperature oxidation of CO over gold NPs supported on different metal oxides and carbides (SiO2, TiO2, TiC, etc.) has been used as a model reaction. The fabrication of nanocatalysts with a narrow size and shape distribution is essential for the microscopic understanding of reaction kinetics on complex catalyst systems ("real-world" systems). Our NP synthesis tools are based on self-assembly techniques such as diblock-copolymer encapsulation and nanosphere lithography. The morphological, electronic and chemical properties of these nanocatalysts have been investigated by atomic force microscopy (AFM), scanning tunneling microscopy (STM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). Chapter 1 describes briefly the basic principles of the instrumentation used within this experimental dissertation. Since most of the state-of-art surface science characterization tools provide ensemble-averaged information, catalyst samples with well defined morphology and structure must be available to be able to extract meaningful information on how size and shape affect the physical and chemical properties of these structures. In chapter 2, the inverse-micelle encapsulation and nanosphere lithography methods used in this dissertation for synthesizing uniformly arranged and narrow size- and shape-selected spherical and triangular NPs are described. Chapter 3 describes morphological changes on individual Au NPs supported on SiO2 as function of the annealing temperature and gaseous environment. In addition, NP mobility is monitored. Chapter 4 explores size-effects on the electronic and catalytic properties of size-selected Au NPs supported on a transition metal carbide, TiC. The effect of interparticle interactions on the reactivity and stability (catalyst lifetime) of Au NPs deposited on TiC is discussed in chapter 5. Size and support effects on the formation and thermal stability of Au2O3, PtO and PtO2 on Au and Pt NPs supported on SiO2, TiO2 and ZrO2 is investigated in chapter 6. Emphasis is given to gaining insight into the role of the NP/support interface and that played by oxygen vacancies on the stability of the above metal oxides. Chapter 7 reports on the formation, thermal stability, and vibrational properties of mono- and bimetallic AuxFe1-x (x = 1, 0.8, 0.5, 0.2, 0) NPs supported on TiO2(110). At the end of the thesis, a brief summary describes the main highlights of this 5-year research program.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002940, ucf:47962
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002940
-
-
Title
-
Evaluating the Integration of Chlorine Dioxide into a Coagulation, Sedimentation, and Filtration Process Treating Surface Water.
-
Creator
-
Coleman, Martin, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, University of Central Florida
-
Abstract / Description
-
Methods of optimizing the coagulation, flocculation, sedimentation, and filtration (CSF) process at a conventional surface water treatment plant (WTP) were conducted to investigate opportunities for the reduction of disinfection by-product (DBP) precursor material. The research had two primary components: (1) optimize coagulant dosage and associated operating pH and (2) investigate pretreatment oxidation with chlorine dioxide (ClO2) and potassium permanganate (KMnO4). To accomplish the first...
Show moreMethods of optimizing the coagulation, flocculation, sedimentation, and filtration (CSF) process at a conventional surface water treatment plant (WTP) were conducted to investigate opportunities for the reduction of disinfection by-product (DBP) precursor material. The research had two primary components: (1) optimize coagulant dosage and associated operating pH and (2) investigate pretreatment oxidation with chlorine dioxide (ClO2) and potassium permanganate (KMnO4). To accomplish the first component, jar tests were conducted at various pH and aluminum sulfate (alum) dosages to model current and potential treatment conditions during the CSF process at a WTP. Isopleths were developed to examine the removal efficiencies of turbidity and natural organic matter (NOM). NOM is a DBP precursor material and was represented by non-purgeable dissolved organic carbon (DOC) throughout the research. Isopleths indicated that at pH 6.2 and a corresponding alum dosage of 20 mg/L (control condition), turbidity and DOC were reduced by 90 and 35 percent, respectively. However, at pH 5.5 and 30 mg/L alum dosage, turbidity removal decreased to 80 percent whereas, DOC removal improved to 50 percent. Jar testing was conducted to evaluate differences in the use of KMnO4 and ClO2 as a pretreatment chemical to observe the reduction of DBP precursor material (i.e., NOM), dissolved iron, and dissolved manganese. Addition of ClO2 was able to reduce total trihalomethanes and haloacetic acid formation potentials (168-hours) up to 40 percent and 15 percent, respectively, and was dependent on chlorine dioxide generation method, dosage, and raw water characteristics. Chlorine dioxide also was shown to remove iron and manganese at levels greater than 99 percent.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007396, ucf:52078
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007396
-
-
Title
-
Impact of Ionizing Radiation and Electron Injection on Carrier Transport Properties in Narrow and Wide Bandgap Semiconductors.
