Current Search: enhancement (x)
View All Items
Pages
- Title
- Disciplinary Mythologies: A Rhetorical-Cultural Analysis of Performance Enhancement Technologies in Sports.
- Creator
-
Lamothe, John, Scott, Blake, Janz, Bruce, Campbell, James, Oliveira, Leonardo, University of Central Florida
- Abstract / Description
-
In sports discourse, the relationship between athletics and technology is often paradoxical. On the one hand, modern sports rely on technology at every level, from training and tracking of players to the equipment and apparel used by athletes to the game strategies and playing fields themselves. Nearly all of these technologies are intended to increase athletic performance on some level. And yet, certain performance enhancement technologies can be criticized for being antithetical to the...
Show moreIn sports discourse, the relationship between athletics and technology is often paradoxical. On the one hand, modern sports rely on technology at every level, from training and tracking of players to the equipment and apparel used by athletes to the game strategies and playing fields themselves. Nearly all of these technologies are intended to increase athletic performance on some level. And yet, certain performance enhancement technologies can be criticized for being antithetical to the spirit of sports, which is framed as being a strictly natural and pure human endeavor. Using a rhetorical-cultural methodological approach, popular sports discourse is analyzed to investigate how arguments in contested spaces between sports and technologies get (re)negotiated and (re)articulated to fit within a sports social language that emphasizes (")pure(") and (")natural(") ideals of sport. This often results in a dichotomy where the sport/technology relationship is either black boxed, thus being subsumed in the sport social language and becoming transparent and the relationships unarticulated, or the technology is regulated out of the sport through rules and bans. The reason for this articulation is attributed in large part to the deep humanism embedded in the sport social language. How a shift to a posthuman perspective would effect sports discourse is explored. These conclusions about underlying values in sports discourse lead to the formation of a new theoretical framework called disciplinary mythologies. Building off of Foucault's disciplinary power, Scott's disciplinary rhetorics, and Barthe's mythologies, disciplinary mythologies are discrete units of persuasion that both construct and constitute claims by drawing upon layered narratives and shifting associations that lose their context when entering the realm of myth. Two specific disciplinary mythologies are discussed(-)the level-playing-field topos and the nostalgia enthymeme(-)and it is shown how sports discourse often draws upon them to shape arguments and actions.
Show less - Date Issued
- 2015
- Identifier
- CFE0005970, ucf:50773
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005970
- Title
- On Distributed Estimation for Resource Constrained Wireless Sensor Networks.
- Creator
-
Sani, Alireza, Vosoughi, Azadeh, Rahnavard, Nazanin, Wei, Lei, Atia, George, Chatterjee, Mainak, University of Central Florida
- Abstract / Description
-
We study Distributed Estimation (DES) problem, where several agents observe a noisy version of an underlying unknown physical phenomena (which is not directly observable), and transmit a compressed version of their observations to a Fusion Center (FC), where collective data is fused to reconstruct the unknown. One of the most important applications of Wireless Sensor Networks (WSNs) is performing DES in a field to estimate an unknown signal source. In a WSN battery powered geographically...
