Current Search: climate change (x)
View All Items
Pages
- Title
- Identifying inundation-driven effects among intertidal Crassostrea virginica in a commercially important Gulf of Mexico estuary.
- Creator
-
Solomon, Joshua, Walters, Linda, Weishampel, John, Quintana-Ascencio, Pedro, Hagen, Scott, Wang, Dingbao, University of Central Florida
- Abstract / Description
-
Sea level rise and changing storm frequency and intensity resulting from climate change create tremendous amounts of uncertainty for coastal species. Intertidal species may be especially affected since they are dependent on daily inundation and exposure. The eastern oyster Crassostrea virginica is an economically and biologically important sessile intertidal species ranging from Canada to the Gulf of Mexico. Declines and changes in distribution of oyster populations has forced commercial...
Show moreSea level rise and changing storm frequency and intensity resulting from climate change create tremendous amounts of uncertainty for coastal species. Intertidal species may be especially affected since they are dependent on daily inundation and exposure. The eastern oyster Crassostrea virginica is an economically and biologically important sessile intertidal species ranging from Canada to the Gulf of Mexico. Declines and changes in distribution of oyster populations has forced commercial harvesting to spread from subtidal to intertidal reefs. We investigated the potential responses of intertidal C. virginica to sea level rise, and the response of larval settlement to sedimentation which is likely to increase with higher water levels and storm frequency. Inundation was used as a proxy for sea level rise. We hypothesized four possible outcomes for intertidal oyster reefs as a result of changes in inundation due to sea level rise: (a) intertidal reefs become subtidal and remain in place, (b) intertidal reefs will be lost, (c) intertidal reefs migrate shoreward upslope and remain intertidal, and (d) intertidal reefs will grow in elevation and remain intertidal. To test the plausibility of these four outcomes, oyster ladders were placed at two sites within Apalachicola Bay, Florida, USA. Ladders supported oyster recruitment mats at five heights within the range of intertidal elevations. The bottom-most mat was placed near mean low tide, and the top mat near mean high tide to investigate the effect of tidal inundation time on C. virginica. Sediment traps were attached to ladders with openings at equal elevation to the oyster mats. Ladders were deployed for one year starting in June 2012, and again in June 2013, during peak oyster recruitment season. Monthly for six months during year one, sediment was collected from traps, dried to constant weight and weighed to obtain a monthly average for total sediment at each elevation. At the end of one year, oyster mats were collected from the field and examined for the following responses: live oyster density, mean oyster shell length of live oysters, mean oyster shell angle of growth relative to the benthos, and mean number of sessile competitors. We used AICc to identify the most plausible models using elevation, site, and year as independent variables.Oyster density peaked at intermediate inundation at both sites (maximum 1740 oysters per m2), it decreased slightly at the mean low tide, and sharply at the mean high tide. This response varied between years and sites. Mean oyster shell length peaked near mean low tide (6.7 cm), and decreased with increasing elevation. It varied between years and sites. Oyster shell angle of growth relative to the benthos showed a quadratic response for elevation; site but not year affected this response. Sessile competitor density also showed a quadratic response for elevation and varied between sites and years. Barnacles were the primary spatial competitor reaching densities of up to 28,328 barnacles per m2. Total monthly sedimentation peaked at the lowest elevations, and varied by site, with an order of magnitude difference between sites. Sediment increased with decreasing elevation.Outcomes a, c, and d were found to be viable results of sea level rise, ruling out complete loss of intertidal reefs. Outcome (a) would be associated with decrease in oyster density and increase in oyster length. Outcome (c) would require the laying of oyster cultch upslope and shoreward of current intertidal reefs, as well as the removal of any hard armoring or development. Outcome (d) remained possible, but is the least likely requiring a balance between sedimentation, oyster angle of growth, and recruitment. This should be further investigated. A laboratory experiment was designed to test relative impact of varying sediment grain sizes on settlement of C. virginica larvae. Previous studies showed that suspended solids resulted in decreased larval settlement when using mixed sediment grain sizes. Predicted storm levels