-
Creator
-
Lee, Jonathan, Flitsiyan, Elena, Chernyak, Leonid, Peale, Robert, Orlovskaya, Nina, University of Central Florida
-
Abstract / Description
-
This study investigated the minority carrier properties of wide and narrow bandgap semiconductors. Included specifically are wide bandgap materials GaN and ?-Ga2O3, and narrow bandgap InAs/GaSb type-II strain-layer superlattice. The importance of minority carrier behavior in bipolar device performance is utmost because it is the limiting component in current conduction. The techniques used to determine minority carrier properties include electron beam induced current (EBIC) and...
Show moreThis study investigated the minority carrier properties of wide and narrow bandgap semiconductors. Included specifically are wide bandgap materials GaN and ?-Ga2O3, and narrow bandgap InAs/GaSb type-II strain-layer superlattice. The importance of minority carrier behavior in bipolar device performance is utmost because it is the limiting component in current conduction. The techniques used to determine minority carrier properties include electron beam induced current (EBIC) and cathodoluminescence (CL) spectroscopy. The CL spectroscopy is complemented with time-resolved CL (TRCL) for direct measurement of carrier radiative recombination lifetime. The minority carrier properties and effect of high energy radiation is explored. The GaN TRCL results suggested an activation energy effecting carrier lifetime of about 90 meV which is related to nitrogen vacancies. The effects of 60Co gamma radiation are demonstrated and related to the effects of electron injection in GaN-based devices. The effects of various high energy radiations upon Si-doped ?-Ga2O3 minority carrier diffusion length and radiative lifetime are measured. The non-irradiated sample thermal activation energies found for minority carrier diffusion length were 40.9 meV, related to shallow Si-donors in the material. The CL results demonstrate that the bandgap of 4.9 eV is slightly indirect. The thermal activation energy decreased on 1.5 MeV electron irradiation but increased for 10 MeV proton irradiation. The increase in energy was related to higher order defects and their complexes, and influenced recombination lifetime significantly. Finally, the diffusion length is reported for narrow bandgap InAs/GaSb superlattice structure and the effect of 60Co gamma radiation is demonstrated.In general, the defects introduced by high energy radiations decreased minority carrier diffusion length, except for 60Co gamma on AlGaN/GaN HEMT devices and high-temperature proton irradiated ?-Ga2O3.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007217, ucf:52239
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007217
-
-
Title
-
Development of S-nitroso-N-acetylpenicillamine (SNAP) Impregnated Medical Grade Polyvinyl Chloride for Antimicrobial Medical Device Interfaces.
-
Creator
-
Feit, Corbin, Brisbois, Elizabeth, Vaidyanathan, Raj, Kuebler, Stephen, University of Central Florida
-
Abstract / Description
-
In the clinical setting, polyvinyl chloride (PVC) accounts for 25% of all polymers used in medical device applications. However, medical devices fabricated with PVC, such as endotracheal tubes, extracorporeal circuits (ECCs), or intravenous catheters suffer from thrombosis and infection. Mortality associated with hospital associated infections (HAIs) exceed 100,000 deaths each year. One method to overcome these challenges is to develop bioactive polymers with nitric oxide (NO) release. Nitric...