Show moreWe study Distributed Estimation (DES) problem, where several agents observe a noisy version of an underlying unknown physical phenomena (which is not directly observable), and transmit a compressed version of their observations to a Fusion Center (FC), where collective data is fused to reconstruct the unknown. One of the most important applications of Wireless Sensor Networks (WSNs) is performing DES in a field to estimate an unknown signal source. In a WSN battery powered geographically distributed tiny sensors are tasked with collecting data from the field. Each sensor locally processes its noisy observation (local processing can include compression,dimension reduction, quantization, etc) and transmits the processed observation over communication channels to the FC, where the received data is used to form a global estimate of the unknown source such that the Mean Square Error (MSE) of the DES is minimized. The accuracy of DES depends on many factors such as intensity of observation noises in sensors, quantization errors in sensors, available power and bandwidth of the network, quality of communication channels between sensors and the FC, and the choice of fusion rule in the FC. Taking into account all of these contributing factors and implementing a DES system which minimizes the MSE and satisfies all constraints is a challenging task. In order to probe into different aspects of this challenging task we identify and formulate the following three problems and address them accordingly:1- Consider an inhomogeneous WSN where the sensors' observations is modeled linear with additive Gaussian noise. The communication channels between sensors and FC are orthogonal power and bandwidth-constrained erroneous wireless fading channels. The unknown to be estimated is a Gaussian vector. Sensors employ uniform multi-bit quantizers and BPSK modulation. Given this setup, we ask: what is the best fusion rule in the FC? what is the best transmit power and quantization rate (measured in bits per sensor) allocation schemes that minimize the MSE? In order to answer these questions, we derive some upper bounds on global MSE and through minimizing those bounds, we propose various resource allocation schemes for the problem, through which we investigate the effect of contributing factors on the MSE.2- Consider an inhomogeneous WSN with an FC which is tasked with estimating a scalar Gaussian unknown. The sensors are equipped with uniform multi-bit quantizers and the communication channels are modeled as Binary Symmetric Channels (BSC). In contrast to former problem the sensors experience independent multiplicative noises (in addition to additive noise). The natural question in this scenario is: how does multiplicative noise affect the DES system performance? how does it affect the resource allocation for sensors, with respect to the case where there is no multiplicative noise? We propose a linear fusion rule in the FC and derive the associated MSE in closed-form. We propose several rate allocation schemes with different levels of complexity which minimize the MSE. Implementing the proposed schemes lets us study the effect of multiplicative noise on DES system performance and its dynamics. We also derive Bayesian Cramer-Rao Lower Bound (BCRLB) and compare the MSE performance of our porposed methods against the bound.As a dual problem we also answer the question: what is the minimum required bandwidth of thenetwork to satisfy a predetermined target MSE?3- Assuming the framework of Bayesian DES of a Gaussian unknown with additive and multiplicative Gaussian noises involved, we answer the following question: Can multiplicative noise improve the DES performance in any case/scenario? the answer is yes, and we call the phenomena as 'enhancement mode' of multiplicative noise. Through deriving different lower bounds, such as BCRLB,Weiss-Weinstein Bound (WWB), Hybrid CRLB (HCRLB), Nayak Bound (NB), Yatarcos Bound (YB) on MSE, we identify and characterize the scenarios that the enhancement happens. We investigate two situations where variance of multiplicative noise is known and unknown. Wealso compare the performance of well-known estimators with the derived bounds, to ensure practicability of the mentioned enhancement modes.
Show less - Date Issued
- 2017
- Identifier
- CFE0006913, ucf:51698
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006913
- Title
- THE APPLICATION OF TWO-PHOTON ABSORBING PROBES IN LYSOSOMAL, ZINC ION SENSING AND FOLATE RECEPTOR-TARGETED BIOIMAGING.
- Creator
-
WANG, XUHUA, Belfield, Kevin D., University of Central Florida
- Abstract / Description
-
Two-photon fluorescence microscopy (2PFM) has become a powerful technique for bioimaging in non-invasive cancer diagnosis and also investigating the mechanization and original of a variety of diseases by tracking various biological processes. Because the fluorescence emission by two photon absorbing (2PA) is directly proportional to the square of the intensity of excitation light, this intrinsic property of 2PA provides 2PFM great advantages over traditional one-photon fluorescence microscopy...