and hurricane levels of total suspended solids were used in flow tanks. Sediment from the field experiment was sieved into seven size classes, the most common five of which were used in the experiment since they represented 98.8% of total mass. Flow tanks were designed and built that held 12 aged oyster shells, instant ocean saltwater, and sediment. Oyster larvae were added to the flow tanks and allowed one hour to settle on shells. Each run utilized one of the five size classes of sediment at either a high or low concentration. Following the one-hour settlement period, oyster shells were removed from the flow tank and settled larvae were counted under a dissecting microscope. Settlement was standardized by settlement area using Image J. AICc model selection was performed and the selected model included only grain size, but not concentration. A Tukey's post hoc test differentiated (<)63 ?m from 500 (-) 2000 ?m, with the (<) 63 (&)#181;m grain size having a negative effect on oyster larval settlement. This indicates that the smaller grain sizes of suspended solids are more detrimental to oyster larval settlement than larger grain sizes. The oyster ladder experiment will help resource managers predict and plan for oyster reef migration by cultch laying, and or associated changes in oyster density and shell length if shoreward reef growth is not allowed to occur. The laboratory experiment will help to predict the impacts of future storms on oyster larval recruitment. Together this information can help managers conserve as much remaining oyster habitat as possible by predicting future impacts of climate change on oysters.
Show less - Date Issued
- 2015
- Identifier
- CFE0005717, ucf:50132
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005717
- Title
- Investigating the Influence of the Built Environment on Energy-Saving Behaviors.
- Creator
-
Sellers, Brittany, Jentsch, Florian, Smither, Janan, Sims, Valerie, Fiore, Stephen, University of Central Florida
- Abstract / Description
-
This dissertation addresses a gap in the existing sustainability behavior research, by integrating research from the social sciences about environmental attitudes and knowledge with approaches from engineering regarding the characteristics of the built environment. Specifically, this dissertation explores the role of both environmental knowledge and design features within the built environment on building occupants' energy behaviors throughout the course of an environmental conservation...
Show moreThis dissertation addresses a gap in the existing sustainability behavior research, by integrating research from the social sciences about environmental attitudes and knowledge with approaches from engineering regarding the characteristics of the built environment. Specifically, this dissertation explores the role of both environmental knowledge and design features within the built environment on building occupants' energy behaviors throughout the course of an environmental conservation campaign. Data were collected from 240 dormitory residents using a multi-phase questionnaire approach to study these factors and their combined impact within the context of environmental sustainability practices on UCF's campus. The results from a series of correlational and multiple regression analyses indicate that both the design components of the built environment and the attitudes held by individuals within that environment have a significant positive influence on behaviors. Furthermore, these findings indicated that this effect increases significantly when the two factors work together. Finally, the results show that pro- environmental attitudes and behaviors can be successfully targeted through a cue-based energy conservation campaign. By addressing a gap in the extant Human Factors research about the relationship between attitudinal factors and the built environment, this dissertation provides a unique contribution to the field and points the way towards development of promising solutions for encouraging sustainable behaviors.
Show less - Date Issued
- 2016
- Identifier
- CFE0006500, ucf:51387
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006500
- Title
- Climate and landscape controls on seasonal water balance at the watershed scale.
- Creator
-
Chen, Xi, Wang, Dingbao, Chopra, Manoj, Hagen, Scott, Sumner, David, University of Central Florida
- Abstract / Description
-
The main goal of this dissertation is to develop a seasonal water balance model for evaporation, runoff and water storage change based on observations from a large number of watersheds, and further to obtain a comprehensive understanding on the dominant physical controls on intra-annual water balance. Meanwhile, the method for estimating evaporation and water storage based on recession analysis is improved by quantifying the seasonal pattern of the partial contributing area and contributing...