Show moreIn the clinical setting, polyvinyl chloride (PVC) accounts for 25% of all polymers used in medical device applications. However, medical devices fabricated with PVC, such as endotracheal tubes, extracorporeal circuits (ECCs), or intravenous catheters suffer from thrombosis and infection. Mortality associated with hospital associated infections (HAIs) exceed 100,000 deaths each year. One method to overcome these challenges is to develop bioactive polymers with nitric oxide (NO) release. Nitric oxide exhibits many physiological roles including, antibacterial, antithrombic, anti-inflammatory activity. In this study, Tygon(&)#174; PVC tubing was impregnated with a NO donor molecule, S-nitroso-N-acetylpenicillamine (SNAP), via a simple solvent-swelling-impregnation method, where polymer samples were submerged in a SNAP impregnation-solvent (methanol, acetone, plasticizer). An additional topcoat of a biocompatible CarboSil 2080A (CB) was applied to reduce SNAP leaching. The SNAP-PVC-CB were characterized for NO release using chemiluminescence, leaching with UV-Vis spectroscopy, surface characterization with scanning electron microscopy, tensile strength analysis, stability during storage and sterilization, and antimicrobial properties in vitro. The SNAP-PVC-CB exhibited NO flux of 4.29 (&)#177; 0.80 x 10-10 mol cm-2 min-1 over the initial 24 h under physiological conditions and continued to release physiological levels of NO for up 14 d (incubated in PBS at 37 (&)deg;C). The addition of CB-topcoat reduced the total SNAP leaching by 86% during incubation. Mechanical properties and surface topography remained similar to original PVC after SNAP-impregnation and application of CB-topcoat. After ethylene oxide sterilization and 1-month storage, SNAP-PVC-CB demonstrated excellent SNAP stability (ca. 90% SNAP remaining). In a 24 h antibacterial assay, SNAP-PVC reduce viable bacteria colonization (ca. 1 log reduction) of S. aureus and E. coli compared to PVC controls. This novel method for SNAP-impregnation of medical grade plasticized PVC holds great potential for improving the biocompatibility of post-fabricated PVC medical devices.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007887, ucf:52782
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007887
-
-
Title
-
Fatigue Lifetime Approximation based on Quantitative Microstructural Analysis for Air Plasma Sprayed Thermal Barrier Coatings.
-
Creator
-
Bargraser, Carmen, Sohn, Yongho, An, Linan, Heinrich, Helge, University of Central Florida
-
Abstract / Description
-
The durability of thermal barrier coatings (TBCs) affects the life of the hot section engine components on which they are applied. Fatigue is the general failure mechanism for such components and is responsible for most unexpected failures; therefore it is desirable to develop lifetime approximation models to ensure reliability and durability.In this study, we first examined the microstructural degradation of air plasma sprayed ZrO2-8wt.%Y2O3 TBCs with a low-pressure plasma sprayed CoNiCrAlY...
Show moreThe durability of thermal barrier coatings (TBCs) affects the life of the hot section engine components on which they are applied. Fatigue is the general failure mechanism for such components and is responsible for most unexpected failures; therefore it is desirable to develop lifetime approximation models to ensure reliability and durability.In this study, we first examined the microstructural degradation of air plasma sprayed ZrO2-8wt.%Y2O3 TBCs with a low-pressure plasma sprayed CoNiCrAlY bond coat on an IN 738LC superalloy substrate. The durability of TBCs were assessed through furnace thermal cyclic tests carried out in air at 1100(&)deg;C with a 1-, 10-, and 50-hour dwell period, preceded by a 10-minute heat-up and followed by a 10-minute forced-air-quench. Failure mechanisms of the TBCs were thoroughly investigated through materials characterization techniques including: X-Ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy.Quantitative microstructural analyses were then carried out to document the growth of the thermally grown oxide (TGO) scale, the depletion of the Al-rich ?-NiAl phase in the bond coat, and the population and growth of micro-cracks near the YSZ/bond coat interface. Trends in the TGO growth and the ?-phase depletion in the bond coat followed those of diffusion-controlled processes(-)parabolic growth of the TGO and exponential depletion of the ?-phase. Formation and propagation of cracks within the YSZ resulted in complete spallation of the YSZ topcoat from the bond-coated superalloy substrate.Evolution in these microstructural features was correlated to the lifetime of TBCs, which showed cracking within the YSZ to be the cause of failure; thus a lifetime approximation model was developed, via modification of Paris Law, based on the experimental data. The model predicted the TBC lifetime within 10% of the experimental lifetime.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004087, ucf:49145
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004087
-
-
Title
-
Rare Earth Oxide Coating with Controlled Chemistry Using Thermal Spray.