Show moreTwo-photon fluorescence microscopy (2PFM) has become a powerful technique for bioimaging in non-invasive cancer diagnosis and also investigating the mechanization and original of a variety of diseases by tracking various biological processes. Because the fluorescence emission by two photon absorbing (2PA) is directly proportional to the square of the intensity of excitation light, this intrinsic property of 2PA provides 2PFM great advantages over traditional one-photon fluorescence microscopy (1PFM), including high 3D spatial localization, less photodamage and interference from biological tissue because of using longer wavelength excitation (700-1300 nm). However, most 2PA probes are hydrophobic and their photostabilities are questionable, severely limiting their biological and medical applications. In addition, probes with significant specificity for certain organelles for tracking cellular processes or metal ions for monitoring neural transmission are somewhat rare. Moreover, it is also very significant to deliver the probes to specific disease sites for early cancer diagnosis. In order to increase the water solubility of probes, polyethylene glycol (PEG) was introduced to a fluorene-based 2PA probe LT1 for lysosomal 2PFM cell imaging. The 2PFM bioimaging application of the novel two-photon absorbing fluorene derivative LT1, selective for the lysosomes of HCT 116 cancer cells is described in Chapter II. Linear and nonlinear photophysical and photochemical properties of the probe were investigated to evaluate the potential of the probe for 2PFM lysosomal imaging. After the investigation of the cytotoxicity of this new probe, colocalization studies of the probe with commercial lysosomal probe Lysotracker Red in HCT 116 cells were conducted. A high colocalization coefficient (0.96) was achieved and demonstrated the specific localization of the probe in lysosomes. A figure of merit, FM, was introduced by which all fluorescent probes for 2PFM can be compared. LT1 was demonstrated to have a number of properties that far exceed those of commercial lysotracker probes, including much higher 2PA cross sections, good fluorescence quantum yield, and, importantly, high photostability, all resulting in a superior figure of merit. Consequently, 2PFM was used to demonstrate lysosomal tracking with LT1. In addition to lysosomes, it is also very significant to investigate the physiological roles of free metal ions in biological processes, especially Zn2+, because Zn2+ normally serves either as the catalytic elements in enzymatic activity centers or as structural elements in enzymes and transcription factors. However, biocompatible and effective Zn2+ probes for 2PFM bioimaging are infrequent. In Chapter III, 2PFM bioimaging with a hydrophilic 2PA Zn2+ sensing fluorescent probe, bis(1,2,3-triazolyl)fluorene derivative, is described. 2PFM bioimaging of the probe in living HeLa cancer cells was demonstrated. The results revealed a significant fluorescence increase upon introduction of Zn2+ into the cancer cells, and a reversible Zn2+ binding to the probe was also demonstrated, providing a robust probe for two-photon fluorescence zinc ion sensing. Early cancer diagnosis is another critical application for 2PFM, but there are still huge challenges for this new technique in clinical areas. Most 2PA probes with large two-photon absorbing cross sections and fluorescence quantum efficiency are synthetically more accessible in hydrophobic forms. In order to increase the efficiency of the probes and minimize the effect of the probe on the human body, delivery of the probe specifically to cancer sites is desired. The synthesis and characterization of narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, are reported in Chapter IV. The surface of the SiNPs was functionalized with folic acid to specifically deliver the probe to folate receptor (FR) over-expressing HeLa cells, making these folate 2PA dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing HeLa cells demonstrated specific cellular uptake of the functionalized nanoparticles. However, when the concentration of the dye in SiNPs increased for higher signal output, the fluorescence quantum efficiency of a probe normally decreases because of self-quenching. In Chapter V, a near-infrared (NIR) emitting probe is reported to overcome this limitation through both aggregate-enhanced fluorescence emission and aggregate enhanced two-photon absorption. The dye was encapsulated in SiNPs and the surface of the nanoparticles was functionalized with PEG followed by a folic acid derivative to specifically target folate receptors. NIR emission is important for deep tissue imaging. In vitro studies using HeLa cells that upregulate folate receptors indicated specific cellular uptake of the folic acid functionalized SiNP nanoprobe. Meanwhile, the probe was also investigated for live animal imaging by employing mice bearing HeLa tumors for in vivo studies. Ex vivo 2PFM tumor imaging was then conducted to achieve high quality 3D thick tissue tumor images.
Show less - Date Issued
- 2011
- Identifier
- CFE0003640, ucf:48891
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003640