Show moreThe main goal of this dissertation is to develop a seasonal water balance model for evaporation, runoff and water storage change based on observations from a large number of watersheds, and further to obtain a comprehensive understanding on the dominant physical controls on intra-annual water balance. Meanwhile, the method for estimating evaporation and water storage based on recession analysis is improved by quantifying the seasonal pattern of the partial contributing area and contributing storage to base flow during low flow seasons. A new method for quantifying seasonality is developed in this research. The difference between precipitation and soil water storage change, defined as effective precipitation, is considered as the available water. As an analog to climate aridity index, the ratio between monthly potential evaporation and effective precipitation is defined as a monthly aridity index. Water-limited or energy-limited months are defined based on the threshold of 1. Water-limited or energy-limited seasons are defined by aggregating water-limited or energy-limited months, respectively. Seasonal evaporation is modeled by extending the Budyko hypothesis, which is originally for mean annual water balance; while seasonal surface runoff and base flow are modeled by generalizing the proportionality hypothesis originating from the SCS curve number model for surface runoff at the event scale. The developed seasonal evaporation and runoff models are evaluated based on watersheds across the United States. For the extended Budyko model, 250 out of 277 study watersheds have a Nash-Sutcliff efficiency (NSE) higher than 0.5, and for the seasonal runoff model, 179 out of 203 study watersheds have a NSE higher than 0.5. Furthermore, the connection between the seasonal parameters of the developed model and a variety of physical factors in the study watersheds is investigated. For the extended Budyko model, vegetation is identified as an important physical factor that related to the seasonal model parameters. However, the relationship is only strong in water-limited seasons, due to the seasonality of the vegetation coverage. In the seasonal runoff model, the key controlling factors for wetting capacity and initial wetting are soil hydraulic conductivity and maximum rainfall intensity respectively. As for initial evaporation, vegetation is identified as the strongest controlling factor. Besides long-term climate, this research identifies the key controlling factors on seasonal water balance: the effects of soil water storage, vegetation, soil hydraulic conductivity, and storminess. The developed model is applied to the Chipola River watershed and the Apalachicola River basin in Florida for assessing potential climate change impact on the seasonal water balance. The developed model performance is compared with a physically-based distributed hydrologic model of the Soil Water Assessment Tool, showing a good performance for seasonal runoff, evaporation and storage change.
Show less - Date Issued
- 2014
- Identifier
- CFE0005313, ucf:50519
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005313
- Title
- IDENTIFICATION OF SPATIOTEMPORAL NUTRIENT PATTERNS AND ASSOCIATED ECOHYDROLOGICAL TRENDS IN THE TAMPA BAY COASTAL REGION.
- Creator
-
Wimberly, Brent, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
The comprehensive assessment techniques for monitoring of water quality of a coastal bay can be diversified via an extensive investigation of the spatiotemporal nutrient patterns and the associated eco-hydrological trends in a coastal urban region. With this work, it is intended to thoroughly investigate the spatiotemporal nutrient patterns and associated eco-hydrological trends via a two part inquiry of the watershed and its adjacent coastal bay. The findings show that the onset of drought...
Show moreThe comprehensive assessment techniques for monitoring of water quality of a coastal bay can be diversified via an extensive investigation of the spatiotemporal nutrient patterns and the associated eco-hydrological trends in a coastal urban region. With this work, it is intended to thoroughly investigate the spatiotemporal nutrient patterns and associated eco-hydrological trends via a two part inquiry of the watershed and its adjacent coastal bay. The findings show that the onset of drought lags the crest of the evapotranspiration and precipitation curve during each year of drought. During the transition year, ET and precipitation appears to start to shift back into the analogous temporal pattern as the 2005 wet year. NDVI shows a flat receding tail for the September crest in 2005 due to the hurricane impact signifying that the hurricane event in October dampening the severity of the winter dry season in which alludes to relative system memory. The k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high colored dissolved organic matter values are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons. Such ecohydrological evaluation can be applied for supporting the LULC management of climatic vulnerable regions as well as further enrich the comprehensive assessment techniques for estimating and examining the multi-temporal impacts and dynamic influence of urban land use and land cover. Improvements for environmental monitoring and assessment were achieved to advance our understanding of sea-land interactions and nutrient cycling in a coastal bay.
Show less - Date Issued
- 2012
- Identifier
- CFH0004132, ucf:44878
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004132