-
Creator
-
Singh, Virendra, Seal, Sudipta, Coffey, Kevin, Raghavan, Seetha, Heinrich, Helge, Zhai, Lei, University of Central Florida
-
Abstract / Description
-
Cerium oxide (Ceria) at nano scale has gained significant attention due to its numerous technological applications. Ceria in both doped and undoped forms are being explored as oxygen sensor, catalysis, protective coating against UV and corrosion, solid oxide fuel cell (SOFC) electrolyte and newly discovered antioxidant for biomedical applications. Therefore, there is an imminent need of a technology which can provide a cost effective, large scale manufacturing of nanoceria and its subsequent...
Show moreCerium oxide (Ceria) at nano scale has gained significant attention due to its numerous technological applications. Ceria in both doped and undoped forms are being explored as oxygen sensor, catalysis, protective coating against UV and corrosion, solid oxide fuel cell (SOFC) electrolyte and newly discovered antioxidant for biomedical applications. Therefore, there is an imminent need of a technology which can provide a cost effective, large scale manufacturing of nanoceria and its subsequent consolidation, specially using thermal spray.This dissertation aims to develop a scientific understanding towards the development of pure and doped ceria- based coating for a variety of technological applications, from SOFC applications to corrosion resistant coating. Atmospheric plasma spray (APS) and solution precursor plasma spray (SPPS) techniques for the fabrication of nano ceria coating were investigated. For feedstock powder preparation, a spray drying technique was used for the agglomeration of cerium oxide nano particles to achieve high density coating. Deposition efficiencies and coating porosity as a function of processing parameters were analyzed and optimized using a statistical design of experiment model. The coating deposition efficiency was dependent on the plasma temperature and vaporization pressure of the ceria nanoparticles. However, low standoff distance and high carrier gas flow rate were responsible for the improved density upto 86 (&)#177;3%.An alternative novel SPPS technique was studied for a thin film of cerium oxide deposition from various cerium salt precursors in doped and undoped conditions. The SPPS process allows controlling the chemistry of coating at a molecular level. The deposition mechanism by single scan experiments and the effect of various factors on coating microstructure evolution were studied in terms of splats formation. It was found that the precursor salt (nitrate of cerium) with lower thermal decomposition temperatures was suitable for a high density coating. The high concentration and low spray distance significantly improve the splat morphology and reduced porosity (upto 20%). The feasibility of the trivalent cations (Sm 3+ and Gd 3+) doping into cerium oxide lattice in high temperature plasma was discussed and experimentally studied. XRD analysis revealed the nano crystalline characteristic of the coating and lattice expansion due to doping. The extensive transmission electron microscopy, Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and thermo gravimetric were conducted to evaluate the precursors, and coating microstructure.Due to facial switching between Ce4+ and Ce3+ oxidation state, the cerium oxide surface becomes catalytically active. Thus, the APS ceria coatings were investigated for their applicability under extreme environmental conditions (high pressure and temperature). The air plasma sprayed coated 17-4PH steel was subjected to high pressure (10 Kpsi) and temperature (300 oF) corrosive environment. The coated steel showed continuous improvement in the corrosion resistance at 3.5 wt% NaCl at ambient temperature for three months study whereas, high pressure did not reveal a significant role in the corrosion process, and however, one needs to do further research. The ceria coated steel also revealed the improvement in corrosion protection (by 4 times) compared to the bare steel at low pH, 300 oF and 4000 Psi environment. This study projects the importance of cerium oxide coatings, their fabrication, optimization and applications.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004230, ucf:49023
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004230
-
-
Title
-
EPITAXIAL GROWTH, CHARACTERIZATION AND APPLICATION OF NOVEL WIDE BANDGAP OXIDE SEMICONDUCTORS.
-
Creator
-
Mares, Jeremy, Schoenfeld, Winston, University of Central Florida
-
Abstract / Description
-
In this work, a body of knowledge is presented which pertains to the growth, characterization and exploitation of high quality, novel II-IV oxide epitaxial films and structures grown by plasma-assisted molecular beam epitaxy. The two compounds of primary interest within this research are the ternary films NixMg1-xO and ZnxMg1-xO and the investigation focuses predominantly on the realization, assessment and implementation of these two oxides as optoelectronic materials. The functioning...
Show moreIn this work, a body of knowledge is presented which pertains to the growth, characterization and exploitation of high quality, novel II-IV oxide epitaxial films and structures grown by plasma-assisted molecular beam epitaxy. The two compounds of primary interest within this research are the ternary films NixMg1-xO and ZnxMg1-xO and the investigation focuses predominantly on the realization, assessment and implementation of these two oxides as optoelectronic materials. The functioning hypothesis for this largely experimental effort has been that these cubic ternary oxides can be exploited - and possibly even juxtaposed - to realize novel wide band gap optoelectronic technologies. The results of the research conducted presented herein overwhelmingly support this hypothesis in that they confirm the possibility to grow these films with sufficient quality by this technique, as conjectured. NixMg1-xO films with varying Nickel concentrations ranging from x = 0 to x = 1 have been grown on lattice matched MgO substrates (lattice mismatch ε < 0.01) and characterized structurally, morphologically, optically and electrically. Similarly, cubic ZnxMg1-xO films with Zinc concentrations ranging from x = 0 to x ≈ 0.53, as limited by phase segregation, have also been grown and characterized. Photoconductive devices have been designed and fabricated from these films and characterized. Successfully engineered films in both categories exhibit the desired deep ultraviolet photoresponse and therefore verify the hypothesis. While the culminating work of interest here focuses on the two compounds discussed above, the investigation has also involved the characterization or exploitation of related films including hexagonal phase ZnxMg1-xO, ZnO, CdxZn1-xO and hybrid structures based on these compounds used in conjunction with GaN. These works were critical precursors to the growth of cubic oxides, however, and are closely relevant. Viewed in its entirety, this document can therefore be considered a multifaceted interrogation of several novel oxide compounds and structures, both cubic and wurtzite in structure. The conclusions of the research can be stated succinctly as a quantifiably successful effort to validate the use of these compounds and structures for wide bandgap optoelectronic technologies.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003125, ucf:48625
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003125
-
-
Title
-
Understanding the Role of Defects in the Radiation Response of Nanoceria.
-
Creator
-
Kumar, Amit, Seal, Sudipta, Heinrich, Helge, Cho, Hyoung, Leuenberger, Michael, Zhai, Lei, Devanathan, Ram, University of Central Florida
-
Abstract / Description
-
Nanoscale cerium oxide (nanoceria) have shown to possess redox active property , and has been widely studied for potential use in catalysis, chemical-mechanical planarization, bio-medical and solid oxide fuel cell (SOFC), etc. The redox state of nanoceria can be tuned by controlling the defects within the lattice and thus its physical and chemical properties. Perfect ceria lattice has fluorite structure and the research in last decade has shown that oxide and mixed oxide systems with...
Show moreNanoscale cerium oxide (nanoceria) have shown to possess redox active property , and has been widely studied for potential use in catalysis, chemical-mechanical planarization, bio-medical and solid oxide fuel cell (SOFC), etc. The redox state of nanoceria can be tuned by controlling the defects within the lattice and thus its physical and chemical properties. Perfect ceria lattice has fluorite structure and the research in last decade has shown that oxide and mixed oxide systems with pyrochlore and fluorite have better structural stability under high energy radiation. However, the current literature shows a limited number of studies on the effect of high energy radiation on nanoceria. This dissertation aims at understanding the phenomena occurring on irradiation of nanoceria lattice through experiments and atomistic simulation.At first, research was conducted to show the ability to control the defects in nanoceria lattice and understand the effect in tailoring its properties. The defect state of nanoceria was controlled by lower valence state rare earth dopant europium. Extensive materials characterization was done using high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy to understand the effect of dopant chemistry in modifying the chemical state of nanoceria. The defects originating in the lattice and redox state was quantified with increasing dopant concentration. The photoluminescence property of the control and doped nanoceria were evaluated with respect to its defect state. It was observed that defect plays an important role in modifying the photoluminescence property and that it can be tailored in a wide range to control the optical properties of nanoceria.Having seen the importance of defects in controlling the properties of nanoceria, further experiments were conducted to understand the effect of radiation in cerium oxide thin films of different crystallinity. The cerium oxide thin films were synthesized using oxygen plasma assisted molecular beam epitaxy (OPA-MBE) growth. The thin films were exposed to high energy radiation over a wide range of fluence (1013 to 1017 He+ ions/cm3). The current literature does not report the radiation effect in nanoceria in this wide range and upto this high fluence. The chemical state of the thin film was studied using in-situ XPS for each dose of radiation. It was found that radiation induced defects within both the ceria thin films and the valence state deviated further towards non-stoichiometry with radiation. The experimental results from cerium oxide thin film irradiation were studied in the light of simulation. Classical molecular dynamics and Monte Carlo simulation were used for designing the model ceria nanoparticle and studying the interaction of the lattice model with radiation. Electronic and nuclear stopping at the end of the range were modeled in ceria lattice using classical molecular dynamics to simulate the effect of radiation. It was seen that displacement damage was the controlling factor in defect production in ceria lattice. The simulation results suggested that nanosized cerium oxide has structural stability under radiation and encounters radiation damage due to the mixed valence states. A portion of the study will focus on observing the lattice stability of cerium with increasing concentration of the lower valence (Ce3+) within the lattice. With this current theoretical understanding of the role of redox state and defects during irradiation, the surfaces and bulk of nanoceria can be tailored for radiation stable structural applications.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004396, ucf:49375
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004396
-
-
Title
-
A 2009 MOBILE SOURCE EMISSIONS INVENTORY OF THE UNIVERSITY OF CENTRAL FLORIDA.
-
Creator
-
Clifford, Johanna, Cooper, David, University of Central Florida
-
Abstract / Description
-
This thesis reports on the results of a mobile source emissions inventory for the University of Central Florida (UCF). For a large urban university, the majority of volatile organic compounds (VOC), oxides of nitrogen (NOx), and carbon dioxide (CO2) emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff, and administrators to and from the university, as well as university business trips. In addition to emissions from daily commutes, non...
Show moreThis thesis reports on the results of a mobile source emissions inventory for the University of Central Florida (UCF). For a large urban university, the majority of volatile organic compounds (VOC), oxides of nitrogen (NOx), and carbon dioxide (CO2) emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff, and administrators to and from the university, as well as university business trips. In addition to emissions from daily commutes, non-road equipment such as lawnmowers, leaf blowers, small maintenance vehicles, and other such equipment utilized on campus contributes to a significant portion to the total emissions from the university. UCF has recently become the second largest university in the nation (with over 56,000 students enrolled in the fall 2010 semester), and contributes significantly to VOC, NOx, and CO2 emissions in Central Florida area. In this project, students, faculty, staff, and administrators were first surveyed to determine their commuting distances and frequencies. Information was also gathered on vehicle type, and age distribution of the personal vehicles of students, faculty, administration, and staff as well as their bus, car-pool, and alternate transportation usage. The EPA approved mobile source emissions model, Motor Vehicle Emissions Simulator (MOVES2010a), was used to calculate the emissions from on-road vehicles, and UCF fleet gasoline consumption records were used to calculate the emissions from non-road equipment and on campus UCF fleet vehicles. The results of the UCF mobile source emissions inventory are reported and compared to a recently completed emissions inventory for the entire three-county area in Central Florida.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003923, ucf:48704
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003923
-
-
Title
-
TUNING THE PROPERTIES OF NANOMATERIALS AS FUNCTION OF SURFACE AND ENVIRONMENT.
-
Creator
-
Karakoti, Ajay, Seal, Sudipta, University of Central Florida
-
Abstract / Description
-
Nanotechnology has shaped the research and development in various disciplines of science and technology by redefining the interdisciplinary research. It has put the materials science at the forefront of technology by allowing the researchers to engineer materials with properties ranging from electronics to biomedical by using materials as diverse as ceramics to just plain carbon. These exceptional properties are achieved by minimizing the dimension of particles in such smaller domains that...
Show moreNanotechnology has shaped the research and development in various disciplines of science and technology by redefining the interdisciplinary research. It has put the materials science at the forefront of technology by allowing the researchers to engineer materials with properties ranging from electronics to biomedical by using materials as diverse as ceramics to just plain carbon. These exceptional properties are achieved by minimizing the dimension of particles in such smaller domains that the boundary between the individual atoms, ions or cluster of particles is very small. This results in a change in conventional properties of particles from continuum physics to quantum physics and hence the properties of nanoparticles can be tuned based upon their size, shape and dimensionality. One of the most apparent changes upon decreasing the particle size is the increase in surface area to volume ratio. Thus nanoparticles possess greater tendency to interact with the environment in which they are present and similarly the environment can affect the properties of nanomaterials. The environment here is described as the immediate solid, liquid or gaseous material in immediate contact with the external surface of the nanoparticles. In order to control the physico-chemical properties of nanoparticles it is important to control the surface characteristics of nanoparticles and its immediate environment. The current thesis emphasizes the role of tuning the surface of nanoparticles and/or the environment around the nanoparticles to control their properties. The current approach in literature uses nanoparticles as a platform that can be used for a myriad of applications by just changing the surface species which can tune the properties of nanoparticles. Such surface modification can provide nanomaterials with hydrophilic, hydrophobic, biocompatible, sensing, fluorescence and/or electron transfer properties. The current thesis demonstrates the interaction between nanoparticles and the environment by changing the surface characteristics of nanomaterials through the use of oxide nanoparticles as examples. The first part of the thesis discusses the synthesis, modification and properties of cerium oxide nanoparticles (CNPs), a versatile material used in wide range of applications from catalysis to glass polishing, for their potential use in biomedical applications as a function of medium. The thesis starts by projecting the effect of environment on the properties of nanomaterials wherein it is shown that simple medium, such as, water can influence the optical properties of nanoparticles. It was shown that the strong polarizing effect of water on the non-bonding f electrons can cause a blue shift in the optical properties of CNPs as a function of increase in trivalent oxidation state of cerium in CNPs. This phenomenon, contradictory to existing literature in solid state where a red shift is observed upon increasing the trivalent oxidation state of cerium in CNPs, is purely attributed to the medium-inflicted change in properties of nanoparticles. This concept is built upon in the first half of thesis by increasing the colloidal stability of nanoparticles by surface and/or medium modification. It is shown that the narrow range of pH in which the colloidal CNPs are stable can be extended by changing the medium from water to polyhydroxy compounds such as glucose and dextran. The synthesis was designed specially to avoid the traditional precipitation and re-dispersion strategy of synthesis of nanoparticles to preserve the surface activity. The complex forming ability of cerium with polysaccharides was employed to synthesize the CNPs in a one step process and the pH stability of the NPs was extended between 2.0 to 9.5. The difference in the complexing ability of the monomer - glucose and its anhydro glucose polymer - dextran is reflected in the ability of cerium to form super-agglomerates with the monomer while anhydro gluco polymer forms extremely disperse 3-5 nm nanoparticles through steric modification. It is shown that the antioxidant activity of nanoparticles remain unchanged by surface modification by demonstrating the cycling of the oxidation state of cerium in CNPs, with time, through hydrogen peroxide mediated transition of oxidation states of cerium. It is demonstrated that the polymeric coatings, generally considered as passive surface coatings, can also play an active role in tuning the properties of nanomaterials and increasing their biocompatibility as well as bio-catalytic activity. It is demonstrated that the antioxidant activity of CNPs can be increased as a function of polyethylene glycol (PEG) while the biocompatibility is unaltered due to the biocompatible nature of PEG. The antioxidant activity of CNPs involves an electron transfer (ET) from the CNPs to the reactive oxygen species or vice versa. This heterogeneous ET system is further complicated by the presence of surface adsorbed species. Interfacial charge/electron transfer (ET) between a particle and adsorbed (or covalently bonded) molecule presents significant complexity as it involves a solid state electron transfer over long distance. Unlike a free ion, in solid state, the conducting electrons can be temporarily trapped by the coupling lattice sites. Adsorption/attachment of surface species to nanoparticle can disturb the electronic levels by further polarizing the electron cloud thereby localizing the electron and facilitating the charge transfer. Such an interfacial electron transfer between NPs and adsorbed organic species can be compared to the single electron transfer carried by organometallic systems with a metal ion core modified with electron delocalizing porphyrin ligands. It is demonstrated that in this PEGyltaed CNPs system, the PEG essentially forms a complex with CNPs in the presence of hydrogen peroxide to facilitate this electron transfer process. The superoxide dismutase (SOD) and catalase mimetic ability of CNPs is described and special emphasis is given to its biocompatibility. The second half of the thesis emphasizes the role of synthesis and surface modification in influencing the catalytic performance of cerium oxide modified titanium dioxide catalysts for decomposition of methanol. Noble metals supported on oxide nanoparticles have been an area of active research in catalysis. It is demonstrated that the modification of surface of the oxide nanoparticles by noble metals is a function of the synthesis process. By keeping the size of the nanoparticles constant, it was demonstrated that the differences in the oxidation state of noble metals can lead to change in the activity of noble metals. This contribution adds to the already existing controversy in the open literature about the role of the oxidation state of platinum in catalysis. The core level shifts in the binding energy of the 4f electrons of platinum was used as a guide to the gauge the oxidation state. Results from an in-house built catalytic reactor coupled to mass spectrometer and in-situ diffuse reflectance infra-red spectroscopy are used to quantify the catalytic performance and identify the mechanism of reaction as well as products of methanol decomposition.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003189, ucf:48590
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003189
-
-
Title
-
Evaporative Vapor Deposition for Depositing 2D Materials.
-
Creator
-
Gleason, Kevin, Putnam, Shawn, Zhai, Lei, Deng, Weiwei, University of Central Florida
-
Abstract / Description
-
The development of a new deposition technique called evaporative vapor deposition (EVD) is reported, allowing deposition and formation of atomically-thin, large area materials on arbitrary substrates. This work focuses on the highly popular monolayer material (-) graphene oxide (GO). A droplet of a GO solution is formed on a heated polymer substrate, and maintained at steady-state evaporation (all droplet parameters are held constant over time). The polymer substrate is laser patterned to...
Show moreThe development of a new deposition technique called evaporative vapor deposition (EVD) is reported, allowing deposition and formation of atomically-thin, large area materials on arbitrary substrates. This work focuses on the highly popular monolayer material (-) graphene oxide (GO). A droplet of a GO solution is formed on a heated polymer substrate, and maintained at steady-state evaporation (all droplet parameters are held constant over time). The polymer substrate is laser patterned to control the droplet's contact line dynamics and the droplet's contact angle is maintained using a computer controlled syringe pump. A room temperature silicon wafer is translated through the vapor field of the evaporating GO droplet using a computer controlled translation stage. Dropwise condensation formed on the silicon wafer is monitored using both optical and infrared cameras. The condensation rate is measured to be ~50pL/mm2?s (-) 500 pL/mm2?s and dependent on the substrate translation speed and height difference between the droplet's apex and substrate surface. Nano-sized GO flakes carried through the vapor phase are captured in the condensate, depositing on the translating wafer. Deposition rate is dependent on the stability of the solution and droplet condensate size. Characterization with Raman spectroscopy show expected shifts for graphene/graphite. The presented EVD technique is promising toward formation of large scale 2D materials with applications to developing new technologies.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006035, ucf:50969
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006035
Pages